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THE DENSITY OF NUMBERS n HAVING A PRESCRIBED
G.C.D. WITH THE nTH FIBONACCI NUMBER

CARLO SANNA AND EMANUELE TRON

Abstract. For each positive integer k, let Ak be the set of all positive integers
n such that gcd(n, Fn) = k, where Fn denotes the nth Fibonacci number.

We prove that the asymptotic density of Ak exists and is equal to
∞∑
d=1

µ(d)

lcm(dk, z(dk))

where µ is the Möbius function and z(m) denotes the least positive integer n
such that m divides Fn. We also give an effective criterion to establish when
the asymptotic density of Ak is zero and we show that this is the case if and
only if Ak is empty.

1. Introduction

Let (un)n≥1 be a nondegenerate linear recurrence with integral values. The
arithmetic relations between un and n are a topic which has attracted the atten-
tion of several researchers, especially in recent years. For instance, the set of pos-
itive integers n such that un is divisible by n has been studied by Alba González,
Luca, Pomerance, and Shparlinski [1], under the mild hypothesis that the charac-
teristic polynomial of (un)n≥1 has only simple roots; and by André-Jeannin [2],
Luca and Tron [11], Somer [17], and Sanna [14], when (un)n≥1 is a Lucas se-
quence. A problem in a sense dual to this is that of understanding when n is
coprime to un. In this respect, Sanna [15, Theorem 1.1] recently proved the
following result.

Theorem 1.1. The set of positive integers n such that gcd(n, un) = 1 has a
positive asymptotic density, unless (un/n)n≥1 is a linear recurrence.

In this paper, we focus on the linear recurrence of Fibonacci numbers (Fn)n≥1,
defined as usual by F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for all integers n ≥ 1.
For each positive integer k, define the set

Ak := {n ≥ 1 : gcd(n, Fn) = k}.
Leonetti and Sanna [10, Theorems 1.1 and 1.3] proved the following:

Theorem 1.2. If B := {k ≥ 1 : Ak 6= ∅} then its counting function satisfies

#B(x)� x

log x
,
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for all x ≥ 2. Furthermore, B has zero asymptotic density.

Let z(m) be the rank of appearance, or entry point, of a positive integerm in the
sequence of Fibonacci numbers, that is, the smallest positive integer n such that
m divides Fn. It is well known that z(m) exists. Set also `(m) := lcm(m, z(m)).

Our first result establishes the existence of the asymptotic density of Ak and
provides an effective criterion to check whether this asymptotic density is posi-
tive.

Theorem 1.3. For each positive integer k, the asymptotic density of Ak exists.
Moreover, d(Ak) > 0 if and only if Ak 6= ∅ if and only if k = gcd(`(k), F`(k)).

Our second result is an explicit formula for the asymptotic density of Ak.

Theorem 1.4. For each positive integer k, we have

d(Ak) =
∞∑
d=1

µ(d)

`(dk)
, (1)

where µ is the Möbius function.

Notation. Throughout, we reserve the letters p and q for prime numbers. For
a set of positive integers S , we put S (x) := S ∩ [1, x] for all x ≥ 1, and
we recall that the asymptotic density d(S ) of S is defined as the limit of the
ratio #S (x)/x, as x → +∞, whenever this exists. As usual, µ(n), τ(n), and
P (n), denote the Möbius function, the number of divisors of a positive integer
n, and the greatest prime factor of an integer n > 1, respectively. We employ
the Landau–Bachmann “Big Oh” and “little oh” notations O and o, as well as
the associated Vinogradov symbol �.

2. Preliminaries

The next lemma summarizes some basic properties of `, z, and the Fibonacci
numbers, which we will implicitly use later without further mention.

Lemma 2.1. For all positive integers m, n and all prime numbers p, we have:

(i) m | Fn if and only if z(m) | n.
(ii) z(lcm(m,n)) = lcm(z(m), z(n)).

(iii) z(p) | p−
(
p
5

)
, where

(
p
5

)
is a Legendre symbol.

(iv) νp(Fn) ≥ νp(n) whenever z(p) | n.
(v) m | gcd(n, Fn) if and only if `(m) | n.

(vi) `(lcm(m,n)) = lcm(`(m), `(n)).
(vii) `(p) = pz(p) for p 6= 5, while `(5) = 5.

Proof. Facts (i)–(iii) are well-known (see, e.g., [12]). Fact (iv) follows quickly
from the formulas for νp(Fn) given by Lengyel [9]. Finally, (v)–(vii) are easy
consequences of (i)–(iii) and the definition of `. �

Now we state an easy criterion to establish if Ak 6= ∅ [10, Lemma 2.2(iii)].

Lemma 2.2. Ak 6= ∅ if and only if k = gcd(`(k), F`(k)), for all integers k ≥ 1.
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If S is a set of positive integers, we define its set of nonmultiples as

N (S ) := {n ≥ 1 : s - n for all s ∈ S }.
Sets of nonmultiples, or more precisely their complement sets of multiples

M (S ) := {n ≥ 1 : s | n for some s ∈ S },
have been studied by several authors, we refer the reader to [6] for a systematic
treatment of this topic. We shall need only the following result.

Lemma 2.3. If S is a set of positive integers such that∑
s∈S

1

s
< +∞,

then N (S ) has an asymptotic density. Moreover, if 1 /∈ S then d(N (S )) > 0.

Proof. The part about the existence of d(N (S )) is due to Erdős [4], while the
second assertion follows easily from the inequality

d(N (S )) ≥
∏
s∈S

(
1− 1

s

)
proved by Heilbronn [7] and Rohrbach [13]. �

For any γ > 0, let us define

Qγ := {p : z(p) ≤ pγ}.
The following is a well-known lemma, which belongs to the folklore.

Lemma 2.4. For all x, γ > 0, we have #Qγ(x)� x2γ.

Proof. It is enough noting that

2#Qγ(x) ≤
∏

p∈Qγ(x)

p |
∏
n≤xγ

Fn ≤ 2
∑
n≤xγ n = 2O(x2γ),

where we employed the inequality Fn ≤ 2n, valid for all positive integers n. �

3. Proof of Theorem 1.3

We begin by showing that Ak is a scaled set of nonmultiples.

Lemma 3.1. For each positive integer k such that Ak 6= ∅, we have

Ak = {`(k)m : m ∈ N (Lk)} ,
where

Lk := {p : p | k} ∪ {`(kp)/`(k) : p - k}.

Proof. We know that n ∈ Ak implies `(k) | n. Hence, it is enough to prove that
`(k)m ∈ Ak, for some positive integer m, if and only if m ∈ N (Lk).

Clearly, `(k)m ∈ Ak for some positive integer m, if and only if

νp(gcd(`(k)m,F`(k)m)) = νp(k) (2)

for all prime numbers p.
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Let p be a prime number dividing k. Then, for all positive integer m, we have
z(p) | `(k)m and consequently νp(F`(k)m) ≥ νp(`(k)m), so that

νp(gcd(`(k)m,F`(k)m)) = νp(`(k)m) = νp(`(k)) + νp(m). (3)

In particular, recalling that k = gcd(`(k), F`(k)) since Ak 6= ∅ and thanks to
Lemma 2.2, for m = 1 we get

νp(k) = νp(gcd(`(k), F`(k))) = νp(`(k)),

which together with (3) gives

νp(gcd(`(k)m,F`(k)m)) = νp(k) + νp(m). (4)

Therefore, (2) holds if and only if p - m.
Now let p be a prime number not dividing k. Then (2) holds if and only if

p - gcd(`(k)m,F`(k)m).

That is, `(p) - `(k)m, which in turn is equivalent to

`(kp)

`(k)
=

lcm(`(k), `(p))

`(k)
- m,

since p and k are relatively prime.
Summarizing, we have found that `(k)m ∈ Ak, for some positive integer m, if

and only if p - m for all prime numbers p dividing k, and `(kq)/`(k) - m for all
prime numbers q not dividing k, that is, m ∈ N (Lk). �

Now we show that the series of the reciprocals of the `(n)’s converges. The
methods employed are somehow similar to those used to prove the result of [8].
(See also [3] for a wide generalization of that result.)

Lemma 3.2. The series
∞∑
n=1

1

`(n)

converges.

Proof. Let n > 1 be an integer and put p := P (n). Clearly, lcm(n, z(p)) is
divisible by `(p). Hence, we can write lcm(n, z(p)) = `(p)m, where m is a
positive integer such that P (m) ≤ p + 1. Also, if p and lcm(n, z(p)) are known
then n can be chosen in at most τ(z(p)) ways. Therefore,

∞∑
n=2

1

`(n)
≤

∞∑
n=2

1

lcm(n, z(P (n)))
�
∑
p

τ(z(p))

pz(p)

∑
P (m)≤p+1

1

m
,

where we also used the fact that `(p) � pz(p) for each prime number p. By
Mertens’ formula [18, Chapter I.1, Theorem 11], we have∑

P (m)≤p+1

1

m
≤
∏
q≤p+1

(
1− 1

q

)−1

� log p,
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for all prime numbers p. Put β := 3/4 and γ := 1/3. It is well known [18,
Chapter I.5, Corollary 1.1] that τ(n) �ε nε for any fixed ε > 0. Hence,
τ(z(p)) log p� p1−β for all prime numbers p. Thus we have found that

∞∑
n=1

1

`(n)
�
∑
p

τ(z(p)) log p

pz(p)
�
∑
p

1

pβz(p)
. (5)

On the one hand, by partial summation and by Lemma 2.4, we have∑
p∈Qγ

1

pβz(p)
≤
∑
p∈Qγ

1

pβ
=

#Qγ(t)

tβ

∣∣∣∣+∞
t=2

+ β

∫ +∞

2

#Qγ(t)

tβ+1
dt� 1, (6)

since β > 2γ. On the other hand, by the definition of Qγ, we have∑
p/∈Qγ

1

pβz(p)
<
∑
p

1

pβ+γ
� 1, (7)

since β + γ > 1. Hence, putting together (5), (6), and (7), we get the claim. �

Now we are ready for the proof of Theorem 1.3. If k is a positive integer such
that Ak = ∅ then, obviously, the asymptotic density of Ak exists and is equal
to zero. So we can assume Ak 6= ∅, which in turn, by Lemma 2.2, implies that
k = gcd(`(k), F`(k)). Thanks to Lemma 3.2, we have∑

n∈Lk

1

n
�
∑
p

1

`(kp)
≤
∑
p

1

`(p)
< +∞,

while clearly 1 /∈ Lk. Hence, Lemma 2.3 tell us that N (Lk) has a positive
asymptotic density. Finally, by Lemma 3.1 we conclude that the asymptotic
density of Ak exists and it is positive.

4. Proof of Theorem 1.4

We begin by introducing a family of sets. For each positive integer k, let Bk

be the set of positive integers n such that:

(i) k | gcd(n, Fn);
(ii) if p | gcd(n, Fn) for some prime number p, then p | k.

The essential part of the proof of Theorem 1.4 is the following formula for the
asymptotic density of Bk.

Lemma 4.1. For all positive integers k, the asymptotic density of Bk exists and

d(Bk) =
∑

(d,k)=1

µ(d)

`(dk)
, (8)

where the series is absolutely convergent.

Proof. For all positive integers n and d, let us define

%(n, d) :=

{
1 if d | Fn,
0 if d - Fn.
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Note that % is multiplicative in its second argument, that is,

%(n, de) = %(n, d)%(n, e)

for all relatively prime positive integers d and e, and all positive integers n.
It is easy to see that n ∈ Bk if and only if `(k) | n and %(n, p) = 0 for all

prime numbers p dividing n but not dividing k. Therefore,

#Bk(x) =
∑
n≤x
`(k) |n

∏
p |n
p - k

(1− %(n, p)) =
∑
n≤x
`(k) |n

∑
d |n

(d,k)=1

µ(d)%(n, d)

=
∑
d≤x

(d,k)=1

µ(d)
∑
m≤x/d
`(k) | dm

%(dm, d), (9)

for all x > 0. Moreover, given a positive integer d which is relatively prime with
k, we have that %(dm, d) = 1 and `(k) | dm if and only if lcm(z(d), `(k)) | dm,
which in turn is equivalent to m being divisible by

lcm(d, lcm(z(d), `(k)))

d
=

lcm(`(d), `(k))

d
=
`(dk)

d
,

since d and k are relatively prime. Hence,∑
m≤x/d
`(k) | dm

%(dm, d) =
∑
m≤x/d

`(dk)/d |m

1 =

⌊
x

`(dk)

⌋
,

for all x > 0, which together with (9) implies that

#Bk(x) =
∑
d≤x

(d,k)=1

µ(d)

⌊
x

`(dk)

⌋
= x

∑
d≤x

(d,k)=1

µ(d)

`(dk)
−R(x), (10)

for all x > 0, where

R(x) :=
∑
d≤x

(d,k)=1

µ(d)

{
x

`(dk)

}
.

Now, thanks to Lemma 3.2, we have∑
(d,k)=1

|µ(d)|
`(dk)

≤
∞∑
d=1

1

`(d)
< +∞.

Hence, the series in (8) is absolutely convergent.
It remains only to prove that R(x) = o(x) as x → +∞, and then the desired

result follows from (10). We have

|R(x)| ≤
∑
d≤x

|µ(d)|
{

x

`(dk)

}
= O

(
x1/2

)
+

∑
x1/2≤d≤x

|µ(d)|
{

x

`(dk)

}
≤ O

(
x1/2

)
+ x

∑
d≥x1/2

1

`(d)
= o(x),
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as x→ +∞, since by Lemma 3.2 the last series is the tail of a convergent series
and hence converges to 0 as x→ +∞. The proof is complete. �

At this point, by the definition of Bk and by the inclusion-exclusion principle,
it follows easily that

#Ak(x) =
∑
d | k

µ(d) #Bdk(x),

for all x > 0. Hence, by Lemma 4.1, we get

d(Ak) =
∑
d | k

µ(d)d(Bdk) =
∑
d | k

µ(d)
∑

(e,dk)=1

µ(e)

`(dek)

=
∑
d | k

∑
(e,k)=1

µ(de)

`(dek)
=
∞∑
f=1

µ(f)

`(fk)
, (11)

since every squarefree positive integer f can be written in a unique way as f = de,
where d and e are squarefree positive integers such that d | k and gcd(e, k) = 1.
Also note that the rearrangement of the series in (11) is justified by absolute
convergence. The proof of Theorem 1.4 is complete.

Remark 4.2. As a consequence of Theorem 1.4, note that if Ak = ∅ (or equiva-
lently if k = gcd(`(k), F`(k)), by Lemma 2.2) then the series in (1) evaluates to
0, which is not obvious a priori.

5. Generalization to Lucas sequences

In order to simplify the exposition, we chose to give our results for the sequence
of Fibonacci numbers. However, they can be easily generalized to every nonde-
generate Lucas sequence. We recall that a Lucas sequence is an integral linear
recurrence (un)n≥0 satifying u0 = 0, u1 = 1, and un = a1un−1 + a2un−2, for all
integers n ≥ 2, where a1 and a2 are relatively prime integers; while “nondegen-
erate” means that a1a2 6= 0 and that the ratio of the roots of the characteristic
polinomial fu(X) := X2 − a1X − a2 is not a root of unity.

To prove this generalization, there is just a minor complication that must be
handled: The rank of appearance zu(m) of a positive integer m in the Lucas
sequence (un)n≥0, that is, the smallest positive integer n such that m divides
un, exists if and only if m is relatively prime with a2. Therefore, the arguments
involving z(m) must be adapted to zu(m) considering only the positive integers
m which are relatively prime with a2. Except for that, everything works the
same, since zu(m) and `u(m) := lcm(m, zu(m)) satisfy the same properties of
z(m) and `(m). Note only that Lemma 2.1(iii) must be replaced by:

zu(p) | p− (−1)p−1
(

∆u

p

)
,

for all prime numbers p not dividing a2, where ∆u := a2
1 +4a2 is the discriminant

of fu(X). Also, the analog of Lemma 2.1(iv), that is, νp(un) ≥ νp(n) when-
ever zu(p) | n, can be proved, for example, by using the formula for the p-adic
valuations of the terms of a Lucas sequence given in [16].

With these changes, the following generalization can be proved.
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Theorem 5.1. Let (un)n≥0 be a nondegenerate Lucas sequence satisfying the
recurrence un = a1un−1 + a2un−2 for all integers n ≥ 2, where a1 and a2 are
relatively prime integers. Furthermore, for each positive integer k, define the set

Au,k := {n ≥ 1 : gcd(n, un) = k}.

Then Au,k 6= ∅ if and only if gcd(k, a2) = 1 and k = gcd(`u(k), u`u(k)). In such
a case, Au,k has an asymptotic density which is given by

d(Au,k) =
∑

(d,a2)=1

µ(d)

`u(dk)
,

where the series is absolutely convergent.

Acknowledgements. The authors thank the anonymous referee for carefully
reading the paper and for suggesting a much simpler proof of Lemma 3.2, in-
stead of our original one which was based on arguments similar to those of [5,
Theorem 5].
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