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ON THE AUTOMORPHISM GROUP OF A CLOSED G2-STRUCTURE

FABIO PODESTÀ AND ALBERTO RAFFERO

Abstract. We study the automorphism group of a compact 7-manifold M endowed with
a closed non-parallel G2-structure, showing that its identity component is abelian with
dimension bounded by min{6, b2(M)}. This implies the non-existence of compact homo-
geneous manifolds endowed with an invariant closed non-parallel G2-structure. We also
discuss some relevant examples.

1. Introduction

A seven-dimensional smooth manifold M admits a G2-structure if the structure group of
its frame bundle can be reduced to the exceptional Lie group G2 ⊂ SO(7). Such a reduction
is characterized by the existence of a global 3-form ϕ ∈ Ω3(M) satisfying a suitable non-
degeneracy condition and giving rise to a Riemannian metric gϕ and to a volume form dVϕ
on M via the identity

gϕ(X,Y ) dVϕ =
1

6
ιXϕ ∧ ιY ϕ ∧ ϕ,

for all X,Y ∈ X(M) (see e.g. [2, 13]).
By [10], the intrinsic torsion of a G2-structure ϕ can be identified with the covariant

derivative ∇gϕϕ, and it vanishes identically if and only if both dϕ = 0 and d ∗ϕ ϕ = 0,
∗ϕ being the Hodge operator defined by gϕ and dVϕ. On a compact manifold, this last
fact is equivalent to ∆ϕϕ = 0, where ∆ϕ = d∗d + dd∗ is the Hodge Laplacian of gϕ. A
G2-structure ϕ satisfying any of these conditions is said to be parallel and its associated
Riemannian metric gϕ has holonomy contained in G2. Consequently, gϕ is Ricci-flat and
the automorphism group Aut(M,ϕ) := {f ∈ Diff(M) | f∗ϕ = ϕ} of (M,ϕ) is finite when
M is compact and Hol(gϕ) = G2.

Parallel G2-structures play a central role in the construction of compact manifolds with
holonomy G2, and various known methods to achieve this result involve closed G2-structures,
i.e., those whose defining 3-form ϕ satisfies dϕ = 0 (see e.g. [2, 3, 15, 19]).

A G2-structure whose defining 3-form ϕ satisfies the equation d ∗ϕ ϕ = 0 is called co-
closed. On every compact 7-manifold admitting G2-structures there exists a co-closed one
(cf. [6]), while general results on the existence of closed G2-structures are not known.

Due to the recent developments on the G2-Laplacian flow and related open problems
[11, 14, 16, 17, 19, 20, 21], it is of foremost interest to provide examples of compact manifolds
admitting closed G2-structures. Most of the known examples consist of simply connected
Lie groups endowed with a left-invariant closed G2-form ϕ [5, 8, 9, 12, 17]. Compact
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locally homogeneous examples can be obtained considering the quotient of such groups
by a co-compact discrete subgroup, whenever this exists. Further non-homogeneous closed
G2-structures on the 7-torus can be constructed starting from the symplectic half-flat SU(3)-
structure on T6 described in [7, Ex. 5.1] (see Example 2.4 for details).

Up to now, the existence of compact homogeneous 7-manifolds admitting an invariant
closed non-parallel G2-structure was not known (cf. [17, Question 3.1] and [18, 26]). More-
over, among the G2-manifolds acted on by a cohomogeneity one simple group of automor-
phisms studied in [4] no compact examples admitting a closed G2-structure occur.

In this short note, we investigate the properties of the automorphism group Aut(M,ϕ) of
a compact 7-manifold M endowed with a closed non-parallel G2-structure ϕ. Our main re-
sults are contained in Theorem 2.1, where we show that the identity component Aut0(M,ϕ)
is necessarily abelian with dimension bounded by min{6, b2(M)}. In particular, this answers
negatively [17, Question 3.1] and explains why compact examples cannot occur in [4]. More-
over, we also prove some interesting properties of the automorphism group action, and we
describe some relevant examples.

These results shed some light on the structure of compact 7-manifolds admitting closed
G2-structures and can be of some help in the construction of new examples.

2. The automorphism group

Let M be a seven-dimensional manifold endowed with a closed G2-structure ϕ, and
consider its automorphism group

Aut(M,ϕ) := {f ∈ Diff(M) | f∗ϕ = ϕ} .

Notice that Aut(M,ϕ) is a closed Lie subgroup of the isometry group Iso(M, gϕ) of gϕ, and
that the Lie algebra of its identity component G := Aut0(M,ϕ) is

g = {X ∈ X(M) | LXϕ = 0} .

In particular, every X ∈ g is a Killing vector field for the metric gϕ (cf. [19, Lemma 9.3]).
When M is compact, the Lie group Aut(M,ϕ) ⊂ Iso(M, gϕ) is also compact, and we can

show the following.

Theorem 2.1. Let M be a compact seven-dimensional manifold endowed with a closed
non-parallel G2-structure ϕ. Then, there exists an injective map

F : g→H 2(M), X 7→ ιXϕ,

where H 2(M) is the space of ∆ϕ-harmonic 2-forms. As a consequence, the following prop-
erties hold:

1) dim(g) ≤ b2(M);
2) g is abelian with dim(g) ≤ 6;
3) for every p ∈ M, the isotropy subalgebra gp has dimension dim(gp) ≤ 2, with equality

only when dim(g) = 2, 3;
4) the G-action is free when dim(g) ≥ 5. Moreover, when dim(g) = 6 the manifold M is

diffeomorphic to T7.
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Proof. Let X ∈ g. Then, 0 = LXϕ = d(ιXϕ), as ϕ is closed. We claim that ιXϕ is co-
closed (see also [19, Lemma 9.3]). Indeed, for every p ∈M the 2-form ιXϕ|p belongs to the
unique seven-dimensional G2-irreducible submodule Λ2

7(T ∗pM) ⊂ Λ2(T ∗pM), and therefore
(see e.g. [1, p. 541]) we have

ιXϕ ∧ ϕ = 2 ∗ϕ (ιXϕ),

from which it follows that

0 = d(ιXϕ ∧ ϕ) = 2 d ∗ϕ (ιXϕ).

Consequently, the 2-form ιXϕ is ∆ϕ-harmonic and F is the restriction of the injective map
Z 7→ ιZϕ to g. From this 1) follows.

As for 2), we begin observing that LY (ιXϕ) = 0 for all X,Y ∈ g, since every Killing field
on a compact manifold preserves every harmonic form. Hence, we have

0 = LY (ιXϕ) = ι[Y,X]ϕ+ ιX(LY ϕ) = ι[Y,X]ϕ.

This proves that g is abelian, the map Z 7→ ιZϕ being injective. Now, G is compact abelian
and it acts effectively on the compact manifold M. Therefore, the principal isotropy is trivial
and dim(g) ≤ 7. When dim(g) = 7, M can be identified with the 7-torus T7 endowed with
a left-invariant metric, which is automatically flat. Hence, if ϕ is closed non-parallel, then
dim(g) ≤ 6.

In order to prove 3), we fix a point p of M and we observe that the image of the
isotropy representation ρ : Gp → O(7) is conjugate into G2. Since G2 has rank two and
Gp is abelian, the dimension of gp is at most two. If dim(gp) = 2, then the image of ρ is
conjugate to a maximal torus of G2 and its fixed point set in TpM is one-dimensional. As
Tp(G · p) ⊆ (TpM)Gp , the dimension of the orbit G · p is at most one, which implies that
dim(g) is either two or three.

The first assertion in 4) is equivalent to proving that Gp is trivial for every p ∈ M
whenever dim(g) ≥ 5. In this case, dim(gp) ≤ 1 by 3) and therefore the dimension of the
orbit G · p is at least four. Then, for every h ∈ Gp, the element ρ(h) ∈ G2 has a fixed
point set containing Tp(G · p), hence with dimension at least four. On the other hand, a
non-trivial element in G2 is easily seen to have a fixed point set in R7 of dimension at most
three. Indeed, every u ∈ G2 is conjugate to an element of a maximal torus of G2 contained
in the maximal rank subgroup SU(3) ⊂ G2, i.e., it can be supposed to be of the form

diag (z, w, z · w) ∈ SU(3),

for some z, w ∈ C of unit norm. Thus, u fixes at least the real line V ⊂ R7 that is fixed
by SU(3). Moreover, if u is non-trivial, its fixed point set in the SU(3)-module V ⊥ has
complex dimension at most one. This shows that Gp = {1G}. The last assertion follows
from [23]. �

The following corollary answers negatively a question posed by Lauret in [17].

Corollary 2.2. There are no compact homogeneous 7-manifolds endowed with an invariant
closed non-parallel G2-structure.

Proof. The assertion follows immediately from point 2) of Theorem 2.1. �
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In contrast to the last result, it is possible to exhibit non-compact homogeneous examples.
Consider for instance a six-dimensional non-compact homogeneous space H/K endowed with
an invariant symplectic half-flat SU(3)-structure, namely an SU(3)-structure (ω, ψ) such
that dω = 0 and dψ = 0 (see [25] for the classification of such spaces when H is semisimple
and for more information on symplectic half-flat structures). If (ω, ψ) is not torsion-free,
i.e., if d(Jψ) 6= 0, then the non-compact homogeneous space (H×S1)/K admits an invariant
closed non-parallel G2-structure defined by the 3-form

ϕ := ω ∧ ds+ ψ,

where ds denotes the global 1-form on S1.

Remark 2.3. In [4], the authors investigated G2-manifolds acted on by a cohomogeneity
one simple group of automorphisms. Theorem 2.1 explains why compact examples in the
case of closed non-parallel G2-structures do not occur.

The next example shows that G can be non-trivial, that the upper bound on its dimension
given in 2) can be attained, and that 4) is only a sufficient condition.

Example 2.4. In [7], the authors constructed a symplectic half-flat SU(3)-structure (ω, ψ)
on the 6-torus T6 as follows. Let (x1, . . . , x6) be the standard coordinates on R6, and let
a(x1), b(x2) and c(x3) be three smooth functions on R6 such that

λ1 := b(x2)− c(x3), λ2 := c(x3)− a(x1), λ3 := a(x1)− b(x2),

are Z6-periodic and non-constant. Then, the following pair of Z6-invariant differential forms
on R6 induces an SU(3)-structure on T6 = R6/Z6:

ω = dx14 + dx25 + dx36,

ψ = −eλ3 dx126 + eλ2 dx135 − eλ1 dx234 + dx456,

where dxijk··· is a shorthand for the wedge product dxi ∧ dxj ∧ dxk ∧ · · · . It is immediate
to check that both ω and ψ are closed and that d(Jψ) 6= 0 whenever at least one of the
functions a(x1), b(x2), c(x3) is not identically zero. Thus, the pair (ω, ψ) defines a symplectic
half-flat SU(3)-structure on the 6-torus. The automorphism group of (T6, ω, ψ) is T3 when
a(x1) b(x2) c(x3) 6≡ 0, while it becomes T4 (T5) when one (two) of them vanishes identically.

Now, we can consider the closed G2-structure on T7 = T6 × S1 defined by the 3-form
ϕ = ω ∧ ds + ψ. Depending on the vanishing of none, one or two of the functions a(x1),
b(x2), c(x3), ϕ is a closed non-parallel G2-structure and the automorphism group of (T7, ϕ)
is T4, T5 or T6, respectively.

Finally, we observe that there exist examples where the upper bound on the dimension
of g given in 1) is more restrictive than the upper bound given in 2).

Example 2.5. In [5], the authors obtained the classification of seven-dimensional nilpotent
Lie algebras admitting closed G2-structures. An inspection of all possible cases shows that
the Lie algebras whose second Betti number is lower than seven are those appearing in
Table 1.

Let n be one of the Lie algebras in Table 1, and consider a closed non-parallel G2-structure
ϕ on it. Then, left multiplication extends ϕ to a left-invariant G2-structure of the same
type on the simply connected nilpotent Lie group N corresponding to n. Moreover, as the
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nilpotent Lie algebra n b2(n)

(0, 0, e12, e13, e23, e15 + e24, e16 + e34) 3

(0, 0, e12, e13, e23, e15 + e24, e16 + e34 + e25) 3

(0, 0, e12, 0, e13 + e24, e14, e46 + e34 + e15 + e23) 5

(0, 0, e12, 0, e13, e24 + e23, e25 + e34 + e15 + e16 − 3e26) 6

Table 1.

structure constants of n are integers, there exists a co-compact discrete subgroup Γ ⊂ N
giving rise to a compact nilmanifold Γ\N [22]. The left-invariant 3-form ϕ on N passes
to the quotient defining an invariant closed non-parallel G2-structure on Γ\N. By Nomizu
Theorem [24], the de Rham cohomology group Hk

dR(Γ\N) is isomorphic to the cohomology

group Hk(n∗) of the Chevalley-Eilenberg complex of n. Hence, b2(Γ\N) = b2(n).
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