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Given positive integers a1, . . . , ak, we prove that the set of primes p such that

p 6≡ 1 mod ai for i = 1, . . . , k admits asymptotic density relative to the set of all primes

which is at least
∏k

i=1

(
1− 1

ϕ(ai)

)
, where ϕ is the Euler totient function. This result is

similar to the one of Heilbronn and Rohrbach, which says that the set of positive integer

n such that n 6≡ 0 mod ai for i = 1, . . . , k admits asymptotic density which is at least∏k
i=1

(
1− 1

ai

)
.

Keywords: congruences; densities; primes in residue classes; set of multiples.

Mathematics Subject Classification 2010: 11N13, 11N05, 11N69.

1. Introduction

The natural density of a set of positive integers A is defined as

d(A) := lim
x→+∞

#(A ∩ [1, x])

x
,

whenever this limit exists. The study of natural densities of sets of positive integers

satisfying some arithmetic constraints is a classical research topic. In particular,

Heilbronn [10] and Rohrbach [11] proved, independently, the following result:

Theorem 1.1. Let a1, . . . , ak be some positive integers. Then, the set A of positive

integers n such that n 6≡ 0 mod ai for i = 1, . . . , k has natural density satisfying

d(A) ≥
k∏
i=1

(
1− 1

ai

)
.
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Generalizations of Theorem 1.1 were given, for instance, by Behrend [3] and

Chung [5]. We refer to [9] for a textbook exposition and to [1,2,8,12] for related

results. It is worth noting that Besicovitch [4] proved that, given a sequence of

positive integers (ai)i≥1, the set A of positive integers n not divisible by any ai does

not necessarily admit natural density. However, Davenport and Erdős [6] proved

that A always admits logarithmic density, i.e., the following limit exists:

lim
x→+∞

1

log x

∑
n∈A∩ [1,x]

1

n
.

The purpose of this note is to prove a result for the set of primes analogous to

Theorem 1.1. Of course, to this aim, the natural density is not the right quantity

to consider, since it is well known that the set of primes has natural density equal

to zero.

Define the relative density of a set of primes P to be

r(P) := lim
x→+∞

#(P ∩ [1, x])

x/ log x
,

whenever this limit exists. Furthermore, let ϕ denote the Euler totient function.

Our result is the following:

Theorem 1.2. Let a1, . . . , ak be positive integers. Then the set P of primes p such

that p 6≡ 1 mod ai for i = 1, . . . , k has relative density satisfying

r(P) ≥
k∏
i=1

(
1− 1

ϕ(ai)

)
.

2. Preliminaries

We begin by fixing some notations with the aim of simplifying the exposition.

Let N be the set of positive integers. Put Jx, yK := [x, y] ∩ N for all x ≤ y, and

let the other “integral interval” notations, like Kx, yK, be defined in the obvious

way. For vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) belonging to Nd, define

‖x‖ := x1 · · ·xd and Jx,yK := Jx1, y1K × · · · × Jxd, ydK. Also, all the elementary

operations of addition, subtraction, multiplication, and division between vectors

are meant to be component-wise, e.g., xy := (x1y1, . . . , xdyd). Let 0, respectively

1, be the vector of Nd with all components equal to 0, respectively 1, where d

will be always clear from the context. Finally, write x ≡ y mod m if and only if

xi ≡ yi mod mi for all i = 1, . . . , d, where m = (m1, . . . ,md) ∈ Nd, and write

x 6≡ y mod m if and only if xi 6≡ yi mod m for at least one i ∈ J1, dK.
We will need the following lemma, which might be interesting per se.

Lemma 2.1. Let d be a positive integer and let a1, . . . ,ak,b ∈ Nd be vectors such

that a1 · · ·ak ≡ 0 mod b and b ≡ 0 mod ai for i = 1, . . . , k. Then the set X of all
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x ∈ J1,bK such that x 6≡ 0 mod ai for i = 1, . . . , k satisfies

#X ≥ ‖b‖ ·
k∏
i=1

(
1− 1

‖ai‖

)
.

Proof. Define c := a1 · · ·ak and let Y be the set of y ∈ J1, cK such that

y 6≡ 0 mod ai for i = 1, . . . , k. Then, a result of Chung [5] says that

#Y ≥ ‖c‖ ·
k∏
i=1

(
1− 1

‖ai‖

)
. (2.1)

Clearly, Y can be partitioned in ‖c/b‖ sets given by

Yt := Kb(t− 1),btK ∩ Y,

for t ∈ J1, c/bK. (Note that c/b ∈ Nd since a1 · · ·ak ≡ 0 mod b.) Therefore, by

(2.1) there exists some t ∈ J1, c/bK such that

#Yt ≥
#Y
‖c/b‖

≥ ‖b‖ ·
k∏
i=1

(
1− 1

‖ai‖

)
.

Moreover, for each y ∈ Yt there exists a unique x ∈ J1,bK such that x ≡ y mod b.

Finally, since b ≡ 0 mod ai for i = 1, . . . , k, it follows easily that the map y 7→ x is

an injection Yt → X , so that #X ≥ #Yt and the proof is complete.

We will also use the following version of Dirichlet’s theorem on primes in arith-

metic progressions [7, pag. 82].

Theorem 2.2. For all coprime positive integers a and b, the set of primes p such

that p ≡ a mod b has relative density equal to 1/ϕ(b).

3. Proof of Theorem 1.2

Put ` := lcm(a1, . . . , ak) and let ` = pe11 · · · p
ed
d be the canonical prime factoriza-

tion of `, where p1 < · · · < pd are primes and e1, . . . , ed are positive integers.

Furthermore, let S be the set of all n ∈ J1, `K such that: n is relatively prime to `,

and n 6≡ 1 mod ai for i = 1, . . . , k. Thanks to Theorem 2.2, we have

r(P) = lim
x→+∞

#(P ∩ [1, x])

x/ log x
= lim
x→+∞

∑
n∈S

#{p ≤ x : p ≡ n mod `}
x/ log x

=
#S
ϕ(`)

, (3.1)

hence the relative density of P exists, and all we need is the right lower bound for

#S.

For the sake of clarity, let us first assume that 8 - `. Later, we will ex-

plain how to adapt the proof for the case 8 | `. Let gi be a primitive root

modulo peii , for i = 1, . . . , d. Note that g1 exists when p1 = 2 since e1 ≤ 2.

Put also b := (ϕ(pe11 ), . . . , ϕ(pedd )). By the Chinese Remainder Theorem, each

n ∈ J1, `K which is relatively prime to ` is uniquely identified by a vector
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x(n) = (x1(n), . . . , xd(n)) ∈ J1,bK such that n ≡ g
xi(n)
i mod peii for i = 1, . . . , d.

Let ai = p
αi,1

1 · · · pαi,d

d be the prime factorization of ai, where αi,1, . . . , αi,d are

nonnegative integers, and define ai := (ϕ(p
αi,1

1 ), . . . , ϕ(p
αi,d

d )) for i = 1, . . . , k.

At this point, it follows easily that n ∈ S if and only if x(n) ∈ X , where X is

the set in the statement of Lemma 2.1. Hence, the map n 7→ x(n) is a bijection

S → X and, as a consequence, #S = #X . Since ‖b‖ = ϕ(`), ‖ai‖ = ϕ(ai),

a1 · · ·ak ≡ 0 mod b, and b ≡ 0 mod ai for i = 1, . . . , k, the desired claim follows

from Lemma 2.1 and (3.1).

The case 8 | ` is a bit more trickier since there are no primitive roots modulo

2e, for e ≥ 3 an integer. However, the previous proof still works by putting

b := (2, 2e1−2, ϕ(pe22 ), . . . , ϕ(pedd ))

and

ai := (2max(0,αi,1−1)−max(0,αi,1−2), 2max(0,αi,1−2), ϕ(pαi,2), . . . , ϕ(pαi,d))

for i = 1, . . . , k. Now each n ∈ J1, `K which is relatively prime to ` is

uniquely identified by a vector x(n) = (x0(n), . . . , xd(n)) ∈ J1,bK such that

n ≡ (−1)x0(n)5x1(n) mod 2e1 and n ≡ g
xi(n)
i mod peii for i = 2, . . . , d. The rest of

the proof proceeds as before.
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