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Abstract

A Borehole Thermal Energy Storage living lab was built up nearby Torino (Northern Italy). This
living lab aims at testing the ability of the alluvial deposits of the north-western Po Plain to store the
thermal energy collected by solar thermal panels and the efficiency of energy storage systems in this
climatic context. Different monitoring approaches have been tested and analyzed since the start of the
thermal injection in April 2014. Underground temperature monitoring is constantly undertaken by
means of several temperature sensors located along the borehole heat exchangers and within the
hydraulic circuit. Nevertheless, this can provide only pointwise information about underground
temperature distribution. For this reason, a geophysical approach is proposed in order to image the
thermally affected zone (TAZ) caused by the heat injection: surface electrical resistivity measurements
were carried out with this purpose. In the present paper, results of time-lapse daily acquisitions are
reported with the aim of imaging the thermal plume evolution within the subsoil. Resistivity data,
calibrated on local temperature measurements, have shown their potentiality in imaging the heated
plume of the system and depicting its evolution within the day. Different types of data processing were
adopted in order to face issues mainly related to a highly urbanized environment. The use of apparent
resistivity proved to be in valid agreement with the results of different inversion approaches. The
inversion processes did not significantly improve the qualitative and quantitative TAZ imaging in
comparison to the pseudo-sections. This suggested the usefulness of apparent resistivity data alone for
a rough monitoring of TAZ in this kind of applications.
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1. INTRODUCTION

Renewable energy sources, such as solar thermal energy, often suffer from the
shortcoming that most of their supply takes place when the user demand is low (e.g. sun
energy is mostly related to the warm season, when the heating demand is reduced). In this
respect, several thermal energy storage techniques have been studied since the late 70s
(Sharma et al., 2009; Xu et al., 2014, Cabeza, 2015). Underground thermal energy storage
technologies have been developed to ensure reliability, efficiency and economic sustainability
of the renewable heat. Given the development and the excellent performance of shallow
Borehole Heat Exchangers (BHEs), some attempts have been successfully conducted by
storing the heat within the subsoil in Borehole Thermal Energy Storage (BTES) systems (e.g.
Bakema et al., 1995; Fisch et al., 1998; Reuss et al., 2006; Sibbit et al., 2012; Rapantova et
al., 2016).

Both thermal and hydrogeological properties of the subsoil have to be carefully
characterized for the design and operation of this kind of installations. Correct monitoring
strategies also appear to be of major importance to better understand thermal exchange
processes and environmental effects of low enthalpy geothermal applications and heat storage
systems, particularly into highly populated areas. The Thermally Affected Zone (TAZ)
generated within the storage volume should be considered and accurately imaged to assess the
possible side adverse effects on the litho-, hydro- and bio-sphere. Typically, the TAZ is
imaged through local and pointwise measurements by means of temperature sensors located
within the system to monitor changes in underground temperatures. In this context,
geophysics can be adopted to obtain complementary and spatially distributed information

directly from the ground surface in a quick, cost-effective and non-invasive way.

Resistivity-based measurements are potentially very powerful since useful relationships
can be found in literature between electrical resistivity, temperature and several relevant
hydrogeological parameters. Underground resistivity is indeed related, even if in a complex
way, to various soil and environmental attributes, such as total dissolved solids (TDS) in the
fluid, mineral composition, porosity and water content (Friedman, 2005). Archie (1942) and
Urish (1981), with theoretical and empirical results, were the first to demonstrate a correlation
between the formation factor (the ratio between the bulk resistivity of the subsoil and the
resistivity of interstitial fluid) of an aquifer and the pore water resistivity. This relation has
then been widely adopted in characterization and monitoring studies. Resistivity surveys can

therefore be useful to assess the properties of the shallow underground for the design of a low
2
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enthalpy geothermal system. Moreover, given that electrical resistivity is strongly influenced
by temperature (Rein et al., 2004; Hayashi, 2004; Hayley et al., 2007), promising applications
of resistivity measurements can also take place in the monitoring phase. It is potentially
possible to use resistivity variations as a recording factor in order to image time-lapse

temperature distribution (e.g. Hermans et al., 2015; Arato et al., 2015) .

Easiness of operation and interpretation related to both hardware and software
developments pushed the use of Electrical Resistivity Tomography (ERT) as one of the most
used techniques in the field of characterization and monitoring of the subsurface. Surface
ERT has many practical applications for studying soil properties and processes in the
subsurface (e.g. Daily and Ramirez, 1992; LaBrecque et al., 1996b; Singh et al., 2001; Slater,
2007). Thereby, ERT represents a standard method for subsurface monitoring of different
phenomena (see among others Ramirez et al., 1993; Zhou et al., 2001; Binley et al., 2002;
Michot et al., 2003; Corwin and Lesch, 2005; Miller et al. 2008; Schwartz et al., 2008) and
characterization of hydrogeological properties (Carrier, 2003; Slater, 2007) and parameters
(Hoffman and Dietrich, 2004).

The use of ERT to exploit electrical resistivity as a key changing factor in temperature
variation at both field and lab scale has been already conducted for different purposes:
imaging of heated water injection (Benderitter and Tabbagh, 1982; Hermans et al., 2015),
monitoring of gas-phase formation due to heat storage (Liiders et al., 2016), geothermal
exploration (Bruno et al., 2000; Garg et al., 2007), monitoring the performance of low
enthalpy ground source energy systems (Fragkogiannis et al., 2008; Firmbach et al., 2013)
and localizing the burning front of underground coal fires (Revil et al., 2013) to name but a
few. Nevertheless, more examples are particularly necessary in real scale applications, since
calibrated, robust and reliable correlations between electric resistivity and temperature are not
available yet (Robert et al., 2013). Indeed, several uncertainties stand at field scale where
different factors do affect the underground resistivity distribution. Correct acquisition,
elaboration and interpretation of resistivity surveys are challenging in highly populated areas
where heat storage applications are usually designed. Particularly, artifacts related to the
inversion problem can be critical for a correct imaging and quantification of thermally

induced variations.

In this respect, the present paper aims to give an additional evaluation of the potential of

ERT technique as a field-scale TAZ imaging tool. This work is a prosecution of laboratory
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scale electrical measurements performed by Giordano et al. (2016b) and is based on time-
lapse ERT surveys conducted at a BTES site. A field-scale BTES living lab was built up in
Grugliasco, near the Topography Department of the University of Torino (Giordano et al.,
2016a). The living lab has been working since April 2014. Underground temperature
monitoring is constantly undertaken by means of several temperature sensors located along
the BHEs and within the hydraulic circuit. Resistivity surveys were firstly performed monthly
since the startup of the plant in order to image the evolution of the charge phase in the ground.
However, too many factors, apart from temperature, can affect the resistivity distribution
during a whole month. A single rainfall event can indeed completely reset the underground
resistivity field, since the BHEs are drilled into unsaturated deposits. For this reason, time-
lapse data presented in this paper were acquired during a single operation day during the
charge phase. These data, calibrated on local temperature measurements, were used to image

the TAZ of the system.

2. MATERIALS AND METHODS
2.1 Description of the BTES living lab

The test site where the BTES living lab has been constructed is located in the north-
western portion of the Pianura Padana in the municipality of Grugliasco (Torino, Italy). The
drilling activity performed in the area showed 30 m of Pleistocene-Holocene gravels and
sands, sometimes with local decimetric layers of compacted gravelly sands. This unit overlies
deposits of a transitional facies between marine and continental environment, being
characterized by the alternation of coarse sands and silts due to the progression and regression
of the coastal line in the Middle Pliocene — Lower Pleistocene (Fig. 1). On the strength of the
available data, the water table of the unconfined aquifer is located at 35-40 m below ground
level (b.g.l.) and the groundwater flows towards ESE. Groundwater flow has been
demonstrated to improve the heat exchange between BHEs and the ground (Wang et al.,
2009; Casasso and Sethi, 2014) thanks to its continuous supply of thermal energy. It
conversely induces a significant decrease of the BTES efficiency since it can leach out the
thermal energy stored into the aquifer and reducing the extracted/stored energy ratio (Nguyen

etal., 2017).

Due to these geological conditions and owing to specific restrictions from the local
authorities, the BTES plant was set up in the partially-saturated zone of the unconfined
aquifer. This situation was however a valuable choice in order to test the ability of partially-

4
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saturated alluvial deposits to store the heat. The underground part of the system stores the heat
by means of four 27 m deep BHEs. The designed arrangement (Fig. 1 and 2) consists of a
double U-pipe borehole (DU) placed in the center of an equilateral triangle (2 m side) and 3
single U-pipe BHEs (A, B and C) located at the vertexes of the triangle. The top of the BHEs
is placed at a depth of 1.5 m b.g.l. in order to minimize heat losses towards the atmosphere.
With this purpose, a layer of insulating filling material was added above the BHEs. A 33 m
deep monitoring hole (MH) was located 2 m away from the double-U heat exchanger. The
remaining part of the system is located in the nearby Topography Department (Fig. 2). Two
solar thermal panels are placed on the roof and they collect solar energy with a total net
surface of 5.0 m” and an inclination of approximately 10°. The circuit is governed by a
hydraulic pump located in the basement of the building. The pump provides the heat transfer
fluid (HTF) circulation through the whole system at a maximum flow rate of 210 1 h™ and a

constant pressure of 2.2 bar.

The temperature monitoring system consists of 20 RTD 4wire Pt100 (measurement
range -50 + +180 °C, accuracy 5%) placed every 5 m down-hole in 3 of the 4 BHEs and in the
monitoring hole. In addition, 10 temperature sensors of the same type are placed throughout
the circuit and on the thermal panels. The operative mode of the system was decided
according to similar operating plants, where a core volume benefits from the warmest carrier
fluid and it is surrounded by an annular volume fed with the same fluid at a lower amount of
heat. Therefore, during the “Charge Phase”, the HTF warmed up by solar energy is driven
down into the central BHE (DU), then out to the hydraulic pump and pumped again down into
the outer BHEs (A, B and C). The system is able to evaluate whether to circulate the fluid or
not according to a temperature difference constraint. If the difference between the collectors
and the average ground temperature is more than 5°C, the system works and the ground is
charged by solar thermal energy. Conversely, the circulation is stopped in order to prevent the
cooling of the ground. In this way, the plant injects thermal energy only during the day. In
winter season, the circulation of the system is reversed and the “Discharge Phase” occurs.
More details about the Grugliasco BTES plant and the first long term results obtained since

the startup of the plant can be found in Giordano et al. (2016a).

2.2 Electrical resistivity imaging

Owing to the limited dimensions of the area around the BHE field and in the need of

trade-off between spatial resolution and satisfactory depth of investigation (DOI), resistivity
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measurements were performed along a 72 electrode profile with inter-electrode spacing of 1
m (Fig. 2). Time-lapse measurements reported in this paper were carried out hourly on 2014
July 25™, from 9 AM to 4 PM. In Tab. 1 a schedule of the executed ERT surveys is reported
together with instantaneous values of flow rate, fluid temperature difference between in and
out, power and energy transferred to the ground every 0.5 h. The heating activity lasted since
8-9 AM until 3-4 PM and a little cooling occurred when the collectors were no longer able to
collect enough thermal energy. A Wenner-Schlumberger measuring sequence was used for
acquisitions with Syscal R1 georesistivimeter (Iris Instruments). A short current injection time
(250 ms) was adopted in order to record the set of measurements (total of 548 quadrupoles for
each survey) as quick as possible. This configuration allowed us to obtain a reliable DOI of
about 12-13 m b.g.l. in a vertical cross section. With the aim of comparing results obtainable
with different computational efforts, both apparent and inverted resistivity data achieved from
the surveys are hereby discussed. Since Giordano et al. (2016b) demonstrated the ability of
time-lapse apparent resistivity to reach valuable temperature estimation in porous media at lab

scale, thus an analogous approach was tested at the field scale.

The finite-element algorithm R2 (Version 2.7b, A. Binley, Lancaster University) was
adopted to carry out the resistivity data inversion (Binley and Kemna, 2005). The inverse
problem is formulated through a set of model parameters m (i.e. model cells resistivities),
related to a set of measured data, d, through the relation d=F(m), F being the forward
operator. The inversion algorithm is based on a least square formulation, as it minimizes the

data misfit according to Eq. [1]:
Fi(m)—d;\?
Wy = TR, (HER) = Wy Fi(m) - d))|? [1]

where D is the total number of measured data, d; is the i-th observed data vector, Fi(m) is the
i-th datum obtained through the forward model solution and ¢; the variance of the i-th datum,
from which the data weighing matrix Wy is derived (LaBrecque et al., 1996a). The inversion
requires a regularization term to be minimized, in order to create a reliable and realistic result.
Regularization of the model can incorporate a-priori information on the geology of the area,
introducing penalties for departure from an initial model and for anisotropy in the

reconstruction (Eq. [2]):

lpm = O(sllws(ln - an)”2 + O(xllwx(ln - m0)||2 + O(zllwz(ln - an)”2 [2]
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where, on the right hand side, the first term is the penalty for the deviation from a starting
model my, the second and third terms are penalties for roughness in horizontal and vertical
direction, the o, are the related smoothing factors and Wy, are the weighting matrices
composing the model regularization matrix Wy,. The total objective function ¥=¥4+¥,, must
be minimized iteratively, by searching the model improvement Amy that drives the model to

the best-fitting solution (Eq. [3]):
(1 Wd Wi + aWi, Wiy )Amye = Jy Wg Wy[d — F(mi)] = aWg Wy, (m —mo)  [3]

where J is the Jacobian or “sensitivity” matrix, my:;=mi+Amy is the updated model at k-th
iteration. R2 has the possibility to build different types of finite element meshes with regular
quadrilateral, general quadrilateral or triangular cells. A quadrilateral cell array was used in
this case, with finite element sizes progressively increasing with increasing distance from the
electrodes (i.e. with depth). The data error estimation, necessary to set the matrix Wy, is
computed according to LaBrecque et al. (1996a). The model regularization can be forced to
penalize undesired departures from an a priori model, or to follow vertical/horizontal

anisotropic reconstruction. For the present study, an isotropic regularization was maintained.

The starting model of the time-lapse inversion of the subsequent time steps was the
model resulting from the inversion of background data which is the one collected at 9 AM
(zero condition). Time-lapse data were inverted with the difference inversion algorithm
described by LaBrecque and Yang (2001). Difference inversion is an extension of the

traditional Occam’s inversion and is based on the minimization of Eq. [4]:

Ad = (d —do) — [F(m) — F(m,)] [4]

where d and F(m) represent the data vector and the forward response for the model m
respectively, and the subscript index “0” denotes the background dataset and related forward
response. The vector parameter my comes from a single inversion of the background dataset
and constitutes the starting and the reference model for the difference inversion process. The
model update Am=my;;-my is obtained by solving Eq. [S] as an optimization problem,

usually with a conjugate-gradient approach,

(Jk W4 Wali + aR)Amy = JgWiWyAd — aR(my — m,) [5]

The regularization matrix, R, is hereby expressed as Eq. [6]:
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-1
R = (JrWi Wyi + aWIW, ) TiWi WyJy [6]

LaBrecque and Yang (2001) proved that this algorithm is less sensitive to systematic errors in
the data, more efficient in terms of computational requirements and more robust in imaging
the real changes in the resistivity distribution. In fact, the method is based on the calculation
of a single Jacobian matrix, which is supposed to adequately describe the sensitivity
distribution of both the model at time t and the background model. This assumption implies
non dramatic changes in the resistivity distribution and the process is oriented to find small

perturbation with respect to the initial model.

2.3 Data error analysis

Globally, raw data showed good quality and repeatability. Apparent resistivity values
ranged between 50 and 250 Qm. Since repeatability of the measurements was available and
the measured data distribution was not scattered, the 2% of the measured resistance values
was taken as a reasonable weighting parameter for inverting the background dataset. In order
to perform the time-lapse inversions, data errors were reduced to 1% for the subsequent
datasets. With 2% error the starting model coincided with the solution and the inversion
process was indeed not able to find the variations between the consecutive time steps. Few
outliers, such as measurement errors and anomalous high and low apparent resistivity values,
were filtered out before the inversion process, giving a dataset of 540 resistance values to be

mverted.

Demonstrating the difficulty of operating in highly urbanized areas, it has been noticed
that the concrete entry way to the building gets overheated around noon. Moreover, the
presence of underground water pipes and electric cables supplying the nearby building were
also causes of disturbance in data acquisition. This created anomalous measurements (both
low and high resistance values) which behaved differently with respect to the surrounding
soil. In order to get rid of noisy data, the measurements involving electrodes that fall around
the entry way itself (electrodes from 33 to 38) were filtered out. Then, a reduced time-lapse
dataset (with 341 quadrupoles) was also inverted. In any case, the algorithm used for
resistivity inversion at Grugliasco BTES site was ideal since the data errors were likely to
follow a Gaussian distribution and the resistivity model was expected to change in a smooth

manner.

2.4 Temperature estimation based on resistivity values
8
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A quantitative interpretation of resistivity data in terms of temperature variation was
performed by using both apparent data and inversion results. Both data were processed
according to Eq. [7]:

Tt:i(ﬁ—1)+n 7]
where Ap (%) is the resistivity variation between a defined step and the zero condition, T and
T, are temperatures at respective time steps and m is the fractional change in electrical
resistivity (°C™"). A range of 0.018 =+ 0.025 °C”' has been found by several authors for m
(Revil et al., 1998; Hayashi, 2004; Hayley et al., 2007; Hermans et al., 2012) and it varies
according to the type of fluid and sediments. For the present case, Eq. [7] was adopted with
Ap (%) obtained both from apparent and inverted resistivity. An m value of 0.021 °C™" was
assumed after calibration tests at lab scale (Giordano et al., 2016b). Reference temperature
(Ty) could not be adopted homogenous within the whole investigated ground. Indeed, at the
beginning of the day the BHE field showed temperature values higher than the undisturbed
ground, since the charge phase started 4 months earlier. The reference temperature field was
thus obtained from the values registered by temperature sensors in the boreholes and in the
monitoring hole at the beginning of the day of measurements. A value of 14.2 °C was used for
the undisturbed ground aside the BHE field. Then a smooth gradient was applied from the
borders of the BHE field to the center of the heated volume where a temperature of 17.5 °C

was registered by the sensors.
3. RESULTS

The aim of evaluating the thermally affected zone of the underground from electrical
resistivity measurements is not an easy task in the test site under consideration. Firstly, the
system is operating in the partially-saturated zone, so that possible complex resistivity
variations can be highlighted with increasing temperature (e.g. de-saturation); secondly, the
available space for the surveys is limited; lastly, the presence of several anthropic elements
(entry ways, water pipes, electric cables and foundations of the buildings) could affect data
collection, processing and interpretation. These are the main reasons why both apparent
resistivity and true resistivity models were processed in order to highlight qualities and flaws

of each one.

3.1 Apparent resistivity data
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Time-lapse variations (in % with respect to the zero condition at 9 AM) of apparent
resistivity for steps at 1, 2 and 3 PM are shown in Fig. 3. As previously mentioned, the entry
way and its underlying pipes create a noticeable disturbance to the dataset (vertical anomaly
at an abscissa of about 35 m). This anomaly is a combination of errors due to water pipes and
electric cables (constant) and to the heat up of the entry way (variable). Constant sources of
noise could be easily erased from data, while variable sources are more complicated to tackle.
The portions of the ground on both sides of the concrete way are subjected to a heat up more
pronounced than the other parts of the section. Besides these effects though, the BTES
influence is evident between 20 and 30 m, where the decrease in resistivity is higher (-1 + -

2% at 3 PM) than on the right of the entry way.

Percentage differences among the resistivity pseudo-sections were processed for
temperature estimation using Eq. [7]. Data obtained are reported in Fig. 4 for the zone around
the BHEs (for location see Fig. 3). The dataset population is small but the variogram spatial
analysis confirmed that a valuable Kriging interpolation could be achieved. At 1 PM, a
heating plume is clear around the BHEs, with temperature 2 + 3 °C higher than the
surrounding soil. In the successive steps, the TAZ is progressively more evident with
maximum values of 18.5 °C in the core at 2 and 3 PM. An increase in temperature can also be
observed at greater depths. The heated volume is symmetric at 1 PM, whereas the influence of

the concrete entry way is clear in the following sections, extending the TAZ towards West.
3.2 Inverted resistivity data

The inverted background resistivity model (9 AM) for the whole dataset is shown in
Fig. Sa. The resistivity section reports a shallow low resistivity anomaly in correspondence to
the boreholes and to the excavation made up to a depth of 1.5 m to provide an insulation to
the pipes. A more pronounced anomaly is also highlighted around an abscissa of 35 m, where
the electrodes were hammered in the concrete bricks of the entry way. The remaining part of
the model shows a relatively homogeneous medium characterized by unsaturated gravels and
sands, apart from the high resistivity volume in the Eastern part, most likely due to the
basement of the buildings. The same background model for the filtered dataset is reported in
Fig. 5b. As in the aim of the filtering, this model does not show the marked low resistivity

anomaly at 35 m, confirming the success of data filtering.

Results of time-lapse inversions for the same three example time steps of apparent

resistivity data, respectively at 1, 2 and 3 PM, are reported for the whole dataset in Fig. 6. At
10
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1 PM two small volumes of negative and positive resistivity variation are clear between 25
and 35 m. In the following steps, these anomalies increase of intensity and volume and at 3
PM a sharp contrast between a -10% and a +10% volume is located in the middle of the
section. The negative variation can be related to the operation of the plant (temperature
increase) while the small positive one is located below the position of the entry way. The
whole resistivity distribution is however characterized by a general decrease of resistivity (-3
to -5%) apart from three volumes with positive variation. The increasing resistivity anomaly
at 12 m appears to be related to the high resistivity anomaly located in the same position in
the background model (Fig. 5a). The highest negative variation is located at 29 m. The entire
volume has a lateral extension of about 10 m and seems to continue below the end of the
section (> 10 m). Knowing the position of the plant, this can be ascribed to the effect of heat
injection, but the highest intensity at 3 PM (-5.3%) is shifted by 4 m towards West with
respect to the position of the central borehole DU. As above mentioned, the concrete-made

entry way gets overheated and transfers the heat to the underground.

Results of time-lapse inversions for the same three example time steps are reported for
the filtered dataset in Fig. 7. These results show a general smaller resistivity decrease, but still
significant in correspondence of the BTES. The highest amount of negative resistivity
variation at 3 PM (-2.7%) is located at 28 m, but in the top 1 + 1.5 m. The filtering is
successful in reducing the effect of the entry way, but at the same time it highlights the
influence of the solar radiation on the surface, shifting the maximum decrease in resistivity

towards the ground level.

For both datasets, resistivity values were processed in order to achieve an estimate of
underground temperature distribution. Figs. 8 and 9 report the temperature maps such
obtained for the part of the resistivity section shown in Figs. 6 and 7, just close to BHE field.
A percentage variation with respect to background (9 AM) was calculated at each cell of the
volume and then adopted to get resistivity-derived temperature values (from Eq. [7]).
Temperature data were then interpolated with Kriging algorithm, accounting for the analysis

of spatial data variability.

The whole set of data (Fig. 8) presents a radial thermally affected zone around the
central BHE, with maximum values of 17.5, 18.5 and 19.5 °C at 1, 2 and 3 PM respectively.
The volume influenced by temperature increase is roughly symmetric, but the portion at 2.5 m
right from the BHEs is warmer (16 °C at 1 PM) and this difference is amplified at 2 PM and 3

11
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PM. It is interesting to note that at 3 PM the top 1.5 m is colder than the deeper portions:
indeed, it is only influenced by solar radiation since the top of the boreholes is located 1.5 m

b.g.l., with a thermal insulation above this depth.

The filtered dataset (Fig. 9) shows lower temperatures as expected, with 18 °C as
maximum value reached at 3 PM in the center of the BHE field. Thermally affected zone is
symmetric with respect to the central BHE; a shift towards the Western part is not significant
but still noticeable at 3 PM. This means that the influence of the overheated concrete way is
higher than expected, but filtering more data would reduce the reliability of the data inversion
too much. The top of the BHEs is not visible, even in the last considered step. As explained
above, after filtering the noisy data out, the maximum decrease in resistivity is shifted towards
the ground level. This can be explained by considering that some of the filtered data, at the
center of the BHE system and at 8 + 12 m of depth, appeared significantly influenced by the
entry way. The shallowest data are nevertheless equal before and after filtering, since a
temperature of 18 °C is reached between the abscissa range 25.5 + 27.5 m in both datasets.
Therefore, the action of filtering contributed to reduce the resistivity decrease in the whole

section, but it did not provide a noteworthy improvement of the TAZ imaging.
4. DISCUSSION

A detailed discussion can be conducted in order to highlight qualities and flaws of the
adopted methodologies, that can serve as fast and reliable qualitatively TAZ imaging and

quantitative temperature investigation tools.

Fig. 10 reports a graph with the temperature recordings of the control system in two of
the four BHEs (A and DU) and in the monitoring hole (MH), and the resistivity-derived
temperatures achieved by the three methods above described. Resistivity-derived
temperatures are reported for points located in correspondence of DU and MH at 6 m of depth
(black asterisks in Figs. 3, 6 and 7), while temperature values from the monitoring system are
obtained by averaging along the entire drilling depth the values of temperature sensors (4 Pt-

100 sensors, every 5 m).

At a first glance, it can be noticed that the direct temperature data are not perfectly in
agreement with resistivity-derived temperatures. Owing to the operative mode of the plant,
the highest temperatures are observed in the DU, reaching a peak between 1 and 3 PM at

around 23 °C, while the outer borehole A shows reduced temperatures. Resistivity-derived
12
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temperatures appear roughly comparable to the data from the outer BHEs ranging between
18.5 and 19.5 °C, but with an apparently delayed peak. It is important to note that temperature
sensors in the boreholes (DU and A), owing to operational issues, are attached to plastic pipes
where the HTF flows (temperatures of about 30 + 33 °C in DU and 24 + 25 °C in A have been
monitored throughout the day). This obviously can result in higher values with respect to the

real ground temperatures, which are supposed to be better imaged by resistivity data.

Data from the monitoring hole are instead not affected by the presence of the HTF.
These data are almost stable throughout the day. In the long term, MH data show indeed an
increasing temperature trend of about 0.5 °C/month which is a too low gradient to show a
significant daily variation. However, resistivity-derived temperatures in a location proximal to
the MH describe a trend more similar in time and smaller in temperature increase to data near
the BHEs. This can be explained by the influence of the BHEs to the whole resistivity
distribution, which coarse resolution struggles to differentiate and to image a distinct situation
between DU and MH. We can estimate that temperature amounts to 20 21 °C at 2 + 3 PM in
the core and to around 16 °C at the limit of a 2-m-radius circle. This temperature difference (4
+ 5 °C) should be highlighted by a -10 % resistivity variation that in fact is smoothed within

the ground volume where the boreholes are placed.

Temperature estimation derived by inverted resistivity values on the whole dataset
outputs the highest temperatures both in DU and MH, as already described in the previous
section. Inverted resistivities on the filtered dataset allowed us to reduce the contribution of
the overheating on the entry way and to decrease the temperature trend at the same time.
Temperature peaks are therefore 1 + 1.2 °C lower at both monitoring points at 3 PM. Values
achieved by processing only apparent resistivities are a valid compromise between the
previous processing approaches. The direct imaging of apparent resistivity data could
therefore be considered as a valuable approach for the qualitative imaging of the TAZ and a
rough estimation of the temperature increase. This could moreover be obtained with
significantly less computational effort in data elaboration and could be potentially used as an

indirect monitoring tool.

The imaged TAZ by all the data presented appears to be reliable, considering the
reduced dimensions and energy input (Tab. 1) of the living lab and the unsaturated material
characterizing the subsoil. Available literature data of similar setup in the vadose zone are
scarce. Moradi et al. (2016) presented an interesting experimental lab scale setup where a

13
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BTES was simulated in an unsaturated porous medium and heat transfer mechanisms were
tested and numerically analyzed. The area outside the BHE field reached 10 to 15 °C increase
after each experiment lasting 8 h, but the finite dimensions of the apparatus and the absence
of the geothermal grout around the plastic pipes make it difficult to do a thorough comparison
with our field-scale living lab. An easier comparison can be done with the work by Rapantova
et al. (2016); a BTES fed by a CHP plant injects in the charge phase (6 months) around 500-
600 GJ in a geological section made of water-saturated gravels and sands (about 10 m)
overlying a claystone formation. The numerical results showed that in the alluvial deposits the
ground temperature is no more disturbed by heat injection at around 6 m from the outermost
BHE at the end of the injection phase. In the underlying claystones, where conduction is the
predominant heat transfer mechanism and it can be roughly comparable to the present study,
at 4.5 m no disturbance is registered. Considering that the Grugliasco plant injected around
1.5% of that amount of energy in 6 months (9 GJ from Giordano et al., 2016a), the thermal
plume extension and intensity highlighted by the ERT monitoring in the present work is

consistent with the energy input and the geological setting.

To sum up, a qualitative TAZ imaging of the plant was successfully achieved, but the
same is not true with respect to the quantitative estimation. This can also be partially related
to the lack of precise independent temperature recordings from the monitoring system for a
valuable comparison (i.e. not affected by the presence of the HTF). However, MH values
report that all the three resistivity-derived temperature trends tend to overestimate the real
ground thermal behavior at 2 m from the central BHE. This can be mainly related to a non-
optimal resolution of the acquisition, to the intrinsic smoothing of the resistivity method and

to the already discussed disturbances that create significant noise in the datasets.
5. CONCLUSIONS

Time-lapse resistivity surveys carried out on a BTES living lab in Grugliasco (Torino,
Italy) in order to image the thermally affected zone have been reported. Measurements were
performed hourly from 9 AM to 4 PM with a linear 72-electrode 1-m spaced array and both
apparent and true resistivity values were adopted as a qualitative and quantitative TAZ
imaging tool. Different types of data processing were adopted in order to face issues mainly

related to a highly man-made environment.

Thanks to the direct monitoring system set up on the BTES living lab, temperature

recordings in three BHEs and in the MH allowed us to define the initial temperature (T,) and
14
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thus to achieve a valuable qualitative TAZ imaging. Nevertheless, the temperature prediction
from resistivity variation acquired throughout the day was not completely reliable if compared
with direct recordings. It is however true that standalone sensors chains are not available in
the BTES core and those adopted for comparison were strongly affected by HTF flowing
within the plastic pipes. Results from all the three adopted methodologies showed a rather
homogeneous temperature distribution from the center up to a 2 m distance (MH position),
with difficulties in detecting temperature differences within a couple of meters. This can be

partially attributed to the intrinsic spatial smoothing of the ERT method itself.

Apparent resistivity differences proved to be in valid agreement with inverted results,
behaving as an average between the entire dataset and the filtered dataset. In fact, the
inversion process did not allow us to significantly improve qualitative and quantitative TAZ
imaging in comparison to the pseudo-sections, even removing part of the data located beneath
and around the entry way. This suggests the usefulness of even apparent resistivity data alone

for a rough monitoring of TAZ in this kind of applications.

Future research will focus on surface 3D electric surveys and cross-borehole
tomographies around the BHE site in order to improve resolution and DOI of the resistivity
acquisitions. A 3D numerical simulation will moreover be carried out to serve as consistent
background thermal model to perform a reliable comparison with resistivity-derived

temperatures.
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Figure Captions

Fig. 1 a) Schematic geological cross-section at the field test site. b) Cross-section of the BTES plant: the
monitoring hole is a piezometer that serves as water table check in case of rise.

Fig. 2 Plan view of the Grugliasco BTES plant with the position of the ERT survey.

Fig. 3 Time-lapse variation (in %) of apparent resistivities at 1, 2 and 3 PM. Highlight of imaging section in Fig.
4 and temperature comparison points in Fig. 10 are also shown.

Fig. 4 Resistivity-derived temperature values achieved from the variation of apparent resistivities at 1, 2 and 3
PM.

Fig. 5 Inverted resistivity section at 9 AM, used as background for the calculation of resistivity variations: a)
whole dataset; b) filtered dataset (data from electrode 33 to 38 were removed)

Fig. 6 Time-lapse variation (in %) of inverted resistivities for the whole dataset at 1, 2 and 3 PM. Highlight of
section in Fig. 8 and temperature comparison points in Fig. 10 are also shown.

Fig. 7 Time-lapse variation (in %) of inverted resistivities for the filtered dataset at 1, 2 and 3 PM. Highlight of
section in Fig. 9 and temperature comparison points in Fig. 10 are also shown.

Fig. 8 Resistivity-derived temperature values achieved from the variation of inverted resistivities for the whole
dataset at 1, 2 and 3 PM.

Fig. 9 Resistivity-derived temperature values achieved from the variation of inverted resistivities for the filtered
dataset at 1, 2 and 3 PM.

Fig. 10 Comparison between temperature data recorded by the sensors in the BTES plant (A and DU boreholes
and MH) and those derived by the resistivity variation of points at specific locations (23 and 25 m on x at 6 m
depth).

Tables
Tab. 1 Plant data collected during July 25™. Time of ERT surveys is also indicated.

ERT Flow rate Tin-Tout Power Energy

Time —  veys NhY [°C] [W] [kJ]
7 AM 0 0.1 0 0
7.30 AM 0 0.1 0 0
8 AM 70 5.0 404 727.2
8.30 AM 70 7.8 636 1144.8
9 AM survey 0 90 11.9 1246 2242.8
9.30 AM 170 7.5 1483 2669.4
10AM  survey 1 210 10.3 2520 4536.0
10.30 AM 180 9.1 1901 3421.8
11AM  survey 2 80 8.6 803 1445.4
11.30 AM 80 9.8 909 1636.2
12PM  survey 3 210 13.2 3212 5781.6
12.30 PM 110 9.8 1259 2266.2
IPM  survey 4 170 13.3 2620 4716.0
1.30 PM 210 12.5 3060 5508.0
2PM  survey 5 100 13.2 1539 2770.2
230 PM 90 11.0 1149 2068.2
3PM  survey 6 210 9.8 2391 4303.8
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330 PM 180 7.8 1633 2939.4

4 PM survey 7 210 11.1 2718 4892.4
430 PM 200 8.6 1998 3596.4
5PM 30 6.2 217 390.6
530 PM 70 92 750 1350.0
6 PM 40 5.0 234 421.2
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Highlights

ERT was used to image the thermally affected zone of a BTES;

Both apparent data and inverted results were adopted,

Resistivity-derived temperatures were compared to values from direct monitoring;
Apparent data can provide valuable interpretation as inverted results;
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