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PRACTICAL NUMBERS IN LUCAS SEQUENCES

CARLO SANNA

Abstract. A practical number is a positive integer n such that all the positive integers m ≤ n
can be written as a sum of distinct divisors of n. Let (un)n≥0 be the Lucas sequence satisfying
u0 = 0, u1 = 1, and un+2 = aun+1 +bun for all integers n ≥ 0, where a and b are fixed nonzero
integers. Assume a(b + 1) even and a2 + 4b > 0. Also, let A be the set of all positive integers
n such that |un| is a practical number. Melfi proved that A is infinite. We improve this result
by showing that #A(x) � x/ log x for all x ≥ 2, where the implied constant depends on a
and b. We also pose some open questions regarding A.

1. Introduction

A practical number is a positive integer n such that all the positive integers m ≤ n can be
written as a sum of distinct divisors of n. The term “practical” was coined by Srinivasan [7].
Let P be the set of practical numbers. Estimates for the counting function #P(x) were
given by Hausman and Shapiro [1], Tenenbaum [10], Margenstern [2], Saias [5], and, finally,
Weingartner [12], who proved that there exists a constant C > 0 such that

#P(x) =
Cx

log x
·
(

1 +O

(
log log x

log x

))
for all x ≥ 3, settling a conjecture of Margenstern [2].

In analogy with well-known conjectures about prime numbers, Melfi [4] proved that every
positive even integer is the sum of two practical numbers, and that there are infinitely many
triples (n, n + 2, n + 4) of practical numbers. Let (un)n≥0 be a Lucas sequence, that is, a
sequence of integers satisfying u0 = 0, u1 = 1, and un+2 = aun+1 + bun for all integers n ≥ 0,
where a and b are two fixed nonzero integers. Also, let A be the set of all positive integers n
such that |un| is a practical number. From now on, we assume a2 + 4b > 0 and a(b+ 1) even.
We remark that, in the study of A, assuming a(b+ 1) even is not a loss of generality. Indeed,
if a(b+ 1) is odd then un is odd for all n ≥ 1 and, since 1 is the only odd practical number, it
follows that A = {1}. Melfi [3, Theorem 10] proved the following result.

Theorem 1.1. The set A is infinite. Precisely, 2j · 3 ∈ A for all sufficiently large positive
integers j, how large depending on a and b, and hence

#A(x)� log x,

for all sufficiently large x > 1.

In this paper, we improve Theorem 1.1 to the following:

Theorem 1.2. For all x ≥ 2, we have

#A(x)� x

log x
,

where the implied constant depends on a and b.

We leave the following open questions to the interested readers:

(Q1) Does A have zero natural density?

(Q2) Can a nontrivial upper bound for #A(x) be proved?
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2 CARLO SANNA

(Q3) Are there infinitely many nonpractical n such that |un| is practical?

(Q4) Are there infinitely many practical n such that |un| is nonpractical?

(Q5) What about practical numbers in general integral linear recurrences over the integers?

Notation. For any set of positive integers S, we put S(x) := S∩[1, x] for all x ≥ 1, and #S(x)
denotes the counting function of S. We employ the Landau–Bachmann “Big Oh” notation O,
as well as the associated Vinogradov symbols � and �, with their usual meanings. Any
dependence of the implied constants is explicitly stated. As usual, we write µ(n), ϕ(n), σ(n),
and ω(n), for the Möbius function, the Euler’s totient function, the sum of divisors, and the
number of prime factors of a positive integer n, respectively.

2. Preliminaries on Lucas sequences

In this section we collect some basic facts about Lucas sequences. Let α and β be the two
roots of the characteristic polynomial X2− aX − b. Since a2 + 4b > 0 and b 6= 0, we have that
α and β are real, nonzero, and distinct. It is well known that the generalized Binet’s formula

(1) un =
αn − βn

α− β
holds for all integers n ≥ 0. Define

Φn :=
∏

1≤ k≤n
gcd(n,k)= 1

(
α− e2πik/nβ

)
,

for each positive integer n. It can be proved that Φn ∈ Z for all integers n > 1 (see, e.g., [9,
p. 428]). Furthermore, we have

(2) un =
∏
d |n
d> 1

Φd

and, by the Möbius inversion formula,

(3) Φn =
∏
d |n

u
µ(d)
n/d

for all integers n > 1. Changing the sign of a changes the signs of α, β and turns un into
(−1)n+1un, which is not a problem, since for the study of A we are interested only in |un|.
Hence, without loss of generality, we can assume a > 0 and α > |β|, which in turn implies that
un,Φn > 0 for all integers n > 0. We conclude this section with an easy lemma regarding the
growth of un and Φn.

Lemma 2.1. For all integers n > 0, we have

(i) un ≥ un−1;

(ii) un = αn+O(1);

(iii) Φn = αϕ(n)+O(1);

where the implied constants depend on a and b.

Proof. If b > 0, then (i) is clear from the recursion for un. Hence, suppose b < 0, so that
β > 0. After a bit of manipulations, (i) is equivalent to αn−1(α − 1) ≥ βn−1(β − 1), which in
turn follows easily since α > β > 0. Claim (ii) is a consequence of (1). Setting γ := β/α, by
(1) and (3), we get

Φn = αϕ(n)
∏
d |n

(
1− γn/d

α− β

)µ(d)
= αϕ(n)

∏
d |n

(
1− γn/d

)µ(d)
,
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for all integers n > 1, where we used the well-known formulas
∑

d |n µ(d)nd = ϕ(n) and∑
d |n µ(d) = 0. Therefore, since |γ| < 1, we have

| log(Φn/α
ϕ(n))| ≤

∑
d |n

| log(1− γd)| �
∞∑
d=1

|γ|d � 1,

and also (iii) is proved. �

3. Preliminaries on practical numbers and close relatives

The following lemma on practical numbers will be fundamental later.

Lemma 3.1. If n is a practical number and m ≤ 2n is a positive integer, then mn is a practical
number.

Proof. See [4, Lemma 1]. �

Close relatives of practical numbers are ϕ-practical numbers. A ϕ-practical number is a
positive integer n such that all the positive integers m ≤ n can be written as m =

∑
d∈D ϕ(d),

where D is a subset of the divisors of n. This notion was introduced by Thompson [11] while
studying the degrees of the divisors of the polynomial Xn − 1. Indeed, ϕ-practical numbers
are exactly the positive integers n such that Xn − 1 has a divisor of every degree up to n.

We need a couple of results regarding ϕ-practical numbers.

Lemma 3.2. Let n be a ϕ-practical number and p be a prime number not dividing n. Then
pn is ϕ-practical if and only if p ≤ n+ 2. Moreover, pjn is ϕ-practical if and only if p ≤ n+ 1,
for every integer j ≥ 2.

Proof. See [11, Lemma 4.1]. �

Lemma 3.3. If n is an even ϕ-practical number, and if d1, . . . , ds are all the divisors of n
ordered so that ϕ(d1) ≤ · · · ≤ ϕ(ds), then

(4) ϕ(dj+1) ≤
j∑

i=1

ϕ(di),

for all positive integers j < s.

Proof. It is not difficult to see that n is ϕ-practical if and only if

(5) ϕ(dj+1) ≤ 1 +

j∑
i=1

ϕ(di),

for all positive integers j < s (see [11, p. 1041]). Hence, we have only to prove that n
even ensures that in (5) the equality cannot happen. If j = 1 then (4) is obvious since
{d1, d2} = {1, 2}, so we can assume 1 < j < s. At this point ϕ(dj+1) is even, while

1 +

j∑
i=1

ϕ(di)

is odd, because ϕ(m) is even for all integers m > 2. Thus, in (5) the equality is not satisfied. �

Let θ be a real-valued arithmetic function, and define Bθ as the set containing n = 1 and
all those n = pa11 · · · p

ak
k , where p1 < · · · < pk are prime numbers and a1, . . . , ak are positive

integers, which satisfy

pj ≤ θ

(
j−1∏
i=1

paii

)
,

for j = 1, . . . , k, where the empty product is equal to 1. If θ(n) := σ(n) + 1, then Bθ is the set
of practical numbers. This is a characterization given by Stewart [8] and Sierpiński [6].
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Weingartner proved a general and strong estimate for #Bθ(x). The following is a simplified
version adapted just for our purposes.

Theorem 3.4. Suppose θ(1) ≥ 2 and n ≤ θ(n) ≤ An for all positive integers n, where A ≥ 1
is a constant. Then, we have

#Bθ(x) ∼ cθx

log x
,

as x→ +∞, where cθ > 0 is a constant.

Proof. See [12, Theorems 1.2 and 5.1]. �

4. Proof of Theorem 1.2

The key tool of the proof is the following technical lemma.

Lemma 4.1. Suppose that n is a sufficiently large positive integer, how large depending on a
and b. Let p be a prime number and write n = pvm for some nonnegative integer v and some
positive integer m not divisible by p. If m is an even ϕ-practical number, n ∈ A, and p < m,
then pkn ∈ A for all positive integers k.

Proof. Clearly, it is enough to prove the claim for k = 1. Let d1 = 1, d2 = 2, . . . , ds be all the
divisors of m, ordered to that ϕ(d1) ≤ · · · ≤ ϕ(ds). Furthermore, define

Nj := un

j∏
i=1

Φpv+1di ,

for j = 1, . . . , s. We shall prove that each Nj is practical. This implies the thesis, since
Ns = upn by (2).

We proceed by induction on j. First, by (2) and Lemma 2.1(i), we have

Φpv+1d1 = Φpv+1 ≤ upv+1 ≤ upvm = un,

since p < m. Hence, applying Lemma 3.1 and the fact that un is practical, we get that
N1 = unΦpv+1d1 is practical.

Now assuming that Nj is practical we shall prove that Nj+1 is practical. Again, since
Nj+1 = Φpv+1dj+1

Nj , thanks to Lemma 3.1 it is enough to show that the inequality

(6) Φpv+1dj+1
≤ un

j∏
i=1

Φpv+1di

holds. In turn, by Lemma 2.1(ii) and (iii), we have that (6) is implied by

(7) n+ ϕ(pv+1)

[
−ϕ(dj+1) +

j∑
i=1

ϕ(di)

]
≥ C(j + 1),

where C > 0 is a constant depending only on a and b.
On the one hand, since m is an even ϕ-practical number, by Lemma 3.3 we have that the

term of (7) in square brackets is nonnegative. On the other hand, for sufficiently large n, we
have

n ≥ C(log n/ log 2 + 1) ≥ C(ω(n) + 1) ≥ C(j + 1).

Therefore, (7) holds and the proof is complete. �

We are ready to prove Theorem 1.2. Pick a sufficiently large positive integer h, depending
on a and b, such that the claim of Lemma 4.1 holds for all integers n ≥ 2h · 3. Moreover, by
Theorem 1.1, we can assume that 2j · 3 ∈ A for all integers j ≥ h. Put B := Bθ \ {1}, where
θ(n) := max{2, n}. Note that, as a consequence of Lemma 3.2, all the elements of B are even
ϕ-practical numbers. We shall prove that for all n ∈ B we have 2h ·3n ∈ A. In this way, thanks
to Theorem 3.4, we get

#A(x) ≥ #B
( x

2h · 3

)
� x

log x
,
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for all sufficiently large x. Hence, since 1 ∈ A, Theorem 1.2 follows.
We proceed by induction on the number of prime factors of n ∈ B. If n ∈ B has exactly

one prime factor, then it follows easily that n = 2j for some positive integer j. Hence, we have
2h · 3n = 2h+j · 3 ∈ A, as claimed.

Now, assuming that the claim is true for all n ∈ B with exactly k ≥ 1 prime factors, we shall
prove it for all n ∈ B having k+1 prime factors. Write n = pa11 · · · p

ak+1

k+1 , where p1 < · · · < pk+1

are prime numbers and a1, . . . , ak+1 are positive integers. Put also m := pa11 · · · p
ak
k . Since

n ∈ B, we have m ∈ B and pk+1 < m. On the one hand, by the induction hypothesis,
2h · 3m ∈ A. On the other hand, it is easy to see that m ∈ B implies 2hm ∈ B and 2h · 3m ∈ B.

First, suppose pk+1 > 3. Since 2h · 3m is an even ϕ-practical number, 2h · 3m ∈ A, and
pk+1 < 2h · 3m, by Lemma 4.1 we get that 2h · 3n = 2h · 3mpak+1

k+1 ∈ A, as claimed.

On the other hand, if pk+1 = 3 the situation is similar. Since 2hm is an even ϕ-practical
number, 2h · 3m ∈ A, and pk+1 < 2hm, by Lemma 4.1 we get that 2h · 3n = 2h · 3mpak+1

k+1 ∈ A,
as claimed. The proof is complete.
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