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THE COMPLEXITY OF THE EMBEDDABILITY RELATION BETWEEN
TORSION-FREE ABELIAN GROUPS OF UNCOUNTABLE SIZE

FILIPPO CALDERONI

Abstract. We prove that for every uncountable cardinal κ such that κ<κ = κ, the quasi-order of embeddability

on the κ-space of κ-sized graphs Borel reduces to the embeddability on the κ-space of κ-sized torsion-free abelian

groups. Then we use the same techniques to prove that the former Borel reduces to the embeddability relation

on the κ-space of κ-sized R-modules, for every S-cotorsion-free ring R of cardinality less than the continuum.

As a consequence we get that all the previous are complete Σ1
1 quasi-orders.

§1. Introduction. A subset of a topological space is κ-Borel if it is in the smallest
κ-algebra containing the open sets. Given two spaces X, Y, a function f : X → Y is
κ-Borel (measurable) if the preimage through f of every open subset of Y is κ-Borel.
Two spaces X, Y are said κ-Borel isomorphic if there is a κ-Borel bijection X → Y
whose inverse is κ-Borel too. When κ = ℵ1 these notions coincide with the ones of
Borel sets, Borel functions, and Borel isomorphism (see the classical reference [15]).
More background details and examples will be given in the next section.

Let κ be an infinite cardinal. A topological space X is a κ-space if it admits a basis of
size ≤ κ. We denote by κκ the generalized Baire space; i.e., the set of functions from κ
to itself endowed with the topology generated by the sets of those functions extending a
fixed function from a bounded subset of κ to κ. We assume the hypothesis κ<κ = κ , which
implies that κκ is a κ-space. A κ-space is standard Borel if it is κ+-Borel isomorphic to a
κ+-Borel subset of κκ. If X is a standard Borel κ-space, we say that A ⊆ X is (κ)-analytic
(or Σ1

1) if it is a continuous image of a closed subset of κκ. The set of κ-analytic subsets
of X is usually denoted by Σ1

1(X). We are interested in quasi-orders (i.e., reflexive and
transitive binary relations) defined over standard Borel κ-spaces. A quasi-order Q on X
is analytic, or Σ1

1, if and only if Q ∈ Σ1
1(X × X). Let P,Q be Σ1

1 quasi-orders on the
standard Borel κ-spaces X and Y, respectively. We say that P Borel reduces to Q if there
is a κ+-Borel function f : X → Y such that ∀x0x1 ∈ X (x0 P x1 ⇔ f (x0) Q f (x1)).

Theorem 1.1 (Essentially Williams [21]). For every infinite cardinal κ such that
κ<κ = κ, the embeddability quasi-order on the κ-space of κ-sized graphs Borel reduces
to the embeddability on the κ-space of κ-sized groups.

The above result was proved in [21, Theorem 5.1] for κ = ω, and the same proof
works for κ uncountable as well. In view of a result of Louveau and Rosendal (see [16,
Theorem 3.1]), Theorem 1.1 in case κ = ω yields that the embeddability relation on
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704 FILIPPO CALDERONI

countable groups is a complete Σ1
1 quasi-order (i.e., a maximum among all Σ1

1 quasi-
orders up to Borel reducibility). To prove Theorem 1.1, Williams maps every countable
graph to a group generated by the vertices of the graph and satisfying some small can-
cellation hypothesis. Such groups are not abelian and have many torsion elements that
are used to encode the edge relation of the corresponding graphs. So one may wonder
whether there exists another Borel reduction from embeddability between countable
graphs to embeddability on countable torsion-free abelian groups.

At about the same time as Theorem 1.1 was proved, Przeździecki showed in [18] that
the category of graphs almost-fully embeds into the category of abelian groups. I.e.,
there exists a functor G : G raphs → A b such that for every two graphs T,V there is a
natural isomorphism

Z[Hom(T,V)] � Hom(GT,GV),

where Z[B] is defined as the free abelian group with basis B. A closer look into the
construction of the functor reveals that it takes values in the subcategory of torsion-free
abelian groups. Unfortunately for us, the restriction of G to the standard Borel space
of countable graphs is not a Borel reduction in the classical sense because countable
graphs are sent to groups of size the continuum.

In this article we work in the framework of generalized descriptive set theory. By
tweaking the construction of [18] we show the following.

Theorem 1.2. For every uncountable κ such that κ<κ = κ, there is a Borel reduction
from the embeddability quasi-order on the κ-space of graphs of size κ to embeddability
on the κ-space of κ-sized torsion-free abelian groups.

So, in view of the results of [17] and [3], the embeddability relation between κ-sized
torsion-free abelian groups is a complete Σ1

1 quasi-order.
In Section 2 we introduce the main definitions of Borel reducibility in the framework

of generalized descriptive set theory. In Section 3 we recall some theorems on the exis-
tence of R-modules with prescribed endomorphism ring. Such theorems will be used
to define the reductions we present in the ensuing sections. Section 4 is dedicated to
the proof of Theorem 1.2: we define a Borel reduction from the embeddability relation
on κ-sized graphs to embeddability on κ-sized torsion-free abelian groups. In Section
5 we follow the main ideas of [10], and we exploit the techniques used in Section 4
to prove an analogue of Theorem 1.2 for the embeddability relation on R-modules, for
every S-cotorsion-free ring R of cardinality less than the continuum.

Theorem 1.3. Let R be a commutative S-cotorsion-free ring of cardinality less than
the continuum. For every uncountable κ such that κ<κ = κ, there is a Borel reduction
from the embeddability quasi-order on the κ-space of graphs of size κ to embeddability
on the κ-space of κ-sized R-modules.

In Section 6 we address the problem of determining the Borel complexity of �κTFA the
isomorphism on κ-sized torsion-free abelian groups. We point out that a result of [14]
implies the following.

Theorem 1.4. Assume that V = L and κ is inaccessible. Then the isomorphism
relation on κ-sized torsion-free abelian groups is a complete Σ1

1 equivalence relation.

§2. Preliminaries. We consider the generalized Baire space κκ � {x | x : κ→ κ} for
an uncountable cardinal κ. Unless otherwise specified, κκ is endowed with the bounded
topology τb, i.e., the topology generated by the basic open sets

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.9
Downloaded from https://www.cambridge.org/core. Universitá di Torino, on 28 Nov 2018 at 09:53:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.9
https://www.cambridge.org/core


EMBEDDABILITY ON TORSION-FREE ABELIAN GROUPS OF UNCOUNTABLE SIZE 705

Ns = {x ∈ κκ | x ⊇ s},
where s ∈ <κκ. Notice that since κ is uncountable, the topology τb is strictly finer than
the product topology. We assume the hypothesis

κ<κ = κ, (1)

consequently we get that κκ is a κ-space, as the basis {Ns | s ∈ <κκ} has size κ. The
generalized Cantor space κ2 � {x ∈ κκ | x : κ→ 2} is a closed subset of κκ and therefore
it is standard Borel with the relative topology. We recall the following proposition which
gives some characterizations of κ-analytic sets.

Proposition 2.1. Let X be a standard Borel κ-space and A ⊆ X nonempty. Then, the
following are equivalent:

(i) A is κ-analytic;
(ii) A is a continuous image of some κ+-Borel B ⊆ κκ;
(iii) A is a κ+-Borel image of some κ+-Borel B ⊆ κκ;
(iv) A is the projection p(F) = {x ∈ X | ∃y ∈ κκ ((x, y) ∈ F)} of some closed subset

F ⊆ X × κκ.
A proof of Proposition 2.1 is given in [17, Section 3]. It is specially worth to note

that in view of 2.1 we are allowed to use a generalization of the celebrated Tarski–
Kuratowski algorithm (see [15, Appendix C]). That is, a set A ⊆ κκ is κ-analytic if it
is defined by an expression involving only κ-analytic sets, atomic connectives, ∃α,∀α
(where α varies over a set of cardinality ≤ κ), and existential quantification over a
standard Borel κ-space.

In the remainder of this article we fix some uncountable κ and study standard Borel
κ-spaces with the assumption κ<κ = κ. For ease of exposition we simply say Borel and
analytic instead of saying, respectively, κ+-Borel and κ-analytic, whenever κ is clear
from the context.

2.1. Spaces of κ-sized structures. In this subsection we recall briefly how to define
the standard Borel κ-spaces of uncountable structures of size κ. While in [1, 7, 17] the
authors are concerned only with countable languages, we extend the basic definitions to
uncountable ones. Our approach is motivated by the aim to develop a unique framework
to treat algebraic objects with the most diverse features. For example, following our
approach it is possible to define the standard Borel κ-space of κ-sized R-modules, for
any fixed ring R with |R| < κ. Such spaces will be taken into account in Section 5.

Definition 2.2. If A is a set of size κ, then any bijection f : κ→ A induces a bijection
from κκ to Aκ, so that the bounded topology can be copied on Aκ. A basis for such
topologies is given by

{NA
s | ∃α < κ ( f ′′α = dom s)},

where NA
s = {x ∈ Aκ | s ⊆ x}.

We briefly recall some useful applications of Definition 2.2.

(a) If G is a group of cardinality κ then, we define the κ-space of subgroups of G by
identifying each subgroup of G with its characteristic function and setting

SubG = {H ∈ G2 | 1G ∈ H ∧ ∀x, y ∈ G (x, y ∈ H → xy−1 ∈ H)},
which is a closed subset of G2 and therefore is standard Borel.
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706 FILIPPO CALDERONI

(b) Fix a language consisting of finitary relation symbols L = {Ri | i ∈ I}, |I| < κ, and
let ni be the arity of Ri. We denote by XκL the κ-space of L-structures with domain
κ. Every A ∈ XκL is a pair (κ, {RAi | i ∈ I}) where each RAi is an ni-ary relation
on κ, so it can be identified with an element of

∏
i∈I (ni κ)2 in the obvious way. It

follows that XκL can be endowed with the product of the bounded topologies on
its factors (ni κ)2.

For an infinite cardinal κ, we consider the infinitary logic Lκ+κ. In such logic formu-
las are defined inductively with the usual formation rules for terms, atomic formulas,
negations, disjunctions and conjunctions of size ≤ κ, and quantifications over less than
κ many variables.

Definition 2.3. Given an infinite cardinal κ and an Lκ+κ-sentence ϕ, we define the
κ-space of κ-sized models of ϕ by

Xκϕ � {A ∈ XκL | A |= ϕ}.
The following theorem is a generalization of a classical result by López-Escobar for

spaces of uncountable structures.

Theorem 2.4 (κ<κ = κ). A set B ⊆ XκL is Borel and closed under isomorphism if and
only if there is an Lκ+κ-sentence ϕ such that B = Xκϕ.

To see a proof of Theorem 2.4 we refer the reader to [7, Theorem 24] or [1, Theo-
rem 8.7]. A straightforward consequence of it is that the space defined in Definition 2.3
is standard Borel.

We conclude this subsection with a list of those spaces of models of Lκ+κ-sentences
that we will use in the ensuing sections. We denote by XκGRAPHS the space of κ-sized
graphs. By graph we mean an undirected graph whose edge relation is irreflexive. We
denote by XκTFA the space of κ-sized torsion-free abelian groups. For any fixed ring R
such that |R| < κ, we denote by XκR-MOD, the space of κ-sized R-modules. Here observe
that every r ∈ R is regarded as a unary functional symbol, interpreted as the left scalar
multiplication by r. The axioms of R-modules are the following:

• ϕAB, i.e., the first order formula defining abelian groups,
• ∀x∀y

(
r(x + y) = rx + ry

)
,

• ∀x
(
(r + q)x = rx + qx

)
,

• ∀x
(
r(qx) = (rq)x

)
,

• 1x = x.

Since r and q vary in R, which has size < κ, the formula defining the class of R-modules
is a formula in the logic Lκ+κ.

2.2. Borel reducibility. Let X, Y be standard Borel κ-spaces and L a fixed language
such that |L| < κ. Given A,B ∈ XκL, we say that A is embeddable into B, in symbols
A �κL B, if there is x ∈ κκ which realizes an isomorphism between A and B � Im x.
As pointed out in [1, Section 7.2.2] one can show directly that �κL is the projection on
XκL×XκL of a closed subset of XκL×XκL× κκ, therefore the quasi-order�κL of embeddability
between κ-sized L-structures is Σ1

1. We denote by �κZ the quasi-order of embeddability
on the κ-space XκZ, where Z ∈ {GRAPHS,TFA,R-MOD}.

Let P,Q be Σ1
1 quasi-orders on the standard Borel κ-spaces X and Y, respectively.

Recall that P Borel reduces to Q, in symbols P ≤B Q, if and only if there is a κ+-Borel
function f : X → Y such that ∀x0x1 ∈ X (x0 P x1 ⇔ f (x0) Q f (x1)). Moreover, Q is
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a complete Σ1
1 quasi-order if for every Σ1

1 quasi-order P on a standard Borel κ-space,
P ≤B Q. Similarly, we say that E is a complete Σ1

1 equivalence relation if F ≤B E,
for every Σ1

1 equivalence relation F. Any quasi-order Q on X induces canonically an
equivalence relation on X, which is denoted by EQ, and defined by setting x EQ y if and
only if x Q y and y Q x for all x, y ∈ X. It can be easily verified that if Q is a complete
Σ1

1 quasi-order then EQ is a complete Σ1
1 equivalence relation. The following theorem

is a generalization of [16, Theorem 3.1] to the embeddability relation on uncountable
graphs.

Theorem 2.5 (Mildenberger–Motto Ros [3]). If κ is uncountable such that κ<κ =
κ, then the relation of embeddability �κGRAPHS on the κ-space of κ-sized graphs is a
complete Σ1

1 quasi-order.

A first version of Theorem 2.5 was obtained by Motto Ros in [17, Corollary 9.5]
provided that κ is weakly compact.

§3. Existence of algebras with prescribed endomorphism ring. Some crucial
results that will be used in the next sections are about the existence of algebras with
prescribed endomorphism ring.

3.1. S -completions. We recall the basic definitions and some simple facts on
S -completions following the treatise of [11, Chapter 1].

Notation 3.1. In the remainder of this section R is a commutative ring with unit 1
and S is a subset of R \ {0} containing 1 and closed under multiplication.

Definition 3.2. We say that R is S -reduced if
⋂

s∈S sR = 0, and R is S -torsion-free
if for all s ∈ S and r ∈ R, sr = 0 implies r = 0. Furthermore, we say that R is an S -ring
provided that R is both S -reduced and S -torsion-free.

In most of the applications S is assumed to be countable. In such case, we denote S
by S as in [11, Chapter 1]. Examples of S-rings include every noetherian domain R with
S = {an | n ∈ ω}, for any a ∈ R such that aR is a proper principal ideal of R (see [11,
Corollary 1.3]).

Definition 3.3. Let R be an S -ring and M be an R-module. We say that M is S -
reduced if

⋂
s∈S sM = 0, and M is S -torsion-free if for every s ∈ S and m ∈ M,

sm = 0 implies m = 0.

We denote by M̂ the S -completion of M, which is defined as follows. Given s, q ∈ S ,
we write q � s if there is t ∈ S such that s = qt. Then we set

M̂ � lim←−−s ∈ S M/sM,

the inverse limit of inverse system of R-modules ({M/sM}s∈S , {πs
q}q�s), where

πs
q : M/sM → M/qM, m + sM �→ m + qM.

Any R-module can be given the natural linear S -topology, i.e., the one gener-
ated by {sM | s ∈ S } as a basis of neighborhoods of 0. A Cauchy net in M is a
sequence (ms | s ∈ S ) taking values in M, and such that mq − mqs ∈ qM, for all
q, s ∈ S . We say that the Cauchy net (ms | s ∈ S ) has limit m ∈ M if and only if
m − ms ∈ sM, for every s ∈ S . Finally, we say that M is S -complete if it is complete
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708 FILIPPO CALDERONI

with respect to the S -topology, that is, every Cauchy net in M has a unique limit. If M is
S -reduced and S -torsion-free, then M̂ is S -reduced, S -torsion-free and S complete (see
[11, Lemma 1.6]).

The canonical map

ηM : M → M̂, m �→ (m + sM | s ∈ S ),

which is always a homomorphism of R-modules, is injective if and only if M is
S -reduced; and it is a ring homomorphism, whenever R = M. Moreover, if M is
S -complete, then ηM is an isomorphism.

For any R-module M, its S -completion M̂ carries a natural a R̂-module structure. I.e.,
given r̄ = (rs + sR | s ∈ S ) ∈ R̂ and m̄ = (ms + sM | s ∈ S ) ∈ M̂, we define the scalar
multiplication by

r̄m̄ � (rsms + sM | s ∈ S ).

3.2. Existence of abelian groups with prescribed endomorphism ring. If G is a
Z-module (i.e., an abelian group) and S = N \ {0}, then the S-topology on G is usually
called Z-adic topology and the S-completion of G is called the Z-adic completion. We
refer to [8, Theorem 39.5] and [9, Section 2.7] as comprehensive sources on Z-adic
completions.

The next theorem was pointed out by Przeździecki in [18]. It states a slightly different
result of a classical theorem by Corner [5, Theorem A], whose proof can be adapted to
show the following.

Theorem 3.4 (Przeździecki [18, Theorem 2.3]). Let A be a ring of cardinality at
most 2ℵ0 such that its additive group is free. Then, there is a torsion-free abelian group
M ⊆ Â such that

(i) A ⊆ M as (left) A-modules,
(ii) End M � A,

(iii) |A| = |M|.
A few comments on Theorem 3.4 may be of some help. We stress the fact that M is

torsion-free. By construction M inherits the natural (left) A-module structure from Â,
which is the one defined by setting

a ∗m = ηA(a)m, (2)

for every a ∈ A and m ∈ M. Moreover, condition 3.4 of Theorem 3.4 is proved by
showing that for every h ∈ End M, there exists a ∈ A such that h(m) = a ∗ m for all
m ∈ M.

Remark 3.5. The reader familiar with the bibliography may find our notation non-
standard. In module theory people usually consider endomorphisms of R-modules as
acting on the opposite side from the scalars (e.g., see [11, Chapter 1]). Nevertheless,
we prefer to follow the notation of [18] and to have endomorphisms of M acting on the
left.

3.3. Existence of R-modules with prescribed endomorphism ring. An R-module
M is S-cotorsion-free if it is S-reduced and Hom(R̂,M) = 0. This definition extends
naturally to any R-algebra A by saying that A is S-cotorsion-free if A has this property
as an R-module. It is shown in [11, Corollary 1.26] that whenever M is an R-module of
size < 2ℵ0 , then M is S-cotorsion-free if and only if it is S-torsion-free and S-reduced.
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We recall one more theorem of existence of R-algebras with prescribed endomorphism
ring, that is a result of the same kind of Theorem 3.4.

Theorem 3.6 (Göbel–Przeździecki [10, Corollary 4.5]). Let R be an S-cotorsion-free
ring such that |R| < 2ℵ0 . If A is an R-algebra of cardinality at most the continuum with
a free additive structure over R, then there exists an R-module M such that

(i) A ⊆ M ⊆ Â as (left) A-modules,
(ii) EndR M � A,

(iii) |A| = |M|.

§4. The embeddability relation between torsion-free abelian groups. In this sec-
tion we focus on the embeddability relation between κ-sized torsion-free abelian groups
and we prove Theorem 1.2. To this purpose we adapt the embedding from the category
of graphs into the category of abelian groups defined in [18]. For the sake of exposition
we avoid the notion of colimit commonly used in category theory, instead we use the
classical notion of direct limit for direct systems of abelian groups which gives more
insights on the possibility to define the reduction in a κ+-Borel way.

Let Γ be a skeleton of the category of countable graphs; i.e., a full subcategory of
the category of countable graphs with exactly one object for every isomorphism class.
Without loss of generality, assume that every object in Γ is a graph over a subset of ω.
Since we work under the assumption (1), there is a κ-sized universal graph, i.e., a graph
of cardinality κ, which contains all graphs of cardinality κ as induced subgraphs. We
denote by Wκ the κ-sized universal graph on κ and by [Wκ]κ the subspace of induced
subgraphs of Wκ of cardinality κ. We identify [Wκ]κ with the κ+-Borel subset of subsets
of Wκ of cardinality κ. Therefore we can consider [Wκ]κ as the standard Borel κ-space
of graphs of cardinality κ.

For every graph T and every infinite cardinal λ, we denote by [T ]<λ the set of induced
subgraphs of T of cardinality < λ. Next, for every S ∈ [Wκ]<ω1 , we fix an isomor-
phism θS : S → σ(S ), where σ(S ) denotes the unique graph in Γ which is isomorphic
to S .

Now define
A � Z

[
Arw(Γ) ∪ {1} ∪ P f in(ω)

]
. (3)

That is, the free abelian group generated by the arrows in Γ, a distinguished element
1, and the finite subsets of ω. We endow A with a ring structure by multiplying the
elements of the basis as follows, and then extending the multiplication to the whole A
by linearity. For every a, b ∈ Arw(Γ) ∪ P f in(ω) let

ab =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ◦ b if

⎧⎪⎪⎨⎪⎪⎩
a, b ∈ Arw(Γ)

a and b are composable,

a′′b if

⎧⎪⎪⎨⎪⎪⎩
b ⊆ dom a

a � b is an isomorphism,

0 otherwise.

(4)

a1 = 1a = a. (5)

Remark 4.1. The definition of A in (3) differs from the one of [18, Section 3] for
including P f in(ω) in the generating set. These elements will play the crucial role of
embeddability detectors in Lemma 4.8.
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710 FILIPPO CALDERONI

Now observe that the ring A has cardinality 2ℵ0 and its additive group is free. So let
M be a group having endomorphism ring isomorphic to A as in Theorem 3.4. Notice
that the elements of A act on M on the left as in (2).

Definition 4.2. For every C ∈ Γ, let

GC � idC ∗ M.

Notice that GC is a subgroup of M, for all C ∈ Γ. Moreover, if C,D ∈ Γ and γ : C →
D, then γ ∈ A and thus induces a group homomorphism Gγ from GC to GD by left-
multiplication

Gγ : GC → GD idC ∗ m �→ γ ∗ (idC ∗m). (6)

We make sure that such map is well defined as γ ∗ (idC ∗ m) = idD ∗ (γ ∗ (idC ∗ m)),
which is clearly an element of GD.

Now fix any T ∈ [Wκ]κ. For every S , S ′ ∈ [T ]<ω1 such that S ⊆ S ′, the inclusion map
iSS ′ : S → S ′ induces a map γS

S ′ from σ(S ) to σ(S ′), the one that makes the diagram
below commute.

S S ′

σ(S ) σ(S ′)

iSS ′

θS θS ′

γS
S ′

The map γS
S ′ is in Γ and thus it induces functorially a group homomorphism GγS

S ′ as
described in (6). For all S , S ′ ∈ [T ]<ω1 such that S ⊆ S ′, let τS

S ′ = GγS
S ′ . We claim that

({Gσ(S )}, {τS
S ′ }S⊆S ′

)
S ,S ′∈[T ]<ω1 is a direct system of torsion-free abelian groups indices by

the poset [T ]<ω1 , which is ordered by inclusion.

Definition 4.3. For every T ∈ [Wκ]κ, let1

GT � lim−−→S ∈ [T ]<ω1 Gσ(S ). (7)

For the sake of definiteness, every element of the direct limit in (7) is regarded as the
equivalence class [(m, S )] of an element of the disjoint union

⊔
S∈[T ]<ω1 Gσ(S ) factored

out by the equivalence relation ∼T , which is defined by setting (m, S ) ∼T (m′, S ′) pro-
vided that there is S ′′ ⊇ S , S ′ such that τS

S ′′ (m) = τS ′
S ′′ (m

′). Such characterization for (7)
holds because the poset of indexes is directed (see [19, Corollary 5.31]).

Notice that for every T ∈ [Wκ]κ, the group GT is abelian by definition, and it is
torsion-free as torsion-freeness is preserved by taking subgroups and colimits. More-
over, we claim that GT has cardinality κ. It is clear that |GT | is bounded by |⊔κ M| = κ.
Furthermore, we observe that each GT has at least κ distinct elements. To see this, con-
sider idC0 , where C0 stands for the unique graph with one vertex and no edges in Γ. For
sake of definiteness, suppose that C0 is the graph with no edges whose unique vertex
is 0. For every α < κ, let {α} denote the subgraph of T with the only vertex α. It is

1As the referee kindly pointed out the notation GT instead of G(T ) or GT is nonstandard in descriptive
set theory. Nevertheless we prefer to stick to the common practice in category theory to denote functors by
juxtaposition.
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clear that idC0 ∈ Gσ({α}). Moreover, for any distinct α, β ∈ κ, we have that (idC0 , {α}) and
(idC0 , {β}) represent two distinct elements of GT . For, if S ⊇ {α}, {β}, then one has

τ{α}S (idC0 ) = γ{α}S idC0 = (0 �→ θS (α)),

τ
{β}
A (idC0 ) = γ{β}S idC0 = (0 �→ θS (β)),

which are not equal as θS is bijective.
The next lemma basically states that G can be defined in a κ+-Borel way.

Lemma 4.4. There is a κ+-Borel map

[Wκ]
κ → XκTFA T �→ GT

such that, for every T ∈ [Wκ]κ, the group GT is isomorphic to GT.

Proof. Let � be a well-ordering of B =
⊔

S∈[Wκ]<ω1 Gσ(S ). First consider the map

f : [Wκ]κ → 2B, T �→
⊔

S∈[T ]<ω1

Gσ(S ).

To see that f is κ+-Borel consider the subbasis of 2B given by the sets {x : B → 2 |
x((m, S )) = 1} and {x : B → 2 | x((m, S )) = 0}, for every (m, S ) ∈ B. For any fixed
(m0, S 0) ∈ B, one has

f −1({x : B→ 2 | x((m0, S 0)) = 1}) = {T ∈ [Wκ]κ | S ⊆ T },
which is κ+-Borel.

Then let g : Im f → 2B be the map defined by mapping f (T ) to the subset of f (T )
which is obtained by deleting all of the (m, S ) that are ∼T -equivalent (i.e., equivalent in
the relation used to define the direct limit indexed by [T ]<ω1) to some point appearing
before in the well-ordering �. One has

g( f (T ))((m, S )) = 1 ⇐⇒ S ⊆ T ∧ ∀(m′, S ′) ≺ (m, S )((m′, S ′) �T (m, S )),

where (m′, S ′) �T (m, S ) is a shorthand for

�S ′′ ⊇ S , S ′′(τS
S ′′ (m) = τS ′

S ′′ (m
′)).

Then, for every T , we define a group GT with underlying set κ and operation �T by
setting α �T β = γ if and only if the product of the α-th element and the β-th element
in g( f (T )) according to � is ∼T -equivalent to the γ-th element in g( f (T )). Notice that
there is a unique element in g( f (T )) which is ∼T -equivalent to such product, thus the
map T �→ GT is well defined and is κ+-Borel. �

Next lemma is derived essentially as in [18, Lemma 3.6].

Lemma 4.5. If T,V ∈ XκGRAPHS and T �κGRAPHS V, then GT �κTFA GV.

Proof. We first claim that if C,D ∈ Γ and γ : C → D is an embedding then
Gγ : GC → GD is one-to-one. Notice that by 3.4 of Theorem 3.4 and the definition
of GC one obtains

Z[ΓC ∪ P f in(C)] ⊆ GC ⊆
∧
Z[ΓC ∪ P f in(C)].

Acting by left-multiplication, γ induces the injective map

〈γ〉 : Z[ΓC ∪ P f in(C)]→ Z[ΓD ∪ P f in(D)], a �→ γa,
which in turn induces the injective map on the Z-adic completions

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.9
Downloaded from https://www.cambridge.org/core. Universitá di Torino, on 28 Nov 2018 at 09:53:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.9
https://www.cambridge.org/core


712 FILIPPO CALDERONI

〈̂γ〉 :
∧
Z[ΓC ∪ P f in(C)]→
∧
Z[ΓD ∪ P f in(D)], ā �→ γ ∗ ā. (8)

Comparing (8) with (6) it follows that Gγ is indeed the restriction of 〈̂γ〉 on GC , which
implies that Gγ is injective because so is 〈̂γ〉.

Now let ϕ : T → V be a graph embedding. Then there exists a group homomorphism

Gϕ : GT → GV, [(g, S )] �→ [(GγS
ϕ′′S (g), ϕ′′S )],

where ϕ′′S is the point-wise image of S through ϕ and γS
ϕ′′S : σ(S ) → σ(ϕ′′S ) is the

map induced by ϕ � S , which is clearly a graph embedding. We are left to prove that
Gϕ is one-to-one. So fix any [(g, S )], [(g′, S ′)] ∈ GT such that [(g, S )] � [(g′, S ′)]. By
directedness of [T ]<ω1 we can assume that S = S ′ without any loss of generality. One
has

Gϕ([(g, S )]) = [(GγS
ϕ′′S (g), ϕ′′S )],

Gϕ([(g′, S )]) = [(GγS
ϕ′′S (g′), ϕ′′S )],

which are different elements of GV because GγS
ϕ′′S is injective. �

Now we are left to prove that GT �κTFA GV implies that T �κGRAPHS V . Given any
linear combination

∑
kiϕi, ki ∈ Z and ϕi ∈ Hom(T,V), one can define a group homo-

morphism Ψ(
∑

kiϕi) : GT → GV as follows. For any ϕi and S ∈ [T ]<ω1 , let δS
i be the

function such that the diagram commutes

S ϕ′′i S

σ(S ) σ(ϕ′′i S )

ϕi � S

θS θϕ′′i S

δS
i

Since δS
i is an arrow in Γ, it induces a group homomorphism

GδS
i : Gσ(S ) → Gσ(ϕ′′i S ) m �→ δS

i ∗m.

as observed in (6). Then we define

Ψ(
∑

kiϕi) : GT → GV [(m, S )] �→
∑

ki[(GδS
i (m), ϕ′′i S )].

Theorem 4.6 (Przeździecki [18, Theorem 3.14]). There is a natural isomorphism

Ψ : Z[Hom(T,V)]
�−→ Hom(GT,GV).

Remark 4.7. Theorem 4.6 states that G is an almost-full embedding, according to
the terminology of [10, 18]. It can be proved arguing as in [18, Section 3].

Now we come to the point where our modification from (4) becomes crucial. Since
A contains the finite subsets of ω, we use them and the property of almost-fullness of G
to detect an embedding among ϕ0, . . . , ϕn when Ψ(

∑
i≤n kiϕi) is one-to-one.

Lemma 4.8. For every two graphs T and V in XκGRAPHS, if GT �κGROUPS GV holds
then T �κGRAPHS V.
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Proof. Let T,V be as in the hypothesis and h : GT → GV a group embedding. By
Theorem 4.6 we have

h = Ψ(
∑
i∈I

kiϕi),

for some linear combination of graph homomorphisms ϕi ∈ Hom(T,V). We claim that
there must be some i ∈ I such that ϕi is a graph embedding from T into V . Suppose that
it is not true, aiming for a contradiction. Since [T ]<ω1 is directed, there is some finite
S ∈ [T ]<ω such that, for every i ∈ I, the restriction map ϕi � S is not one-to-one or does
not preserve nonedges. Call d the vertex set of σ(S ). Such d is a finite subset of ω and
is an element of Gσ(S ) because d = idσ(S ) ∗ d. Now consider [(d, S )], the element of GT
represented by d ∈ Gσ(S ). Then [(d, S )] is a nontrivial element and

h([(d, S )]) =
∑

ki[(GδS
i (d), ϕ′′i S )] =

=
∑

ki[(δ
S
i ∗ d, ϕ′′i S )] = 0

because if ϕi � S is not an embedding then neither is the induced map δS
i . This

contradicts the fact that h is one-to-one. �
Summing up the results of this section we can prove the main theorem.

Proof of Theorem 1.2. In view of the Lemma 4.4, we can assume that G is κ+-Borel.
By Lemma 4.5, G is a homomorphism from �κGRAPHS to �κTFA, and Lemma 4.8 yields
that G is a reduction. �

Corollary 4.9. For every uncountable κ such that κ<κ = κ, the embeddability
relation �κTFA on the κ-space of κ-sized torsion-free abelian groups is a complete Σ1

1
quasi-order.

Proof. Combining Theorem 1.2 with Theorem 2.5, it follows that �κTFA is a complete
Σ1

1 quasi-order provided that κ<κ = κ holds. �
It is worth mentioning that the analogue of Corollary 4.9, where κ = ω, has been

proved recently in [4].

§5. The embeddability relation between R-modules. In this section we use the
second Corner’s type theorem stated in section 3 to prove that the quasi-order of embed-
dability between R-modules, for any S-ring R of cardinality less than the continuum, is
a complete Σ1

1 quasi-order.

Proof of Theorem 1.3. Let Γ, Wκ, and σ be as in Section 4. Define

A � R
[
Arw(Γ) ∪ {1} ∪ P f in(ω)

]
. (9)

That is, the free R-module generated by the arrows in Γ, a distinguished element 1 and
the finite subsets of ω. The R-module A can be endowed a ring structure by defining a
multiplication on the element of its basis as in (4). Such multiplication is compatible
with the R-module structure, therefore we can regard A as an R-algebra. Notice that A
has cardinality the continuum so we apply Theorem 3.6 which yields the existence of an
R-module M � EndR A. We continue defining G similarly to how we did in Section 4.
That is, for every C ∈ Γ,

GC � idC ∗ M,

and for every T ∈ [Wκ]κ, let

GT � lim−−→S ∈ [T ]<ω1 Gσ(S ).
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Since |M| = |A|, for every T ∈ [Wκ]κ, GT has size κ. Then one can argue as in Lemmas
4.4, 4.5, and 4.8 to prove that G is a Borel reduction from �κGRAPHS to �κR-MOD. In this
case the almost-fullness for G was proved essentially in [10, Theorem 3.16] with the
same argument used in [18]. �

Corollary 5.1. For every uncountable cardinal κ such that κ<κ = κ and every ring
R as in the statement of Theorem 1.3, the embeddability relation �κR-MOD on the κ-space
of κ-sized R-module is a complete Σ1

1 quasi order.

§6. The isomorphism problem. At the end of his article Przeździecki posed the
question if every two isomorphic groups in the target of the functor have isomorphic
inverse images (see [18, Section 8]). We still do not know whether after our modification
the answer is positive, i.e., whether the map G defined in Definition 4.3 is a reduction for
the isomorphisms. Then we ask a more general question in terms of Borel reducibility.

Question 6.1. Is there any Borel reduction from isomorphism �κGRAPHS on κ-sized
graphs to isomorphism �κTFA on κ-sized torsion-free abelian groups?

Question 6.1 is still open even in the case κ = ω, where a positive answer will yield
that the relation �TFA of isomorphism on countable torsion-free abelian groups is a
maximum up to Borel reducibility among all the equivalence relations induced by a
Borel action of S∞ on a standard Borel space. A remarkable result in such direction
is one by Hjorth, who proved in [12] that �TFA is not Borel. In fact, this was extended
by Downey–Montalbán [6], who showed that �TFA is complete Σ1

1 as a set of pairs. We
ought to mention that there are several results in classical Borel reducibility concerning
the isomorphism relation on torsion-free abelian groups with finite rank. For every n <
ω, denote by �TFAn the isomorphism on countable torsion-free abelian group of rank
n. An old result by Baer [2] establishes that �TFA1 is essentially E0 (i.e., it is Borel bi-
reducible with E0). Moreover Thomas proved in [20] that for every n ≥ 1, (�TFAn ) <B

(�TFAn+1 ).
Now we go back to Question 6.1. Some results of [7] and [14] use certain model

theoretic properties of complete theories to obtain information about the isomorphism
relation between the models of those. First let us mention that in [13] the authors give
the following example, among many others, of a complete Σ1

1 equivalence relation in
the constructible universe.

Definition 6.2. Let Eκω the equivalence relation defined on κκ by

x Eκω y ⇐⇒ {α < κ | x(α) = y(α)} contains an ω-club.

In [13, Theorem 7], under the assumption V = L, the equivalence relation Eκω is
shown to be complete Σ1

1 for every inaccessible cardinal κ. Then, in [14, Definition 5.4]
the authors defined the orthogonal chain property (OCP) for stable theories and proved
the following result.

Theorem 6.3 (Hyttinen–Moreno [14, Corollary 5.10]). Assume that κ is inaccessible.
For every stable theory T with OCP, the equivalence relation Eκω reduces continuously
to �κT .

As it was kindly pointed out by Hyttinen to the author of this article, the theory
of Zp (i.e., the group of p-adic integers) has OCP and is stable. Thus one obtains
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Theorem 1.4 as a corollary of Theorem 6.3. This gives an affirmative partial answer to
Question 6.1.
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[18] A. J. Przeździecki, An almost full embedding of the category of graphs into the category of abelian

groups. Advances in Mathematics, vol. 257 (2014), pp. 527–545.
[19] J. J. Rotman, An Introduction to Homological Algebra, second ed., Universitext, Springer, New

York, 2009.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.9
Downloaded from https://www.cambridge.org/core. Universitá di Torino, on 28 Nov 2018 at 09:53:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.9
https://www.cambridge.org/core


716 FILIPPO CALDERONI

[20] S. Thomas, The classification problem for torsion-free abelian groups of finite rank. Journal of the
American Mathematical Society, vol. 16 (2003), no. 1, pp. 233–258.

[21] J. Williams, Universal countable Borel quasi-orders, this Journal, vol. 79 (2014), no. 3,
pp. 928–954.

DIPARTIMENTO DI MATEMATICA «GIUSEPPE PEANO»

UNIVERSITÀ DI TORINO

VIA CARLO ALBERTO 10, 10123 TORINO, ITALY

E-mail: filippo.calderoni@unito.it

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.9
Downloaded from https://www.cambridge.org/core. Universitá di Torino, on 28 Nov 2018 at 09:53:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.9
https://www.cambridge.org/core

