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Jeremy Sproston

Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185,
10149 Torino, Italy

Abstract

A hybrid automaton is a formal model for a system characterised by a combination of discrete
and continuous components. Probabilistic hybrid automata generalise hybrid automata with the
possibility of representing random behaviour of the discrete components of the system, in addition
to nondeterministic choice regarding aspects such as time durations between mode switches and
gradients of continuous flows. Two standard problems for probabilistic hybrid automata are verifica-
tion and control: verification concerns the existence of a resolution of nondeterminism such that the
resulting probability of an ω-regular property exceeds some bound; control concerns the existence of
a resolution of the controllable nondeterminism, however the uncontrollable nondeterminism of the
environment of the system is resolved, such that the probability of an ω-regular property exceeds
some bound. While simple verification and control problems for (probabilistic) hybrid automata
are in general undecidable, previous work has defined various subclasses for which the problems are
decidable. In this paper, we generalise previous results by showing how bisimulation-based finite
abstractions of non-probabilistic hybrid automata can be lifted to the setting of probabilistic hybrid
automata. We apply these results to the subclass of probabilistic rectangular hybrid automata in a
semantics in which discrete control transitions can occur only at integer points in time. These results
allow us to show that, for this class of probabilistic hybrid automaton, the verification problems and
control problems are decidable.

1 Introduction

Systems that are characterised by the interplay between discrete and continuous components are called
hybrid systems. An example of a hybrid system is that of a digital controller embedded in an analog
environment; this kind of system can be found in a wide variety of contexts, such as manufacturing
processes, automotive or aeronautic applications, and domestic appliances. The critical nature of such
systems, both from a social and an economic viewpoint, has led to the development of formal techniques
to support the systems’ correct construction. For this purpose, formalisms for hybrid systems, such
as hybrid automata [ACH+95], have been introduced, along with associated analysis techniques. A
hybrid automaton consists of a finite control graph, to model the discrete components, equipped with
a finite set of real-valued variables, to model the continuous components. The graph is annotated with
constraints on variables in order to describe the interaction of the discrete and continuous components.
As time passes while control remains within a node of the graph, the values of the variables change
continuously according to differential equations associated with the node. At certain points in time,
control can instantaneously jump from one node to another, and the variables either retain their current
value or change discontinuously with the jump. Automatic analysis techniques for hybrid automata
generally belong to two categories: verification approaches, such as those based on model checking
(see, for example, [ACH+95, Hen96]), consist of determining whether the hybrid automaton satisfies
some correctness property; controller-synthesis approaches involve the computation of a control strategy
for (some of) the digital components of the system such that the application of this strategy guides the
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10 ≤ x ≤ 30, y ≤ 21

ldeact
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Figure 1: A probabilistic hybrid automaton modelling a faulty thermostat

system in order to guarantee the satisfaction of some correctness property, no matter how the environment
behaves (see, for example, [WT97, HK99, HHM99, ABD+00]).

The basic hybrid automaton formalism does not take into account the relative likelihood of system
events. Consider that, for example, in a manufacturing process a physical component may break, or in an
aeronautic application there may be exceptional weather conditions, in both cases with low probability.
We may wish to represent such events within our hybrid automaton model, together with the information
about their probability of occurrence. This has led to interest in probabilistic extensions of hybrid
automata, where probabilistic information is added in a number of different ways [HLS00, Spr00, Spr01,
Buj04, APLS08, KR08, AD10, FHH+11, HNP+11, ZSR+12, LAB15, JR16]. In this paper, we consider
probabilistic hybrid automata, as considered in [Spr00, Spr01, HNP+11, ZSR+12], which extend hybrid
automata with probabilistic choices over the discrete part of the system. This formalism permits the
modeling of events such as faults and message losses, in addition to randomized choices made by the
digital components.

Example 1. An example of a probabilistic hybrid automaton modelling a faulty thermostat is shown in
Figure 1. We use a number of the usual conventions for illustrating hybrid automata and probabilistic
systems, such as ẋ to refer to the first derivative of variable x, and a black square to denote a (non-
trivial) probabilistic choice. Nodes of the graph are referred to as locations. The ambient temperature is
represented by the variable x, and variable y is a timer. When the heater is on (location lon or location
lmalf ), the temperature increases at a rate between 1 and 2; when the heater is off (location loff ), the
temperature changes at a rate between −2 and −1. The locations lon and loff correspond to non-faulty
behaviour, whereas the location lmalf corresponds to the heater being on in the presence of a fault in
the temperature sensor that means that the measurement of the temperature is temporarily unavailable.
The system passes from lon to loff , with probability 1, when the temperature is between 23 and 25, and
from loff to lon , with probability 9

10 , or to lmalf , with probability 1
10 , when the temperature is between 10

and 12. The sensor fault means that the temperature can increase to a higher level in lmalf than in lon .
After a malfunction, either the system is deactivated if the temperature reaches 26, i.e., an excessive
level (location ldeact), or the system times-out exactly 21 time units after the location lmalf was entered,
in which case the heater is switched off. All edges of the probabilistic hybrid automaton correspond to
making a transition to a certain location with probability 1, apart from the probabilistically branching
edge from loff .

In this paper we consider exact abstraction methods for probabilistic hybrid automata, which gen-
erally consider the construction of a finite-state probabilistic system (more precisely, a probabilistic
automaton [Seg95] or a Markov decision process [Put94]) that represents faithfully the behaviour of the
original system. Our approach is to provide a common framework for previous results for restricted sub-
classes of probabilistic hybrid automata, such as probabilistic timed automata [GJ95, KNSS02] and prob-
abilistic multisingular and o-minimal automata [Spr00], using probabilistic bisimulation [LS91, SL95].
Probabilistic bisimulation is an equivalence relation that, for certain classes of probabilistic hybrid au-
tomata, can be used to obtain a finite number of equivalence classes, each containing a potentially infinite
number of states, from which an equivalent finite-state system can be constructed and analysed using
standard techniques for finite-state probabilistic systems. Our approach is based on the following key
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property: any probabilistic hybrid automaton can be translated into a non-probabilistic hybrid automa-
ton in which information concerning probability distributions is encoded in labels on edges of the graph.
Consider a probabilistic hybrid automaton H: we show that if the non-probabilistic hybrid automaton
counterpart of H has a finite non-probabilistic bisimulation equivalence quotient, then H has a finite
probabilistic bisimulation equivalence quotient. This result unifies and generalises previous results, and
has the consequence that we can identify classes of probabilistic hybrid automata with a finite proba-
bilistic bisimulation equivalence quotient on the basis of whether members of the corresponding class of
hybrid automata have finite bisimulation quotients. This automatically extends the set of classes of prob-
abilistic hybrid automata for which a finite bisimulation equivalence quotient exists (for example, given
the existence of finite bisimulation equivalence quotients for STORMED hybrid automata [VPVD08],
we can conclude that probabilistic hybrid automata to which the restrictions of STORMED hybrid au-
tomata apply to the non-probabilistic characteristics of the system have a finite number of probabilistic
bisimulation equivalence classes). Any future results on the identification of classes of hybrid automata
with finite bisimulation quotients will also imply that the corresponding class of probabilistic hybrid
automata has finite probabilistic bisimulation quotients.

We also consider a particular example of the application of this result, namely probabilistic rect-
angular automata with a discrete-time semantics. Rectangular automata [HKPV98] are a subclass of
hybrid automata with both interesting theoretical properties and practical applications. In a rectangu-
lar automaton, the continuous dynamics are governed by inclusions of the form ẋ ∈ I, where I is an
interval. The motivation for such inclusions is that they can over-approximate complex continuous dy-
namics [HHWT98, DHR05]. However, even simple verification problems for rectangular automata, such
as determining whether an error state is reachable, are undecidable [ACH+95, HKPV98]. In [HK99],
a discrete-time assumption requires that jumps between nodes can only occur at evenly-spaced points
in time. In this paper we consider the application of the discrete-time assumption to probabilistic rect-
angular automata: by our results, the existence of a computable finite bisimulation equivalence in the
non-probabilistic setting implies the existence of a computable finite probabilistic bisimulation equiva-
lence in the probabilistic setting, in turn showing that verification and control problems for probabilistic
rectangular automata with a discrete-time semantics are decidable.

After introducing some preliminary concepts in Section 2 and probabilistic hybrid automata in Sec-
tion 3 (some of which, such as consdering ω-regular properties for PHA, are novel to this paper), we relate
non-probabilistic and probabilistic bisimulation on non-probabilistic and probabilistic hybrid automata
in Section 4. In Section 5, we apply the result to discrete-time probabilistic rectangular automata. We
consider control and verification with respect to the class of ω-regular properties, modeled here as de-
terministic Rabin or Streett automata, which allow us to specify a wide variety of safety and liveness
requirements.

Related work Previous work in the field of probabilistic rectangular automata has considered mainly
dense-time verification problems for the subclass of probabilistic timed automata, in which continuous
dynamics are of the form ẋ = 1 for all variables x in all locations, and with respect to properties
expressed in the probabilistic temporal logic Ptctl [KNSS02]. The dense-time verification problem
for probabilistic timed automata is EXPTIME-complete both for probabilistic temporal logic proper-
ties [KNSS02, LS07] and for ω-regular properties [Spr11]. The discrete-time verification problem for
probabilistic timed automata is also EXPTIME-complete [KNPS06]: in the case of probabilistic timed
automata, the discrete-time semantics corresponds directly to a finite-state system in which variables
take natural-numbered values only, which is not the case for probabilistic rectangular automata due to
the possibility of continuous nondeterministic choice in the continuous dynamics and in the resetting
of variables. A dense-time controller synthesis problem concerning the computation of controllers of
probabilistic timed automata that optimise the expected time to reach a state set has been considered
in [FKNT16, JKNP17].

The dense-time verification problem for the class of initialised probabilistic rectangular automata,
in which the condition on the continuous dynamics of a variable cannot be different before and after
taking a probabilistic edge if the variable is not reset on the edge, with respect to reachability or safety
objectives, has been considered in [Spr00, Spr01]. It is shown how a probabilistic rectangular automaton
can be translated to a probabilistic timed automaton in which each variable is represented by two clocks,
one clock representing an upper bound on the value of the variable, the other clock representing a
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lower bound on the value of the variable, following the construction in the non-probabilistic setting of
[OSY94, HKPV98]. While, in the non-probabilistic setting, the translation from an initialised rectangular
automaton to a timed automaton preserves ω-regular properties, the translation from an initialised
probabilistic rectangular automaton to a probabilistic timed automaton presented in [Spr00, Spr01]
results in an abstract, approximate model. Similarly, [ZSR+12] presents an approach to the dense-
time verification problem based on approximation, but for probabilistic hybrid automaton models with
a form of non-rectangular continuous dynamics incomparable to that of rectangular automata. This
work is extended in [HNP+11] to consider also control problems, and to consider an iterative refinement
approach, in which the degree of approximation can be reduced by refining the finite-state abstraction
of a probabilistic hybrid automaton. Other related work considering approximation includes the use of
probabilistic hybrid automata as approximate models of stochastic hybrid automata, in which variables
can be reset acording to continuous probability distributions [FHH+11, Hah13].

A preliminary version of some results of this work can be found in [Spr11, Spr14]. In this paper we
replace the ad hoc technical material developed for probabilistic rectangular automata in [Spr11] with
the general framework of [Spr14] that shows that the existence of a finite non-probabillistic bisimulation
relation can be used to show the existence of a probabilistic bisimulation relation. Furthermore, we show
that the results of [Spr14] can be used not just for verification but also for control.

2 Preliminaries

We use R to denote the set of real numbers, R≥0 to denote the set of non-negative real numbers, N
to denote the set of natural numbers, Z to denote the set of integers, Q to denote the set of rational
numbers, and AP to denote a set of atomic propositions. Given a set Q and a function µ : Q→ R≥0, we
define support(µ) = {q ∈ Q | µ(v) > 0}. A (discrete) probability distribution over a countable set Q is a
function µ : Q→ [0, 1] such that

∑
q∈Q µ(q) = 1. Let Dist(Q) be the set of distributions over Q. If Q is

an uncountable set, we define Dist(Q) to be the set of functions µ : Q→ [0, 1], such that support(µ) is a
countable set and µ restricted to support(µ) is a (discrete) probability distribution. Given a set Q′ ⊆ Q,
we let µ[Q′] =

∑
q∈Q′ µ(q).

2.1 Probabilistic Games and Markov Decision Processes

A probabilistic game (or 2 1
2 -player game) G = (S,�,Lab) comprises the following components: a

(possibly uncountable) set of states S; a (possibly uncountable) probabilistic transition relation �⊆
S× 2Dist(S) \ ∅; and a labeling function Lab : S → 2AP . The transitions from state to state of a 2 1

2 -player
game are performed in three steps: given that the current state is s, the first step concerns a nondeter-
ministic selection by player 1 of (s,Λ) ∈�; the second step comprises a nondeterministic selection by
player 2 of some µ ∈ Λ; the third step comprises a probabilistic choice, made according to the distribution
µ, as to which state to make the transition (that is, we then make a transition to a state s′ ∈ S with
probability µ(s′)). Underlying this formulation of probabilistic games is the assumption that turns of the
game are played in a cyclic manner, where each cycle consists first of the turn of player 1, then that of
player 2, followed by that of the probabilistic player. This suffices for our purposes, but is in contrast to
the usual presentation of 2 1

2 -player games (see, for example, [CH12]), in which the order of the turns of
the game does not follow a fixed cycle. A 2 1

2 -player game is total if, for each state s ∈ S, there exists at
least one transition (s, ) ∈�. We generally consider total 2 1

2 -player games in this paper. Occasionally
we omit the labeling function Lab for 2 1

2 -player games.
An infinite path of a 2 1

2 -player game G is an infinite sequence r = s0Λ0µ0s1Λ1µ1 · · · such that
(si,Λi) ∈�, µi ∈ Λi and µi(si+1) > 0 for each i ∈ N. Similarly, a finite path of G is a finite sequence
r = s0Λ0µ0s1Λ1µ1 · · ·Λn−1µn−1sn such that (si,Λi) ∈�, µi ∈ Λi and µi(si+1) > 0 for each i < n. If r
is finite, the length of r, denoted by |r|, is equal to the number of transitions (subsequences of the form
sΛµ) along r. If r is infinite, we let |r| =∞. We use IPathG to denote the set of infinite paths of G, and
FPathG to denote the set of finite paths of G. Let IPathG(s) and FPathG(s) refer to the sets of infinite
and finite paths of G, respectively, commencing in state s ∈ S. When clear from the context we omit the
superscript G. If r is a finite path, we denote by last(r) the final state of r. For any path r and i ≤ |r|,
let r(i) = si be the (i + 1)th state along r, let dset(r, i) = Λi be the (i + 1)th distribution set featured
along r and let d(r, i) = µi be the (i+ 1)th distribution taken along r.
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We now consider the notion of strategy which, for each player, specifies how the next transition
should be chosen, given a finite execution history. Let G = (S,�,Lab) be a 2 1

2 -player game. A player 1
strategy of G is a function σ : FPath → Dist(�) such that, for all finite paths r ∈ FPath, we have
support(σ(r)) ⊆ {(s,Λ) ∈�| s = last(r)} (i.e., after the finite history r, player 1 strategy σ assigns
positive probability only to those transitions from the final state of r). Similarly, a player 2 strategy of
G is a function π : FPath · 2Dist(S) → Dist(Dist(S)) such that, for all finite paths r ∈ FPath and set Λ ∈
2Dist(S), we have support(π(rΛ)) ⊆ Λ (i.e., after the finite history rΛ, player 2 strategy π assigns positive
probability only to those distributions from Λ). In this paper (following the precedent of [Hah13] in the
verification setting), we restrict our attention to strategies that choose according to distributions having
finite support: that is, for r ∈ FPath and Λ ∈ 2Dist(S), we have that support(σ(r)) and support(π(rΛ)) are
finite. We write ΣG and ΠG for the set of strategies of player 1 and player 2, respectively, on G. A pair
(σ, π) ∈ ΣG × ΠG is called a strategy profile. For any strategy profile (σ, π), let IPathσ,π and FPathσ,π

denote the sets of infinite and finite paths, respectively, resulting from the choices of (σ, π): for example,
IPathσ,π = {r ∈ IPath | ∀i ∈ N.dset(r, i) ∈ support(σ(r(i))) and d(r, i) ∈ support(π(r(i)dset(r, i)))}. For
a state s ∈ S, let IPathσ,π(s) = IPathσ,π ∩ IPath(s) and FPathσ,π(s) = FPathσ,π ∩ FPath(s). Given
a strategy profile (σ, π) ∈ ΣG × ΠG and a state s ∈ S, we define the probability measure Probσ,πs over
IPathσ,π(s) in the standard way (see, for example, [CH12]).

Given an infinite path r = s0Λ0µ0s1Λ1µ1 · · · of a 2 1
2 -player game G = (S,�,Lab), the trace of r,

denoted by trace(r), is defined to be the infinite sequence Lab(s0)Lab(s1) · · · . Let Trace(G) be the set of
all traces of G (i.e., Trace(G) = {trace(r) ∈ (2AP )ω | r ∈ IPathG}). An objective ϕ for G is a set of traces
of G (i.e., ϕ ⊆ Trace(G)). In this paper, we will consider the class of ω-regular objectives. Given the
ω-regular objective ϕ, a state s ∈ S and a strategy profile (σ, π), the set {r ∈ IPathσ,π(s) | trace(r) ∈ ϕ}
is measurable (this follows from the fact that there is a countably-infinite-state Markov chain associated
with a strategy profile (σ, π) and from Remark 10.57 of [BK08]). For simplicity we write Probσ,πs (ϕ)
instead of Probσ,πs ({r ∈ IPathσ,π(s) | trace(r) ∈ ϕ}). The value function (for the property ϕ) is defined
as the function ValG(ϕ) such that, for each state s ∈ S:

ValG(ϕ)(s) = sup
σ∈Σ

inf
π∈Π

Probσ,πs (ϕ) .

A Markov decision process (MDP) is a 2 1
2 -player game (S,�,Lab) for which |Λ| = 1 for each

(s,Λ) ∈�. Usually we write the transition relation � of an MDP as �⊆ S × Dist(S). In contrast to
2 1

2 -player games, the transitions from state to state of an MDP are performed in two steps: given that
the current state is s, the first step concerns a nondeterministic selection of (s, µ) ∈�; the second step
comprises a probabilistic choice made according to the distribution µ. A (finite or infinite) path of an
MDP is defined as for a 2 1

2 -player game, with only minor notational differences: for example, an infinite
path of an MDP is denoted by s0µ0s1µ1 · · · , where (si, µi) ∈� and µi(si+1) > 0 for each i ∈ N. In the
case of MDPs, player 2 has a trivial choice over a single element, and hence has only one strategy (i.e.,
|Π| = 1): therefore we use the term strategy to refer both to player 1 strategies and strategy profiles.
Similarly, we omit the notation referring to the player 2 strategy, and write, for example, IPathσ(s) and
Probσs . The value function for the MDP M is defined as ValM(ϕ)(s) = supσ∈Σ Probσs (ϕ) for each state
s ∈ S.

Given a 2 1
2 -player game G = (S,�,Lab) and state s ∈ S, objective ϕ and λ ∈ Q ∩ (0, 1],

the game-based threshold problem for G, s, ϕ, λ consists of deciding whether ValG(ϕ)(s) ≥ λ. Analo-
gously, given state s of MDP M, the MDP threshold problem for M, s, ϕ, λ consists of deciding whether
ValM(ϕ)(s) ≥ λ. We note that, for finite 2 1

2 -player games and ω-regular properties described as de-
terministic Rabin (Streett, respectively) automata, the game-based threshold problem is in NP (coNP,
respectively) [CdAH05]; instead, for finite MDPs and ω-regular properties described as deterministic
Rabin or Streett automata, the MDP threshold problem is solvable in polynomial time [dA97, CdAH05].

2.2 Probabilistic bisimulation

Let G = (S,�,Lab) be a 2 1
2 -player game, and let ≡⊆ S × S be an equivalence relation on S. We lift ≡

to equivalence relations on Dist(S) and 2Dist(S) in the following way. For distributions µ, ν ∈ Dist(S), we
denote by µ ≡ ν the condition that, for each equivalence class C of ≡, the equality µ[C] = ν[C] holds.
Furthermore, for sets Λ,Ξ ⊆ Dist(S) of distributions, we use Λ ≡ Ξ to denote that (1) for each µ ∈ Λ,
there exists ν ∈ Ξ such that µ ≡ ν, and (2) for each ν ∈ Ξ, there exists µ ∈ Λ such that µ ≡ ν. A
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probabilistic bisimulation respecting ≡ on G [LS91, SL95, ZP10] is an equivalence relation ≈⊆ S×S such
that s ≈ t implies that (1) s ≡ t, and (2) if (s,Λ) ∈�, then there exists (t,Ξ) ∈� such that Λ ≈ Ξ.
Recalling that the transition relation for MDPs can be written as�⊆ S×Dist(S), we can slightly modify
condition (2) to obtain probabilistic bisimulation for MDPs in the following way: (2) if (s, µ) ∈�, then
there exists (t, ν) ∈� such that µ ≈ ν. Let G = (S,�,Lab) be a 2 1

2 -player game and let ≡lab
G be the

smallest equivalence relation on S such that s ≡lab
G t if Lab(s) = Lab(t), for each s, t ∈ S. In the sequel,

we generally make reference to probabilistic bisimulations respecting ≡lab
G .

Proposition 1. Let G = (S,�,Lab) be a 2 1
2 -player game, ϕ be an ω-regular objective, ≈ be a proba-

bilistic bisimulation respecting ≡lab
G , and s, t ∈ S be such that s ≈ t. Then ValG(ϕ)(s) = ValG(ϕ)(t).

Proof. (Sketch.) By definition of ValG(ϕ), we need to show that:

sup
σ∈Σ

inf
π∈Π

Probσ,πs (ϕ) = sup
σ∈Σ

inf
π∈Π

Probσ,πt (ϕ) .

Given that ≈ is an equivalence, it suffices to show that supσ∈Σ infπ∈Π Probσ,πs (ϕ) ≤
supσ∈Σ infπ∈Π Probσ,πt (ϕ). To establish this, we show that, for every σ ∈ Σ, there exists σ′ ∈ Σ such

that, for every π′ ∈ Π, there exists π ∈ Π such that Probσ,πs (ϕ) = Probσ
′,π′

t (ϕ). The proof of this fact
can be derived as a special case of Lemma 8 of [ZP10], which corresponds to a game-based version of
the “execution correspondence theorem” of [Seg95]. Intuitively, the proof proceeds by showing that, for
every σ ∈ Σ and π′ ∈ Π, there exist σ′ ∈ Σ and π ∈ Π such that the Markov chains obtained from
strategy profile (σ, π) and from (σ′, π′) are probabilistically bisimilar from their initial states s and t,
respectively. Note that ϕ does not distinguish between different paths which visit the same sequences
of probabilistic bisimulation equivalence classes, thus implying that the ω-regular objectives that we
consider are “bisimulation closed” in the terminology of [BK08]. Then, from this fact and Lemma 10.66

of [BK08], we have that Probσ,πs (ϕ) = Probσ
′,π′

t (ϕ).

Consider a probabilistic bisimulation ≈ that respects ≡lab
G . Let C be the set of equivalence classes

of ≈. Given a set Λ ⊆ Dist(S) of distributions over states of G, then we let qdist(Λ) ⊆ Dist(C) be the
set of distributions over equivalence classes of ≈ such that, for each distribution µ in Λ, there exists
a distribution ν ∈ qdist(Λ) such that the probability assigned to a particular equivalence class by ν is
the sum of the the probabilities assigned to states of that class by µ. Formally, we let qdist(Λ) = {ν ∈
Dist(C) | ∃µ ∈ Λ.∀C ∈ C.ν(C) =

∑
s∈C µ(s)}. Then the quotient of G and the probabilistic bisimulation

≈ is the 2 1
2 -player game Q[G] = (C, ,Lab) where the set of states is equal to the set C of equivalence

classes of ≈, and where:

•  is the smallest set of transitions such that, for each C ∈ C, s ∈ C and (s,Λ) ∈�, we have
(C, qdist(Λ)) ∈ ;

• Lab is defined by Lab(C) = Lab(s), for each C ∈ C and an arbitrary s ∈ C.

The labelling condition Lab is well-defined because ≈ respects ≡lab
G .

Given 2 1
2 -player games G1 = (S1,�1,Lab1) and G2 = (S2,�2,Lab2), we let the union 2 1

2 -player
game be defined by G1 ] G2 = (S1 ] S2,�1 ]�2,Lab) where Lab(s) = Lab1(s) if s ∈ S1 and Lab(s) =
Lab2(s) if s ∈ S2.

Lemma 1. Let G = (S,�,Lab) be a 2 1
2 -player game, let s ∈ S be a state of G, let ≈ be a probabilistic

bisimulation respecting ≡lab
G on G, and let C denote the equivalence class of ≈ such that s ∈ C. Then

ValG(ϕ)(s) = ValQ[G](ϕ)(C).

Proof. (Sketch.) Let ≈′ be an equivalence relation on S ∪ C defined as the smallest equivalence relation
such that s ≈′ C if s ∈ C. Then, as a consequence of the definition of Q[G] and G ] Q[G], we have
that ≈′ is a probabilistic bisimulation respecting ≡lab

G]Q[G] on G ] Q[G]. Then the result follows from
Proposition 1.

Given that MDPs are a subclass of 2 1
2 -player games, the corresponding results for MDPs can be

obtained in a similar manner. That is, for an MDP M = (S,�,Lab), for states s, t ∈ S related by a
probabilistic bisimulation ≈ respecting ≡lab

M , we have ValM(ϕ)(s) = ValM(ϕ)(t). Furthermore, for s ∈ S
and equivalence class C of ≈ such that s ∈ C, we have ValM(ϕ)(s) = ValQ[M](ϕ)(C). Note that the
quotient of an MDP is itself an MDP.
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2.3 Probabilistic labelled transition systems

We now introduce probabilistic labelled transition systems, which will be used in subsequent sections to
define the semantics of probabilistic hybrid automata. A probabilistic labeled transition system (PLTS)
T = (S,Act ,⇒,Lab) comprises the following components: a (possibly uncountable) set of states S; a
(possibly uncountable) set of actions Act ; a (possibly uncountable) transition relation ⇒⊆ S × Act ×
Dist(S); and a labeling function Lab : S → 2AP . The notions of totality and paths of PLTSs are adapted
in a straightforward way from 2 1

2 -player games: for example, an infinite path of a PLTS is denoted by
r = s0a0µ0s1a1µ1 · · · where ai ∈ Act and si+1 ∈ support(µi) for each i ∈ N.

We can interpret the underlying model of a PLTS in one of two ways: as a 2 1
2 -player game, for the

control setting, or as an MDP, for the verification setting.

Control: Player 1 (the controller) chooses which action should be taken and player 2 (the environment)
chooses the exact transition that is then executed, provided that it corresponds to the action chosen
by player 1. Formally, the 2 1

2 -player game interpretation of T is a 2 1
2 -player game G(T) = (S,�

,Lab) where � is the smallest set such that, for each s ∈ S and a ∈ Act such that there exists
(s, a, ) ∈⇒, we have (s, {µ | (s, a, µ) ∈⇒}) ∈�.

Verification: All of the nondeterministic choices of which transitions to take are under the control of
a single player. The MDP interpretation of T is an MDP M(T) = (S,�,Lab) where � is the
smallest set such that (s, a, µ) ∈⇒ implies (s, µ) ∈�.

Let T = (S,Act ,⇒,Lab) be a PLTS, and let ≡⊆ S×S be an equivalence relation on S. A probabilistic
bisimulation respecting ≡ on T [LS91, SL95] is an equivalence relation '⊆ S ×S such that s ' t implies
that (1) s ≡ t, and (2) if (s, a, µ) ∈⇒, then there exists (t, a, ν) ∈⇒ such that µ ' ν. States s and t
are called probabilistically bisimilar with respect to ≡ in T if there exists a probabilistic bisimulation '
respecting ≡ such that s ' t.

Lemma 2. Let T = (S,Act ,⇒,Lab) be a PLTS, let ≡⊆ S × S be an equivalence relation on S, and let
' be a probabilistic bisimulation respecting ≡ on T. Then ' is a probabilistic bisimulation respecting ≡
on G(T) and M(T).

Proof. Given that condition (1) in the definition of probabilistic bisimulation respecting ≡ is the same
for T, G(T) and M(T), it remains to consider condition (2). We consider the case of G(T) (the case of
M(T) is similar). Let s, t ∈ S such that s ' t. By the definition of G(T), if (s, a, µ) ∈⇒, then (s,Λ) ∈�
for Λ = {µ | (s, a, µ) ∈⇒}. Given that s ' t, there exists (t, a, ν) ∈⇒ and, by the definition of G(T),
we have (t,Ξ) ∈� for Ξ = {ν | (t, a, ν) ∈⇒}. By the definition of probabilistic bisimulation respecting
≡ on T, we have that, for each (s, a, µ′) ∈⇒, there exists (t, a, ν′) ∈⇒ such that µ′ ' ν′; this means
that, for each µ′ ∈ Λ, there exists ν′ ∈ Ξ such that µ′ ' ν′. Given that ' is an equivalence, we can also
conclude that, for each ν′ ∈ Ξ, there exists µ′ ∈ Λ such that µ′ ' ν′. Hence we have that Λ ' Ξ. This
means that we have shown that condition (2) of the definition of probabilistic bisimulation on T implies
condition (2) of the definition of probabilistic bisimulation on G.

Let ≡lab
T be the smallest equivalence relation on S such that s ≡lab

T t if Lab(s) = Lab(t), for each
s, t ∈ S. The following corollary is a consequence of Proposition 1 and Lemma 2.

Corollary 1. Let T = (S,Act ,⇒,Lab) be a PLTS and let ' be a probabilistic bisimulation respecting

≡lab
T on T. Then for states s, t ∈ S such that s ' t, we have ValG(T)(ϕ)(s) = ValG(T)(ϕ)(t) and

ValM(T)(ϕ)(s) = ValM(T)(ϕ)(t).

A PLTS T = (S,Act ,⇒,Lab) for which all transitions (s, a, µ) ∈⇒ are such that µ is of the form
{s′ 7→ 1} for some s′ ∈ S is called a nondeterministic labelled transition system (NLTS). In the case of
NLTSs, we often write (s, a, s′) to denote the transition (s, a, {s′ 7→ 1}). If T is a NLTS, then we can
simplify the definition of probabilistic bisimulation which, in this context, is called simply bisimulation, in
the following way: a bisimulation respecting equivalence ≡ on a NLTS (S,Act ,⇒,Lab) is an equivalence
relation ≈⊆ S × S such that s ≈ t implies that (1’) s ≡ t, and (2’) if (s, a, s′) ∈⇒, then there exists
(t, a, t′) ∈⇒ such that s′ ≈ t′. States s and t are called bisimilar with respect to ≡ in the NLTS if there
exists a bisimulation ≈ respecting ≡ such that s ≈ t.
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3 Probabilistic Hybrid Automata

In this section, we introduce probabilistic hybrid automata as a formal model for hybrid systems with
discrete probabilistic choices. Let X be a finite set of real-valued variables. A valuation v : X → R for X
is a function that assigns a value to each variable of X . Let V(X ) be the set of valuations for X . When
the set X is clear from the context, we generally write V.

A probabilistic hybrid automaton (PHA) H = (L,X ,Events, post , prob,L) consists of the following
components:

• a finite set L of locations;

• a finite set X of variables;

• a finite set Events of events;

• a post operator post : L× V × R≥0 → 2V ;

• a finite set prob ⊆ L× 2V ×Events ×Dist(Upd(X )×L) of probabilistic edges, where Upd(X ) is the
set of update functions u : V → 2V ;

• a labelling function L : L→ 2AP .

A probabilistic edge (l, g, e, p) ∈ prob comprises (1) a source location l, (2) a set g of valuations, called
a guard, (3) an event e, and (4) a probability distribution p that assigns probability to pairs of the form
(u, l′), where u ∈ Upd(X ) is a function describing the manner in which variables are updated and l′ ∈ L
is a target location.

The behaviour of a PHA takes a similar form to that of a classical, non-probabilistic hybrid automaton
[ACH+95]. If the PHA is currently in location l, as time passes, the values of the variables in X change
according to the post operator post : more precisely, if the current valuation is v and δ ∈ R≥0 time units
elapse, the valuation obtained after the elapse of time belongs to the set post(l, v, δ). If the current
valuation of the variables belongs to the guard g of a probabilistic edge (l, g, e, p), then that probabilistic
edge can be taken. Taking a probabilistic edge (l, g, e, p) involves a probabilistic choice according to
the distribution p: if this probabilistic choice selects the pair (u, l′), then the PHA goes to location
l′, updating the variables according to the function u. More precisely, if the current valuation of the
variables is v and the pair (u, l′) is chosen, then the state after taking the probabilistic edge will be (l′, v′)
for some v′ that is chosen nondeterministically from the set u(v). To summarise, the following choices
made by the PHA are nondeterministic: the amount of time to let advance in the current location l;
the valuation used to describe the values of the variables after time has elapsed, according to post ; the
probabilistic edge taken (provided that the guard of the probabilistic edge is satisfied by the current
variable valuation); and, finally, the values to which the variables are updated when a probabilistic edge
is taken. Instead, the only probabilistic choice featured in the model concerns the choice of pair (u, l′)
once a probabilistic edge has been chosen, which is made according to a discrete probability distribution.

We make a number of standard assumptions on the components of a PHA [Spr01, Hah13].

• (Assumptions on post.) For all locations l ∈ L and valuations v ∈ V, we require the follow-
ing: (1) post(l, v, 0) = {v}; (2) for all δ, δ′ ∈ R≥0 such that δ ≥ δ′, we have post(l, v, δ) =⋃
v′∈post(l,v,δ′) post(l, v′, δ − δ′).

• (Probabilistic edges can be taken when no more time can elapse.) If l ∈ L and v ∈ V are such that
post(l, v, δ) = ∅ for all δ ∈ R≥0 such that δ > 0, then there must exist some probabilistic edge
(l, g, e, p) ∈ prob such that v ∈ g.

• (Non-empty updates.) For all probabilistic edges (l, g, e, p) ∈ prob and each (u, l′) ∈ support(p), we
have u(v) 6= ∅ for all v ∈ g.

• (Finite probabilistic branching.) For all probabilistic edges (l, g, e, p) ∈ prob, the set support(p) is
finite.
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Figure 2: A PHA to illustrate the use of summation in the definition of PHA semantics

We now introduce formally the semantics of PHA in terms of PLTSs. The (dense-time) semantics
of the PHA H = (L,X ,Events, post , prob,L) is the PLTS [[H]]dense = (S,Act ,⇒,Lab) defined in the
following way. The set of states of [[H]]dense is defined as S = L × V. The set of actions of [[H]]dense is
Act = R≥0 ∪ Events. To define the transition relation ⇒ of [[H]]dense, we first define sets of transitions
corresponding to each time duration and event.

• (Time elapse.) Let δ ∈ R≥0. Then
δ⇒⊆ S × R≥0 × Dist(S) is the smallest set such that

((l, v), δ, {(l′, v′) 7→ 1}) ∈ δ⇒ if (1) l = l′ and (2) v′ ∈ post(l, v, δ).

• (Jumps.) Let e ∈ Events. Consider a distribution p ∈ Dist(Upd(X ) × L), where support(p) =
{(u1, l1), ..., (un, ln)}. Then, for valuation v, we write Bundle(v, p) ⊆ Vn to denote the smallest
set of n-tuples of valuations such that (v1, ..., vn) ∈ Bundle(v, p) if vi ∈ ui(v) for each 1 ≤ i ≤ n.

Then
e⇒⊆ S × Dist(S) is the smallest set of transitions such that ((l, v), e, µ) ∈ e⇒ if there exists a

probabilistic edge (l, g, e, p) ∈ prob such that (a) v ∈ g and (b) there exists (v1, ..., vn) ∈ Bundle(v, p)
such that, for each (l′, v′) ∈ S:

µ(l′, v′) =
∑

1≤i≤n s.t. v′=vi

p(ui, l
′) .

The transition relation⇒ of [[H]]dense is defined as the union of the transition sets defined above: formally,

⇒= (
⋃
δ∈R≥0

δ⇒) ∪ (
⋃
e∈Events

e⇒). Finally, we define the labelling function in the following way: for

each (l, v) ∈ S, let Lab(l, v) = L(l).

Example 2. We note that the summation in the definition of jump transitions (i.e., in the definition

of
e⇒ for e ∈ Events) is necessary for the case in which the same state can be obtained by more than

one element (u, l) in the support set of the distribution of a probabilistic edge. Consider the PHA of
Figure 2 (left). The PHA has a single location l, a single variable x, and a single probabilistic edge
(l, x ≤ 2, e, p) with p(u[0,2], l) = 1

3 and p(u[1,2], l) = 2
3 , where u[0,2] and u[1,2] are the update functions that

assigns valuations in the sets {v | v(x) ∈ [0, 2]} and {v | v(x) ∈ [1, 2]}, respectively, to any valuation.
Consider valuation pair (v1, v2) and valuation v3 that agree on the value assigned to x (for example,
v1(x) = v1(x) = v3(x) = 3

2 ; this, and other valuations used later in this example are shown on Figure 2
(right)). Note that (v1, v2) ∈ Bundle(v, p), where v denotes the valuation directly before taking the jump
transition. Then the distribution µ associated with the valuation pair (v1, v2) according to the definition
of the semantics of PHA is such that µ(l, v3) = 1

3 + 2
3 = 1. That is, the probability assigned to state (l, v3)

is obtained by summing the probabilities assigned to (u[0,2], l) and (u[1,2], l) by p. Now consider valuation

pair (v′1, v
′
2) ∈ Bundle(v, p) such that v′1 and v′2 disagree (for example v′1(x) = 6

5 and v′2(x) = 7
5). Then

the distribution µ′ associated with valuation pair (v′1, v
′
2) is such that µ(l, v′1) = 1

3 and µ(l, v′2) = 2
3 : hence,

in the case of (v′1, v
′
2) such that v′1 6= v′2, we have that no summation is required (the probability of state

(l, v′1) is equal to the probability of (u[0,2], l), and the probability of state (l, v′2) is equal to the probability
of (u[1,2], l)).

We consider two variants of the semantics of PHA, namely the time-abstract semantics, in which
actions corresponding to durations of time-elapse transitions are replaced by a single action τ (where
τ 6∈ Events), and the discrete-time semantics, in which only time elapse transitions of duration 1 are
represented. Formally, the time-abstract semantics of H is the PLTS [[H]]ta = (S,Act ,⇒,Lab), where the
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set S of states and the labelling function Lab are the same as for the dense-time semantics of H, the set of
actions is defined as Act = {τ} ∪Events, and the transition relation ⇒ is defined as

τ⇒ ∪(
⋃
e∈Events

e⇒),

where
τ⇒ is defined as {(s, τ, µ) | ∃δ ∈ R≥0.(s, δ, µ) ∈ δ⇒}. The discrete-time semantics of H is the PLTS

[[H]]disc = (S,Act ,⇒,Lab) where the set S of states and the labelling function Lab are the same as for the
dense-time semantics of H, the set of actions is defined as Act = {1}∪Events, and the transition relation

⇒ is defined as
1⇒ ∪(

⋃
e∈Events

e⇒). In the following, we let ∆dense = R≥0, ∆ta = {τ} and ∆disc = {1}.
We consider the intuition underlying these definitions for control problems (with verification problems
being more straightforward); given that the different semantics differ in terms of time-elapse transitions,
we concentrate on these transitions. Consider the standard dense-time semantics: for a time-elapse
transition, player 1 selects the time duration, and player 2 selects the exact transition, which encodes the
exact element of post selected. Now consider the time-abstract semantics: player 1 selects the time elapse
action τ ; then player 2 selects the exact transition, which encodes information on the actual duration
elapsed (whereas the duration was chosen by player 1 in the dense-time semantics) and the exact element
of post selected. Instead in the discrete-time semantics, player 1 selects the time elapse action 1 (because
1 is the only possible time duration), then player 2 selectes the exact transition used on the basis of the
selected element of post .

We now define the verification and control problems for PHA. Let ϕ be an objective, ? ∈
{dense, ta,disc}, let H = (L,X ,Events, post , prob,L) be a PHA with semantics [[H]]? = (S,Act ,⇒,Lab),
let s ∈ S, and let λ ∈ Q ∩ (0, 1]. Then the control problem for H, s, ?, ϕ, λ returns Yes if and only
if the game-based threshold problem for G([[H]]?), s, ϕ, λ returns Yes; similarly, the associated verifica-
tion problem for H, s, ?, ϕ, λ returns Yes if and only if the MDP threshold problem for M([[H]]?), s, ϕ, λ
returns Yes.

Specification of objectives of PHA using deterministic Rabin and Streett automata We
next recall basic concepts concerning Rabin and Streett automata, which we use for the specification of
ω-regular properties. Our notation is adapted from [BK08, BGC09].

A deterministic ω-automaton A = (Q,Alph, δ, qinit,Acc) consists of a finite set Q of automaton states,
a finite alphabet Alph, a transition function δ : Q×Alph→ Q, an initial state qinit ∈ Q and an acceptance
condition Acc ⊆ 2Q × 2Q. Let Acc = {(H1,K1), ..., (Hn,Kn)}. A set S′ ⊆ Q is called Rabin accepting if
there exists 1 ≤ i ≤ n such that S′ ∩Hi = ∅ and S′ ∩Ki 6= ∅. The set S′ is called Streett accepting if for
each 1 ≤ i ≤ n we have S′ ∩Hi 6= ∅ or S′ ∩Ki = ∅.

Let ς = υ1υ2υ3 · · · be an infinite word over Alph. The run for ς is the unique infinite se-
quence ρς = q0q1q2 · · · such that q0 = qinit and qi = δ(qi−1, υi) for each i ≥ 1. Let inf(ρς) be
the set of states that occur infinitely often along ρς . Then the Rabin-accepted language of A is
LangRabin(A) = {ς ∈ Alphω | inf(ρς) is Rabin accepting}. Similarly, the Streett-accepted language of A is
defined by LangStreett(A) = {ς ∈ Alphω | inf(ρς) is Streett accepting}. A deterministic Rabin automaton
is a deterministic ω-automaton for which Rabin acceptance is used to define its language. Similarly, a
deterministic Streett automaton is a deterministic ω-automaton for which Streett acceptance is used to
define its language. In the following we use the alphabet Alph = 2AP .

Let H = (L,X ,Events, post , prob,L) be a PHA and A = (Q,Alph, δ, qinit,Acc) be a deterministic

ω-automaton. We define the product PHA H⊗A = (L× Q,X ,Events, p̂ost , p̂rob, L̂) as the PHA defined
in the following way:

• p̂ost((l, q), v, δ) = post(l, v, δ) for each (l, q) ∈ L× Q, v ∈ V and δ ∈ R≥0.

• p̂rob is the smallest set of probabilistic edges such that ((l, q), g, e, p̂) ∈ p̂rob if there exists
(l, g, e, p) ∈ prob such that:

p̂(u, (l′, q′)) =

{
p(u, l′) if q′ = δ(q,L(l′))
0 otherwise.

• L̂(l, q) = {q} for each (l, q) ∈ L× Q.

In the following, we restrict our attention to the case of the 2 1
2 -player game interpretation (the case

of the MDP interpretation is similar). Hence, for ? ∈ {dense, ta,disc}, we consider G([[H⊗A]]?). For
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◦ ∈ {Rabin,Streett}, we let accept◦ be the set of traces of G([[H⊗A]]?) defined by accept◦ = {ρ ∈ Qω |
inf(ρ) is ◦-accepting}.

Let (σ, π) be a strategy profile of G([[H]]?). Then we define the strategy profile (σ+, π+)
of G([[H⊗A]]?) in the following way. First we note that, for any finite path r =
(l0, v0)Λ0µ0(l1, v1)Λ1µ1 · · · (ln−1, vn−1)Λn−1µn−1(ln, vn) of G([[H]]?), there exists a unique path r+ =
((l0, q1), v0)Λ′0ν0 · · · ((ln−1, qn), vn−1)Λ′n−1νn−1((ln, qn+1), vn) of G([[H⊗A]]?) where, for each 0 ≤ i < n
we have the following properties: (a) Λi and Λ′ both correspond to either the time transition rule or the
event transition rule for the same event, and (b) νi((l

′, δ(qi−1,L(l′))), v′) = µi(l
′, v′) for each (l′, v′) ∈ S

(it can be verified that such a distribution exists, if property (a) holds, by definition of H ⊗ A). Vice
versa, for any finite path r+ of G([[H⊗A]]?), there exists a unique finite path r of G([[H]]?) satisfying
the properties (a) and (b) above. Then the strategy σ+ after path r+ mimics the choice of σ after the
path r: more precisely, if σ(r) = a, then σ+(r+) = a, for a ∈ ∆? ∪ Events. Similarly, the strategy π+

after path r+ · Λ′ mimics the choice of π after the path r · Λ: that is, the strategy π+ chooses from Λ′

a distribution ν mimicking the choice of π of µ such that µ and ν satisfy the condition (b) above. It is
also straightforward to see that we can obtain a strategy profile (σ, π) of G([[H]]?) from a strategy profile
(σ+, π+) of G([[H⊗A]]?), by using similar reasoning.

The following result states the equality of the probability of a strategy profile (σ, π) exhibiting traces
of G([[H]]?) accepted by A with acceptance condition ◦ ∈ {Rabin,Streett} and the probability of the
strategy profile (σ+, π+) exhibiting traces of G([[H⊗A]]?) that are ◦-accepting. Given that there is a
one-to-one correspondence between strategy profiles (σ, π) of G([[H]]?) and (σ+, π+) of G([[H⊗A]]?), we
omit the proof.

Proposition 2. Let H be a PHA, let A be a deterministic ω-automaton with ◦ ∈ {Rabin,Streett}
acceptance, let (l, v) ∈ S be a state of G([[H]]?), and let (σ, π) be a strategy profile of G([[H]]?). Then:

Probσ,π(l,v)(Lang†(A)) = Probσ
+,π+

((l,δ(qinit,Lab(l))),v)(accept◦) .

The proposition then implies that the problem of computing ValG([[H]]?)(Lang†(A))(s), for any

state s ∈ S, can be reduced to that of computing ValG([[H⊗A]]?)(accept◦)(s). By Lemma 1, we have

ValG([[H⊗A]]?)(accept◦)(s) = ValQ[G([[H⊗A]]?)](accept◦)(C) for the unique ≈-equivalence class C for which
s ∈ C. In the case in which (1) H ⊗ A has a finite number of probabilistic bisimulation equivalence
classes that can be effectively computed, and (2) the probabilities of all distributions of Q[G([[H⊗A]]?)]

are rational, the value function ValQ[G([[H⊗A]]?)](accept◦) can be computed using standard methods for
computing value functions for Rabin and Streett acceptance conditions on finite-state 2 1

2 -player games

[CdAH05]. In the MDP case, we can compute ValQ[M([[H⊗A]]?)](accept◦) using methods for computing
value functions for Rabin and Streett acceptance on finite-state MDPs [dA97, CdAH05].

4 Bisimulations of Probabilistic Hybrid Automata

In this section we will consider the problem of reasoning about probabilistic bisimulation relations of
probabilistic hybrid automata. In particular, we are interested in showing that previous results showing
the existence of non-probabilistic bisimulation relations for non-probabilistic hybrid automata can be
lifted to the probabilistic case.

A (non-probabilistic) hybrid automaton (HA) is a PHA (L,X ,Events, post , prob,L) for which all
probabilistic edges (l, g, e, p) ∈ prob correspond to a trivial probabilistic choice over a single element;
more precisely, each (l, g, e, p) ∈ prob is such that p is of the form {(u, l′) 7→ 1} for some u ∈ Upd(X ) and
l′ ∈ L. We refer to probabilistic edges of the above form as edges. It can be observed that the semantics
of an HA H, namely [[H]]? for any ? ∈ {dense, ta,disc}, is an NLTS.

Consider an arbitrary PHA H = (L,X ,Events, post , prob,L). In the following, we use ind(prob)
to denote the edges induced by the probabilistic edges in prob: formally, let ind(prob) be the small-
est set of edges such that, if (l, g, e, p) ∈ prob then, for each (u, l′) ∈ support(p), there exists the edge
(l, g, (e, p, u), {(u, l′) 7→ 1}) ∈ ind(prob). Furthermore, let ind(Events) be the set of events (triples
of events, probabilistic edges and update functions) corresponding to edges in ind(prob): formally,
let ind(Events) = {(e, p, u) ∈ Events × Dist(Upd(X ) × L) × Upd(X ) | (l, g, (e, p, u), {(u, l′) 7→ 1}) ∈
ind(prob)}. Now let ind(H) = (L,X , ind(Events), post , ind(prob),L) be the HA induced by the PHA H.
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lon

ẋ ∈ [1, 2], ẏ = 1
10 ≤ x ≤ 25

loff

ẋ ∈ [−2,−1], ẏ = 1
10 ≤ x ≤ 30

lmalf

ẋ ∈ [1, 2], ẏ = 1
10 ≤ x ≤ 30, y ≤ 21

ldeact

ẋ = 0, ẏ = 1
10 ≤ x ≤ 30

x ≥ 23
(off, pon , u∅)

x ≤ 12
(on, poff , u∅)

x ≤ 12
(on, poff , uy:=0)

y := 0

x ≥ 26
(deact, p′malf , u∅)

y = 21
(repair, pmalf , u∅)

Figure 3: The induced HA of the PHA of Figure 1

Note that the location, variable and post sets, and the labelling function, are the same in H and ind(H).
The set of edges of ind(H) is ind(prob), i.e., a set of edges in which the events encode information derived
from probabilistic edges in prob.

Example 3. The induced HA of the PHA of Figure 1 is shown in Figure 3. We use pon and poff

to denote the distributions corresponding to probabilistic edges available from lon and loff , respectively.
Furthermore, we use pmalf and p′malf to denote the two distributions corresponding to probabilistic edges
available from lon and leading to loff and ldeact , respectively. The update function u∅ denotes the identity
function (i.e., the update does not change the value of either variable), whereas uy:=0 denotes the function
that resets the value of y to 0 and leaves the value of x unchanged. Each edge of the induced HA mimics
one particular outcome of a probabilistic edge of the PHA. For example, the edge from loff to lmalf shares
the same source location and guard as the unique probabilistic edge (loff , x ≤ 12, on, poff ) from loff , and
has the same update function and target location as one of the probabilistic edge’s outcomes, namely the
pair (uy:=0, lmalf ). Furthermore, the event labelling the edge is a triple encoding not only the PHA event
of the probabilistic edge, but also the distribution of the probabilistic edge and the update function of the
outcome: this encoding allows us to recover information about the probabilistic branching structure of the
PHA from the induced HA.

We now show that bisimilar states of the semantics of ind(H) are probabilistically bisimilar in the
semantics of H. The equivalence relation ≡loc⊆ S × S is defined as the smallest set such that (l, v) ≡loc

(m,w) if l = m, for all states (l, v), (m,w) ∈ S.

Proposition 3. Let ? ∈ {dense, ta,disc} and let ' be a bisimulation with respect to ≡loc on [[ind(H)]]?.
Then ' is a probabilistic bisimulation with respect to ≡loc on [[H]]?.

Proof. Let [[H]]? = (S,Act [[H]]? ,⇒[[H]]?) and [[ind(H)]]? = (S,Act [[ind(H)]]? ,⇒[[ind(H)]]?) be the semantics
with respect to ? of H and ind(H), respectively (note that [[H]]? and [[ind(H)]]? have the same set of
states, S = L× V). Let ' be a bisimulation respecting ≡loc on [[ind(H)]]?.

Consider states (l, v), (m,w) ∈ S, and assume that (l, v) ' (m,w). Recall the definition of bisim-
ulation on NLTSs from Section 2.3. The fact that (l, v) ' (m,w) implies that the two conditions in
the definition of bisimulation are satisfied: more precisely, we have (1’) l = m (given that ' respects
≡loc), and (2’) if ((l, v), a, (l′, v′)) ∈⇒[[ind(H)]]? , then there exists ((m,w), a, (m′, w′)) ∈⇒[[ind(H)]]? such
that (l′, v′) ' (m′, w′).

Given that l = m, condition (1) in the definition of probabilistic bisimulation (respecting ≡loc) is
satisfied. Therefore it remains to show condition (2) in the definition of probabilistic bisimulation.
Recall the definition of the action sets Act [[H]]? = ∆? ∪ Events and Act [[ind(H)]]? = ∆? ∪ ind(Events).
We first consider transitions of [[H]]? and [[ind(H)]]? that correspond to time elapsing. Consider the case
for ? = dense. The definition of time-elapse transitions depends on post , which is identical in both H
and ind(H). Hence, for (l, v), the existence of a transition ((l, v), δ, (l′, v′)) ∈⇒[[ind(H)]]dense implies the
existence of a transition ((l, v), δ, {(l′, v′) 7→ 1}) ∈⇒[[H]]dense . Similarly, for (m,w), the existence of a
transition ((m,w), δ, (m′, w′)) ∈⇒[[ind(H)]]dense implies the existence of a transition ((m,w), δ, {(m′, w′) 7→
1}) ∈⇒[[H]]dense . Recalling that (l′, v′) ' (m′, w′), we conclude that, in the case of time-elapse transitions,
we have that condition (2’) in the definition of bisimulation implies condition (2) in the definition of
probabilistic bisimulation. The cases for ? ∈ {ta,disc} are similar.
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We now consider jump transitions. Consider an edge (l, g, (e, p, u), {(u, l′) 7→ 1}) ∈ ind(prob) such
that v ∈ g. We write support(p) = {(u1, l1), ..., (un, ln)}. From the definition of the edge set ind(prob),
we have that there exist edges (l, g, (e, p, ui), {(ui, li) 7→ 1}) ∈ ind(prob) for all 1 ≤ i ≤ n, where u = ui
and l′ = li for some 1 ≤ i ≤ n. Consider some n-tuple a = (v1, ..., vn) ∈ Vn such that vi ∈ ui(v) for
each 1 ≤ i ≤ n. In the following, we write a[i] to refer to the i-th element of a, i.e., a[i] = vi. We then
consider the set of transitions corresponding to a, namely Ta = {((l, v), (e, p, ui), (li, vi)) | vi = a[i]∧ 1 ≤
i ≤ n}. We have that Ta ⊆⇒[[ind(H)]]? for the following reasons: first, we have assumed above that
v ∈ g; second, for each 1 ≤ i ≤ n, noting that Bundle(v, {(ui, li) 7→ 1}) contain 1-tuples, namely those
valuations v′ such that v′ ∈ ui(v), we obtain that vi ∈ Bundle(v, {(ui, li) 7→ 1}), which then implies that
((l, v), (e, p, ui), {(li, vi) 7→ 1}) ∈⇒[[ind(H)]]? (furthermore, recall that we simplify the notation of such
transitions to ((l, v), (e, p, ui), (li, vi))). Informally, (li, vi) is the unique state which corresponds to the
traversal of edge (l, g, (e, p, ui), {(ui, li) 7→ 1}) from (l, v).

Now, by condition (2’) of the definition of bisimulation, the existence of each transition in Ta implies
the existence of an equally-labelled transition from (m,w) leading to a bisimilar state. Formally, we can
obtain a set U = {((m,w), (e, p, ui), (mi, wi)) | ((l, v), (e, p, ui), (li, vi)) ∈ Ta ∧ (li, vi) ' (mi, wi)}, and
U ⊆⇒[[ind(H)]]? .

Next, we show that the transition sets Ta and U imply the existence of probabilistic transitions from
(l, v) and (m,w) in [[H]]?. First note that a ∈ Bundle(v, p), because vi ∈ ui(v) for each 1 ≤ i ≤ n.
Then a induces the transition ((l, v), e, µa) ∈⇒[[H]]? where the distribution µa is defined as µa(l′, v′) =∑

1≤i≤n∧v′=a[i] p(ui, li) for each (l′, v′) ∈ S.

Let b = (w1, ..., wn). Note that, for each 1 ≤ i ≤ n, we have (li,a[i]) ' (mi,b[i]) (because (li, vi) '
(mi, wi)). We also have b ∈ Bundle(v, p) because, for each 1 ≤ i ≤ n, the existence of the transition
((m,w), (e, p, ui), (mi, wi)) implies that wi ∈ ui(w). In a similar manner to the case of a, we have that
b induces the transition ((m,w), e, νb) ∈⇒[[H]]? , where νb(m′, w′) =

∑
1≤i≤n∧w′=b[i] p(ui,mi) for each

(m′, w′) ∈ S.
We now show that µa[C] = νb[C] for all equivalence classes C of '. Recall that:

µa[C] =
∑

(l′,v′)∈C

µa(l′, v′) =
∑

(l′,v′)∈C

∑
1≤i≤n s.t. v′=a[i]

p(ui, l
′)

νb[C] =
∑

(m′,w′)∈C

νb(m′, w′) =
∑

(m′,w′)∈C

∑
1≤i≤n s.t. w′=b[i]

p(ui,m
′) .

Given that ' respects ≡loc, then, for all (l′, v′), (l′′, v′′) ∈ C, we have l′ = l′′. We use lC to denote the
location component of the states in C. Now consider the sets IaC = {i ∈ N | 1 ≤ i ≤ n ∧ (lC ,a[i]) ∈ C}
and IbC = {i ∈ N | 1 ≤ i ≤ n ∧ (lC ,b[i]) ∈ C}. Note that we can write:∑

(lC ,v′)∈C

∑
1≤i≤n s.t. v′=a[i]

p(ui, lC) =
∑
i∈IaC

p(ui, lC)∑
(lC ,w′)∈C

∑
1≤i≤n s.t. w′=b[i]

p(ui, lC) =
∑
i∈IbC

p(ui, lC) .

Hence, to show that µa[C] = νb[C], it suffices to show that
∑
i∈IaC

p(ui, l
′) =

∑
i∈IbC

p(ui,m
′).

Given that we established above that, for each 1 ≤ i ≤ n, we have (lC ,a[i]) ' (lC ,b[i]), we also
conclude that (lC ,a[i]) ∈ C if and only if (lC ,b[i]) ∈ C. This implies that IaC = IbC . We then have that∑
i∈IaC

p(ui, l
′) =

∑
i∈IbC

p(ui,m
′). Hence µa[C] = νb[C]. We thus conclude that µa ' νb. Condition (2)

of the definition of probabilistic bisimulation has been satisfied.

Proposition 3 has the following consequence. For a PHAH and ? ∈ {dense, ta,disc}, if ind(H) belongs
to a class of HA with a finite bisimulation equivalence under the semantics indicated by ?, then also
H has a finite probabilistic bisimulation equivalence with semantics ?. Hence, if the finite bisimulation
equivalence for G([[H]]?) (M([[H]]?), respectively) can be effectively computed, a finite-state quotient
Q[G([[H]]?)] (Q[M([[H]]?)], respectively) can be constructed and, by Lemma 1 and Lemma 2, the control
(verification, respectively) problem can be solved. More precisely, the game-based threshold problem
for G([[H]]?), s, ϕ, λ returns Yes if and only if the game-based threshold problem for Q[G([[H]]?)], C, ϕ, λ
returns Yes, where C is the unique probabilistic bisimulation equivalence class such that s ∈ C. We
note that, in general, the dense-time semantics does not generally lead to finite quotients because of its

13



ability to take into account exact durations; hence the practical utility of Proposition 3 is limited to the
time-abstract and discrete-time semantics.

5 Discrete-Time Analysis for Probabilistic Rectangular Au-
tomata

In this section, we consider a particular subclass of probabilistic hybrid automata, namely probabilistic
rectangular automata, and, based on the results of Section 4, show that their discrete-time verification
and control problems are decidable.

5.1 Definition of probabilistic rectangular automata

Let X be a finite set of real-valued variables. A rectangular inequality over X is defined as a formula
of the form x ∼ c, where x ∈ X , ∼∈ {<,≤, >,≥}, and c ∈ Z. A rectangular constraint over X is a
conjunction of rectangular inequalities over X . The set of all rectangular constraints over X is denoted
by Rect(X ). Given a rectangular constraint Φ and valuation v, we say that v satisfies Φ if Φ is true after
substituting v(x) in place of x for all x ∈ X . The set of valuations that satisfy Φ is denoted by [[Φ]]. Let
k ∈ N be a non-negative integer. Then the rectangular constraint Φ is k-definable if |c| ≤ k for every
conjunct x ∼ c of Φ. A rectangular set over X is a set V ⊆ 2V such that V = [[Φ]] for some rectangular
constraint Φ ∈ Rect(X ). Let RectSet(X ) be the set of rectangular sets over X .

We use Ẋ = {ẋ | x ∈ X} to refer to the set of first derivatives of variables in X . A flow assignment
flow : L→ Rect(Ẋ ) and an invariant assignment inv : L→ Rect(X ) each assign a rectangular constraint
(over Rect(Ẋ ) and Rect(X ), respectively) to each location. Intuitively, a flow assignment describes
constraints on the first derivatives of the variables in X . A rectangular post operator is a post operator
post : L× V × R≥0 → 2V such that there exist a flow assignment flow and an invariant assignment inv
for which, for state (l, v) ∈ L×V and δ ∈ R≥0, we have that post((l, v), δ) is the largest set defined in the
following way: v′ ∈ post((l, v), δ) implies that there exists a differentiable function f : [0, δ] → [[inv(l)]]
such that f(0) = v, f(δ) = v′ and ḟ(ε) ∈ [[flow(l)]] for all reals ε ∈ (0, δ), where ḟ is the first derivative of
f . Intutively, as time passes, a rectangular post operator describes the value of variables in X changing
over time according to a differential trajectory satisfying the flow assignment, where the set of possible
valuations that can be obtained is constrained by the invariant assignment.

Let X ′ = {x′ | x ∈ X} be a set of primed copies of each variable of X and, for each X ⊆ X ,
let X ′ = {x′ | x ∈ X}. We use primed variables to refer to the values of variables immediately after
traversing a probabilistic edge. A rectangular update formula takes the form φ′ ∧

∧
x∈X(x′ = x), for

X ⊆ X , φ′ ∈ Rect(X ′ \X ′). A formula φ′ ∧
∧
x∈X(x′ = x) is said to be satisfied by a pair (v, w)

of valuations if u is true after substituting v(x) for x and w(x) for x′, for each x ∈ X. Intuitively,
a rectangular update formula φ′ ∧

∧
x∈X(x′ = x) specifies that variables in X retain the same value,

whereas variables in X \ X are reset to a value satisfying the rectangular constraint φ′. A rectangular
update θ : V → 2V associated with the rectangular update formula φ′ ∧

∧
x∈X(x′ = x) is an update

function such that, for each v ∈ V, the set θ(v) is the smallest set such that if valuation pair (v, w)
satisfies φ′ ∧

∧
x∈X(x′ = x) then w ∈ θ(v). We use RUpd(X ) to refer to the set of rectangular updates.

A probabilistic rectangular automaton (PRA) R is a PHA (L,X ,Events, post , prob,L) such that
(1) post is a rectangular post operator with respect to some flow and invariant assignments, and
(2) prob ⊆ L × RectSet(X ) × Events × Dist(RUpd(X ) × L). We note that the PHA of Figure 1 is a
PRA.

Let R be a PRA with the set L of locations and the set X of variables. We say that R is k-definable
if every rectangular constraint in the definition of R is k-definable (that is, the rectangular constraints
used in flow and invariant assignments, in guards and in rectangular update formulas associated with R,
are k-definable). Given x ∈ X and Φ ∈ Rect(X ), we denote by [[Φ]]x the interval {v(x) ∈ R | v ∈ [[Φ]]}.
The variable x ∈ X is nondecreasing if both [[inv(l)]]x ⊆ R≥0 and [[flow(l)]]x ⊆ R≥0 for all locations
l ∈ L. The variable x ∈ X is bounded if [[inv(l)]]x is a bounded set, for all locations l ∈ L. The PRA R
has nondecreasing or bounded variables if all variables in X are either nondecreasing or bounded. In the
PRA of Figure 1, the variable x is bounded, whereas the variable y is nondecreasing.
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Figure 4: Equivalence classes of �2 for X = {x, y}
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Figure 5: Time elapse (left) and jump (right) transitions of the PHA of Figure 1 with respect to the
equivalence �30

5.2 Discrete-time semantics for PRA

Consider the set X of variables and k ∈ N. Let�k⊆ V(X )×V(X ) be the equivalence relation on valuations
defined in the following way: v �k w if and only if either (1) bv(x)c = bw(x)c and dv(x)e = dw(x)e,
(2) v(x), w(x) > k, or (3) v(x), w(x) < −k, for all x ∈ X . We note that every equivalence class of �k
corresponds to the set of valuations that satisfy some k-definable rectangular constraint. Vice versa, every
k-definable rectangular constraint defines a union of �k-equivalence classes. In Figure 4 we illustrate the
equivalence classes for �2 for X = {x, y}, where each corner point (e.g., x = y = 1), line segment (e.g.,
x = 1 ∧ 0 < y < 1) and open region (e.g., 1 < x < 2 ∧ −1 < y < 0) is an equivalence class of �2.

For a PRA R whose semantics has the state set S, let ∼=k
R⊆ S×S be the smallest equivalence relation

such that (l, v) ∼=k
R (m,w) implies that l = m and v �k w. Furthermore, let ≡lab

R ⊆ S×S be the smallest
equivalence relation such that (l, v) ≡lab

R (m,w) implies that L(l) = L(m). Clearly if (l, v) ∼=k
R (m,w)

then we have (l, v) ≡lab
R (m,w) (because l = m and hence L(l) = L(m)).

Proposition 4. Let R be a k-definable PRA that has nondecreasing or bounded variables. Then ∼=k
R is

a probabilistic bisimulation respecting ≡lab
R on the discrete-time semantics [[R]]disc of R.

Proof. We note that ∼=k
R is a (non-probabilistic) bisimulation respecting ≡lab

R on ind(R) from the results
of [HK99]. Then Proposition 4 follows by Proposition 3.
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Example 4. In Figure 5, we illustrate the fact that ∼=30
R is a probabilistic bisimulation respecting equality

of locations (and hence of labels) for the malfunctioning thermostat example of Figure 1. Note that �30

is used as the equivalence relation over valuations because the largest constant used in the constraints
of the PRA is 30. To show that ∼=30

R is a probabilistic bisimulation, we require that, for equivalent
states, any transition from one state can be matched by a transition from the other state such that the
transitions assign the same total probability to equivalence classes of ∼=30

R . Consider the case of time-elapse
transitions: in the discrete-time semantics, all such transitions correspond to duration 1. In Figure 5
(left), we show an example of two states (shown by the grey circles in the bottom-left cell), where we
suppose that their location component is lon . Given that the two states have the same location component
and belong to the the same equivalence classes of �30, we have that they are related according to ∼=30

R .
Given that, in location lon , the flow condition is given by ẋ ∈ [1, 2], the horizontal grey lines indicate the
states that can be reached after a time transition for both states (recall that the choice between such states
is nondeterministic). The key property that holds is that these grey lines intersect the same equivalence
classes, denoting the fact that, from one state, a transition with target state in one equivalence class can
be mimicked by a transition from the other state that has a target state in the same equivalence class.
Now consider the case of jump transitions, as illustrated in Figure 5 (right). Suppose that we have two
states with the same location component loff , and where their valuations are in the same equivalence
class of �30, i.e., the states are related by ∼=30

R , as shown in the bottom-right of the figure. If the unique
probabilistic edge from loff is taken (noting that the probabilistic edge will either be enabled from both
states, or not be enabled from both states), then with probability 9

10 the PRA makes a transition to location
lon with the variables x and y unchanged, and with probability 1

10 the PRA makes a transition to location
lmalf with the x unchanged and y set to 0. In both cases, the target states of such transitions are in the
same equivalence class, as illustrated by the grey circles in the figure.

By Lemma 1 and Proposition 4, we obtain the following corollary.

Corollary 2. Let R be a k-definable PRA R with nondecreasing or bounded variables, let C be an
equivalence class of ∼=k

R, and let s be a state of [[R]]disc such that s ∈ C. Then s and C are probabilistically

bisimilar in G([[R]]disc) ]Q[G([[R]]disc)], and hence ValG([[R]]disc)(ϕ)(s) = ValQ[G([[R]]disc)](ϕ)(C).

We note that similar results hold for MDPs, i.e., ValM([[R]]disc)(ϕ)(s) = ValQ[M([[R]]disc)](ϕ)(C), by
similar reasoning.

Lemma 1 suggests the following approach for computing the value functions ValG([[R]]disc)(ϕ)

and ValM([[R]]disc)(ϕ): construct the ∼=k
R-quotient of the PRA, then compute the value functions

ValQ[G([[R]]disc)](ϕ) and ValQ[M([[R]]disc)](ϕ)(C) using methods for the computation of value functions on
finite-state 2 1

2 -player games or MDPs (see, for example, [dA97, CdAH05]). Note that this approach
requires that the probabilities of Q[G([[R]]disc)] are rational: this can be guaranteed by making the as-
sumtion on the PRA that, for each (l, g, e, p) ∈ prob and each (u, l′) ∈ support(p), we have p(u, l′) ∈ Q.
Following [HK99], we observe that the number of equivalence classes of ∼=k

R equals |L| · (4k+3)|X |. Given
that the size of the state spaces of Q[G([[R]]disc)] and Q[M([[R]]disc)] is equal to the number of equivalence
classes of ∼=k

R, and the size of the transition relation is bounded from above by |prob| · |L| · (4k + 3)|X |,
combined with results of [dA97, CdAH05], we have the following.

Theorem 1. • The discrete-time verification problem for PRA with nondecreasing or bounded vari-
ables is in EXPTIME for deterministic Rabin or Streett automata objectives.

• The discrete-time control problem for PRA with nondecreasing or bounded variables can be solved in
NEXPTIME for deterministic Rabin automata objectives, and in coNEXPTIME for deterministic
Streett automata objectives.

From the lower bounds on verification of probabilistic timed automata established in [LS07] we can
obtain EXPTIME-lower bounds for all the problems considered in Theorem 1. We also note that it
is possible to synthesise finite-state controllers that witness a positive answer to the control problem:
that is, if the control problem for R, s,disc, ϕ, λ returns Yes, then a strategy for player 1 witnessing

ValG([[R]]disc)(ϕ)(s) ≥ λ, i.e., a strategy σ ∈ ΣG([[R]]disc) such that infπ∈Π
G([[R]]disc)

Probσ,πs (ϕ) ≥ λ, can be

obtained. This follows from the fact that, for Rabin and Streett acceptance conditions, either finite-
memory or randomized (memoryless) strategies for player 1 can be obtained for finite-state 21

2 -player
games [CdAH05].
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Figure 6: Maximum and minimum probability of reaching location ldeact within T time units in the PRA
of Figure 1.

Example We applied the above discrete-time verification technique to the malfunctioning thermostat
example of Figure 1 by encoding the MDP G([[R]]disc) directly in the input language of the probabilisic
model checking tool PRISM [KNP11]. In Figure 6 we show results for time-bounded properties, namely
the maximum and minimum probability of reaching location ldeact within T time units. To verify such
properties, we equip the PRA with an extra clock (variable that increases at the same rate as real time)
that is not reset, i.e., that represents the amount of total time that has elapsed. When this clock exceeds
T , the PRA then is forced to make a transition to a new, “sink” location from which no other location
may be reached. Then, to obtain the maximum probability of reaching ldeact within T time units in the
original PRA, we compute the maximum probability of reaching ldeact in the modified PRA. Instead, to
obtain the minimum probability of reaching ldeact within T time units in the original PRA, we compute
1 minus the maximum probability of reaching the sink location and not reaching ldeact previously in the
modified PRA. For examples of the size of the states spaces generated, for T = 200 the PRISM model
contained 64167 states, and for T = 1000 the size of the state space was 342567.

6 Conclusion

In this paper we have presented methods for utilising probabilistic bisimulation in the context of PHA
verification and control, with a particular application to discrete-time verification and control problems
for PRA. By considering ω-regular properties, we have enlarged the class of properties that can be
considered in the PHA framework. We note that the framework presented in this paper can be used
for the verification and control of branching-time properties (such as those of Pctl∗ [BdA95] in the
case of verification or Patl∗ [CL07] in the case of control). We note that, for control problems, the
duration of time-elapse transitions is fully under the power of the controller, rather than under the
power of both the controller and the environment (as in, for example, [dAFH+03, BBC10]), and hence
is more appropriate in the discrete-time setting rather than the time-abstract setting. A direction of
future work could be to explore variants of PRA in which the duration of time-elapse transitions can
depend both on the controller and on the enviroment. Future work can consider how PRA may also
be used as abstract models of stochastic hybrid systems whose continuous evolution is governed by a
probabilistic law. In this paper, we assumed that strategies make choices according to discrete probability
distributions: generalising this to continuous probability distributions has been done in the verification
setting [Hah13], but is a technical challenge in the control/game-based setting. Finally, future work can
address open problems for PRA, such as obtaining exact solutions to the dense-time verification and
control problems for initialised PRA.
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