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Radiation therapy (RT) for mediastinal lymphomas and other 
thoracic tumors frequently entails the involuntary exposure of 
the whole heart and its substructures. Several studies, conducted 
on large cohorts of Hodgkin lymphoma and breast cancer long- 
term survivors, have reported an increased risk of cardiovascular 
complications and death for those patients who received thoracic 
RT [1–4]. All these studies indicated a clear relationship between 
the dose received by the whole heart and the incidence of long- 
term cardiovascular complications, particularly ischemic events 
[5,6]. Mean and maximum heart dose have been largely used as 
dose-volumetric parameters for RT treatment optimization; how- 
ever, these constraints do not account for the different dose 
received by important cardiac substructures such as coronary 

 
 

arteries (CA). This dose may be strictly dependent on the definition 
of the target and organs at risk volume, and modern contouring 
attitudes include the separate delineation of CA, with the aim of 
maximally sparing these structures [7]. To date, very few studies 
[8,9] have explored the correlation between the dose received by 
CA and long-term events such as coronary stenosis, and CA dose 
was essentially derived from retrospective studies based on ‘‘a pos- 
teriori” reconstruction of the treated thoracic volumes. A prospec- 
tive contouring of CA has not been routinely incorporated into RT 
treatment flow, mostly due to: (a) the absence of clear dose- 
constraints; (b) the complexity and time-consuming contouring 
procedure; (c) the blurring effect, even when adopting intravenous 
contrast; (d) the difficulty in locating such thin vessels; (e) the 
uncertainties in quantifying heart-beating related motion. 
Nevertheless, given that ischemic heart disease is the most 
relevant cardiac complication after thoracic RT, and that high 
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encompassed in 90% of plans. Random errors are characterized by 
standard deviations, which are summed in quadrature to yield a 
combined value r. 

 

Results 
 

Mean age was 63 years old (range 45–75 years). All patients 
were in sinus rhythm, with an average heartbeat rate of 67 per 
minute (range 56–89). Mean displacements (mm) of the 4 CA, 
derived from the 9 samples per 8 patients (for a total of 72 image 
sets), were calculated according to the McKenzie and van Herk for- 
mula in latero-lateral (X), cranio-caudal (Y) and antero-posterior 
(Z) directions, and are reported in Table 1. Maximum recorded dis- 
placement was between 3.6 (for the LM in latero-lateral direction) 
and 6.9 mm (for the RCA in antero-posterior direction), while mean 
3D displacement was 3 mm for LM, 4.8 mm for LAD, 3.9 mm for CX 
and 5 mm for RCA, respectively. According to these values, we then 
proposed a specific PRV for CA (Fig. 4), which is reported in Table 1 
together with detailed displacements. The inter-observer compar- 
ison, estimated on the overall surface of all coronary arteries, 
showed a good concordance between all clinicians, regardless of 
the ‘‘reference” adopted, with a mean DICE similarity coefficient 
of 0.64 for experienced radiologist and 0.69 for radiation oncologist 
(Fig. 5). 

 

Discussion 
 

Thoracic RT may be associated with an increased risk of long- 
term CA disease, through a multifactorial mechanism involving 
multiple pathways and converging to inflammatory, cellular, 
molecular and genetic changes that result in atherosclerotic depos- 
its, thrombosis, endothelial fibrosis and coronary spasms [16,17]. 
These long-lasting processes, responsible of radiation induced 
ischemic disease, often require 15–20 years to manifest, but the 
clinical evolution may be rapid. Particularly, ostial lesions are fre- 
quent in patients receiving RT for mediastinal lymphomas [18], 
because proximal CA segments are frequently the most exposed, 
being close to the target volumes [9]. This characteristic location 
of stenotic plaques may be a potentially life-threatening complica- 
tion, through the abrupt appearance of acute coronary syndrome 
or sudden death as initial manifestations [19]. The complex cardiac 
anatomy, made up of muscle, thin arteries and valves, get as result 
that mean heart dose may not be the better predictor for all types 
of radiation-related heart diseases. That is particularly true when 
using high dose-gradient techniques such as IMRT [20–22], when 
a lower mean heart dose may be achieved, while maintaining an 
acceptable ‘‘low dose bath” on breasts and lungs, but hotspots in 
critical and small sub-structures such as CA are frequent. Given 
the well documented correlation between stenosis  probability 
and high-dose hotspots  for  both  breast cancer [8] and Hodgkin 

lymphoma [9] patients, CA should be regarded as a complex organ 
at risk that deserves a special attention. A potential strategy is to 
include CA in the planning optimization process, but several fac- 
tors hampers this possibility in practice, particularly the difficulties 
in CA contouring on CT scans and the lack of appropriate con- 
straints to be used for dose optimization. Modern atlases for a cor- 
rect heart delineation, including CA, have been recently published 
[13,23], facilitating the contouring process and the incorporation of 
CA in dosimetric studies. Heart motion represents a serious obsta- 
cle for a correct delineation, potentially leading to consistent dis- 
crepancies between provisional and truly delivered dose. 

In the present study, we focused on CA  contouring method, 
including inter-observer variability, and on the creation of a mar- 
gin able to compensate for longitudinal, radial and circumferential 
movements across the whole heart cycle using cardiac gating. Pre- 
vious studies applied empirical CA margins ranging from 5 mm to 
1 cm [24], and inter-observer  variability was shown to possibly 
lead to substantial variation in CA dose estimation (as far as 30%) 
[25], particularly when these vessels are not contoured by experi- 
enced physicians nor in accordance with published guidelines. On 
the other hand, a recent publication from Wennstig et al. [26] sug- 
gested that CA delineation could be reliably reproduced by differ- 
ent radiation  oncologists, if  well  trained,  with acceptable inter- 
observer spatial variation and dose estimation discrepancies. 

In our study, we found a good consensus between all observers 
and the two references, with a DICE index approaching 0.7 for both 
of them (0.64 for radiologist and 0.69 for radiation oncologist, 
respectively). With the aim of quantifying the impact of cardiac 
activity on CA motion and creating an adequate expansion margin, 
we applied the McKenzie–van Herk formula to CA after an accurate 
contouring on every phase of the ECG-gated CT scan. In our sample, 
CA showed different ranges of displacements: first, LAD and RCA 
had higher ranges of motion than LM and CX; second, we observed 
that cardiac activity was responsible for heterogeneous move- 
ments, with a maximum shift in antero-posterior  direction  for 
LAD and RCA, in cranio-caudal direction for CX and latero-lateral 
direction for LM, respectively. The dissimilar displacements of each 
CA are justified by asymmetric cardiac motion over the heart cycle 
and correspond to reported observations [27,28]. Our results are 
especially consistent with a recent publication from Kataria et al. 
[29], showing mean systo-diastolic coronary shifts ranging from 
4 to 7 mm in breath-hold among a cohort of 20 patients. However, 
respiratory-induced heart motion was responsible for the larger 
displacements, particularly in cranio-caudal direction, with a mean 
range of 7–13 mm in free-breathing. In their study, the Authors 
extrapolated only 4 reconstructed image sets from the ECG-gated 
CT scan: end-inspiratory systole, end-inspiratory diastole, end- 
expiratory systole and end-expiratory diastole. Afterward, they 
derived the mean shifts by contouring the CA only on these end- 
systolic and end-diastolic phases, which probably led to an overes- 
timation of the overall cardiac displacements. We adopted a differ- 

 
Table 1 
Mean coronary arteries displacements evaluated with the McKenzie–van Herk formula [15] for organs at risk (mPRV = 1.3 * R + 0.5 * r), for the overall population of 8 patients. 

 

Coronary artery Displacement (mm) Suggested PRV margin (mm)

  Left-Right (X) R and r Cranio-caudal (Y) R and r Antero-posterior (Z) R and r  
Left main trunk (LM) 3.6 2.7 2.7 3 

0.215 and 0.169 0.143 and 0.177 0.143 and 0.162 
Left anterior descending (LAD) 2.6 5.0 6.8 5 

0.143 and 0.154 0.228 and 0.395 0.413 and 0.291 
Circumflex (CX) 3.5 4.5 3.7 4 

0.196 and 0.179 0.239 and 0.283 0.183 and 0.256 
Right (RCA) 3.6 4.6 6.9 5 

  0.169 and 0.276 0.232 and 0.324 0.355 and 0.446  
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expected in free-breathing, we would like to emphasize that the 
adoption of respiratory gating is increasingly used in clinical prac- 
tice, and that the integration of deep inspiration breath holding 
(DIBH) techniques, together with IMRT, might be of great addi- 
tional value for heart sparing. Respiratory gating is currently rec- 
ommended for patients affected with mediastinal  lymphomas 
[30] and breast cancer [31], in reason of the meaningful dosimetric 
benefit. The expansion margins around CA that we defined, 
obtained in breath-holding, could be safely adopted to patients 
receiving thoracic RT, particularly when DIBH is applied. Although 
this is a preliminary analysis on a limited series, and further inves- 
tigations would add more precise data on coronary motion, we 
suggest that our findings might be useful for CA contouring when 
a radiation course is planned for a heterogeneous group of thoracic 
malignancies, including left-sided breast cancer. 

In conclusion, in the present study CA were shown to be 
relevantly displaced over the heart cycle when contoured on 
ECG-gated CT scans, and we suggest to create a PRV by applying 
an isotropic margin of 3 mm for LM, 4 mm for CX and 5 mm for 
LAD and RCA, respectively. 
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