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ON THE AUTOMORPHISM GROUP OF A SYMPLECTIC HALF-FLAT

6-MANIFOLD

FABIO PODESTÀ AND ALBERTO RAFFERO

Abstract. We prove that the automorphism group of a compact 6-manifold M endowed
with a symplectic half-flat SU(3)-structure has abelian Lie algebra with dimension bounded
by min{5, b1(M)}. Moreover, we study the properties of the automorphism group action
and we discuss relevant examples. In particular, we provide new complete examples on
TS3 which are invariant under a cohomogeneity one action of SO(4).

1. Introduction

An SU(3)-structure on a six-dimensional smooth manifold M is the data of an almost
Hermitian structure (g, J) with fundamental 2-form ω := g(J ·, ·) and a complex volume

form Ψ = ψ + i ψ̂ ∈ Ω3,0(M) such that

(1.1) ψ ∧ ψ̂ =
2

3
ω3.

By [11], the whole data (g, J,Ψ) is completely determined by the real 2-form ω and the
real 3-form ψ, provided that they satisfy suitable conditions (see §3 for more details).

An SU(3)-structure (ω, ψ) is said to be symplectic half-flat if both ω and ψ are closed.
In this case, the intrinsic torsion can be identified with a unique real (1, 1)-form σ which

is primitive with respect to ω, i.e., σ ∧ ω2 = 0, and fulfills dψ̂ = σ ∧ ω (see e.g. [4]). This
SU(3)-structure is half-flat according to [4, Def. 4.1], namely d(ω2) = 0 and dψ = 0, and the
corresponding almost complex structure J is integrable if and only if σ vanishes identically.
When this happens, (M,ω, ψ) is a Calabi-Yau 3-fold. Otherwise, the symplectic half-flat
structure is said to be strict.

In recent years, symplectic half-flat structures turned out to be of interest in supersym-
metric string theory. For instance, in [10] the authors proved that supersymmetric flux
vacua with constant intermediate SU(2)-structure [2] are related to the existence of special
classes of half-flat structures on the internal 6-manifold. In particular, they showed that
solutions of Type IIA SUSY equations always admit a symplectic half-flat structure. In [12],
the definition of symplectic half-flat structures, which are called supersymmetric of Type
IIA, is generalized in higher dimensions, and it is proved that semi-flat supersymmetric
structures of Type IIA correspond to semi-flat supersymmetric structures of Type IIB via
the SYZ and Fourier-Mukai transformations.
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2 FABIO PODESTÀ AND ALBERTO RAFFERO

In mathematical literature, symplectic half-flat structures were first introduced and stud-
ied in [6] and then in [8], while explicit examples were exhibited in [5, 7, 9, 16, 20]. Most of
them consist of simply connected solvable Lie groups endowed with a left-invariant symplec-
tic half-flat structure. Moreover, in [9] it was proved that every six-dimensional compact
solvmanifold with an invariant symplectic half-flat structure also admits a solution of Type
IIA SUSY equations.

Let M be a 6-manifold endowed with a strict symplectic half-flat structure (ω, ψ). In
the present paper, we are interested in studying the properties of the automorphism group
Aut(M,ω, ψ) := {f ∈ Diff(M) | f∗ω = ω, f∗ψ = ψ}, aiming at understanding how to con-
struct non-trivial examples with high degree of symmetry.

In [16], we proved the non-existence of compact homogeneous examples and we classified
all non-compact cases which are homogeneous under the action of a semisimple Lie group
of automorphisms. Here, in Theorem 2.1 we show that the Lie algebra of Aut(M,ω, ψ) is
abelian with dimension bounded by min{5, b1(M)} whenever M is compact. This allows to
obtain a direct proof of the aforementioned non-existence result. In the same theorem, we
also provide useful information on geometric properties of the Aut0(M,ω, ψ)-action on the
manifold, proving in particular that the automorphism group acts by cohomogeneity one
only when M is diffeomorphic to a torus. Some relevant examples are then discussed in
order to show that the automorphism group can be non-trivial and that the upper bound
on its dimension can be actually attained.

As our previous result on non-compact homogeneous spaces suggests, the non-compact
ambient might provide a natural setting where looking for new examples. In section 3, we
obtain new complete examples of symplectic half-flat structures on the tangent bundle TS3

which are invariant under the natural cohomogeneity one action of SO(4). These include
also the well-known Calabi-Yau example constructed by Stenzel [19].

2. The automorphism group

Let M be a six-dimensional manifold endowed with an SU(3)-structure (ω, ψ). The
automorphism group of (M,ω, ψ) consists of the diffeomorphisms of M preserving the SU(3)-
structure, namely

Aut(M,ω, ψ) := {f ∈ Diff(M) | f∗ω = ω, f∗ψ = ψ} .

Clearly, Aut(M,ω, ψ) is a closed Lie subgroup of the isometry group Iso(M, g), as every
automorphism preserves the Riemannian metric g induced by the pair (ω, ψ). The Lie
algebra of the identity component G := Aut0(M,ω, ψ) is

g = {X ∈ X(M) | LXω = 0, LXψ = 0} ,

and every X ∈ g is a Killing vector field for the metric g. Moreover, the Lie group
Aut(M,ω, ψ) ⊂ Iso(M, g) is compact whenever M is compact.

If (M,ω, ψ) is a Calabi-Yau 3-fold, i.e., if ω, ψ and ψ̂ are all closed, then the Riemannian
metric g is Ricci-flat and Hol(g) ⊆ SU(3). When M is compact and the holonomy group is
precisely SU(3), it follows from Bochner’s Theorem that Aut(M,ω, ψ) is finite.
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We now focus on strict symplectic half-flat structures, namely SU(3)-structures (ω, ψ)
such that

dω = 0, dψ = 0, dψ̂ = σ ∧ ω,
with σ ∈ [Ω1,1

0 (M)] :=
{
κ ∈ Ω2(M) | Jκ = κ, κ ∧ ω2 = 0

}
not identically vanishing. Notice

that the condition on σ is equivalent to requiring that the almost complex structure J
induced by (ω, ψ) is non-integrable (cf. e.g. [4]). In this case, we can show the following
result.

Theorem 2.1. Let M be a compact six-dimensional manifold endowed with a strict sym-
plectic half-flat structure (ω, ψ). Then, there exists an injective map

F : g→H 1(M), X 7→ ιXω,

where H 1(M) is the space of ∆g-harmonic 1-forms. Consequently, the following properties
hold:

1) dim(g) ≤ b1(M);
2) g is abelian with dim(g) ≤ 5;
3) for every p ∈ M, the isotropy subalgebra gp has dimension dim(gp) ≤ 2. If dim(gp) = 2

for some p, then Gp = G;
4) the G-action is free when dim(g) ≥ 4. In particular, when dim(g) = 5 the manifold M

is diffeomorphic to T6.

Before proving the theorem, we show a general lemma.

Lemma 2.2. Let (ω, ψ) be an SU(3)-structure. Then, for every vector field X the following
identity holds

ιXψ ∧ ψ = −2 ∗ (ιXω),

where ∗ denotes the Hodge operator determined by the Riemannian metric g and the orien-
tation dVg = 1

6ω
3.

Proof. From the equation ιXΨ ∧Ψ = 0, which holds for every vector field X, we have

ιXψ ∧ ψ = ιXψ̂ ∧ ψ̂, ιXψ ∧ ψ̂ = −ιXψ̂ ∧ ψ.

Using the above identities and the relations ιXψ = ιJXψ̂, ιJXψ = −ιXψ̂, we get

ιXψ ∧ ψ = ιJXψ̂ ∧ ψ
= ιJX(ψ̂ ∧ ψ) + ψ̂ ∧ ιJXψ
= ιJX(ψ̂ ∧ ψ)− ψ̂ ∧ ιXψ̂
= ιJX(ψ̂ ∧ ψ)− ψ ∧ ιXψ.

Hence, 2 ιXψ ∧ ψ = ιJX(ψ̂ ∧ ψ). Now, from condition (1.1) we know that ψ̂ ∧ ψ = −2
3 ω

3 =
−4 dVg. Thus,

ιXψ ∧ ψ = −2 ιJXdVg = −2 ∗ (JX)[ = −2 ∗ (ιXω).

�
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Proof of Theorem 2.1.
Let X ∈ g. Then, using the closedness of ω we have 0 = LXω = d(ιXω). Moreover, since

dψ = 0 and LXψ = 0, then d(ιXψ ∧ ψ) = 0 and Lemma 2.2 implies that d ∗ (ιXω) = 0.
Hence, the 1-form ιXω is ∆g-harmonic and F coincides with the injective map Z 7→ ιZω
restricted to g. From this 1) follows.

In order to prove 2), we begin recalling that every Killing field on a compact manifold
preserves every harmonic form. Consequently, for all X,Y ∈ g we have

0 = LY (ιXω) = ι[Y,X]ω + ιX(LY ω) = ι[Y,X]ω.

Since the map Z 7→ ιZω is injective, we obtain that g is abelian. Now, G is compact abelian
and it acts effectively on the compact manifold M. Therefore, the principal isotropy is
trivial and dim(g) ≤ 6. When dim(g) = 6, M can be identified with the 6-torus T6 endowed
with a left-invariant metric, which is automatically flat. Hence, if (ω, ψ) is strict symplectic
half-flat, then dim(g) ≤ 5.

As for 3), we fix a point p of M and we observe that the image of the isotropy represen-
tation ρ : Gp → O(6) is conjugate into SU(3). Since SU(3) has rank two and Gp is abelian,
the dimension of gp is at most two. If dim(gp) = 2, then the image of ρ is conjugate to a
maximal torus of SU(3) and its fixed point set in TpM is trivial. As Tp(G · p) ⊆ (TpM)Gp ,
the orbit G · p is zero-dimensional, which implies that dim(g) = 2.

Assertion 4) is equivalent to proving that Gp is trivial for every p ∈M whenever dim(g) ≥
4. In this case, dim(gp) ≤ 1 by 3), and therefore dim(G ·p) ≥ 3. If Gp contains a non-trivial
element h, then ρ(h) fixes every vector in Tp(G · p) and, consequently, its fixed point set
in TpM must be non-trivial of dimension at least three. On the other hand, a non-trivial
element of SU(3) is easily seen to have a fixed point set of dimension at most two. This
shows that Gp = {1G}. The last assertion follows immediately from [14]. �

Point 2) in the above theorem gives a direct proof of a result obtained in [16].

Corollary 2.3. There are no compact homogeneous 6-manifolds endowed with an invariant
strict symplectic half-flat structure.

It is worth observing here that the non-compact case is less restrictive. For instance, it
is possible to exhibit non-compact examples which are homogeneous under the action of a
semisimple Lie group of automorphisms (see e.g. [16]). Moreover, in the next section we
shall construct non-compact examples of cohomogeneity one with respect to a semisimple
Lie group of automorphisms.

The next example was given in [8]. It shows that G can be non-trivial, that the upper
bound on its dimension given in 2) can be attained, and that 4) is only a sufficient condition.

Example 2.4. On R6 with standard coordinates (x1, . . . , x6) consider three smooth func-
tions a(x1), b(x2), c(x3) in such a way that

λ1 := b(x2)− c(x3), λ2 := c(x3)− a(x1), λ3 := a(x1)− b(x2),

are Z6-periodic. Then, the following pair of Z6-invariant differential forms on R6 induces
an SU(3)-structure on T6 = R6/Z6:

ω = dx14 + dx25 + dx36, ψ = −eλ3 dx126 + eλ2 dx135 − eλ1 dx234 + dx456,
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where dxijk··· is a shorthand for the wedge product dxi ∧ dxj ∧ dxk ∧ · · · . It is immediate to
check that (ω, ψ) is strict symplectic half-flat whenever the functions λi are not all constant.
The automorphism group of (T6, ω, ψ) is T3 when a(x1) b(x2) c(x3) 6≡ 0, while it becomes
T4 (T5) when one (two) of them vanishes identically.

Finally, we observe that there exist examples where the upper bound on the dimension
of g given in 1) is more restrictive than the upper bound given in 2).

Example 2.5. In [5], the authors obtained the classification of six-dimensional nilpotent
Lie algebras admitting symplectic half-flat structures. The only two non-abelian cases are
described up to isomorphism by the following structure equations

(0, 0, 0, 0, e12, e13), (0, 0, 0, e12, e13, e23).

Denote by N the simply connected nilpotent Lie group corresponding to one of the above
Lie algebras, and endow it with a left-invariant strict symplectic half-flat structure (ω, ψ).
By [13], there exists a co-compact discrete subgroup Γ ⊂ N giving rise to a compact nil-
manifold Γ\N. Moreover, the left-invariant pair (ω, ψ) on N passes to the quotient defining
an SU(3)-structure of the same type on Γ\N. By [15], we have that b1(Γ\N) is either four
or three.

3. Non-compact cohomogeneity one examples

In this section, we construct complete examples of strict symplectic half-flat structures
on a non-compact 6-manifold admitting a cohomogeneity one action of a semisimple Lie
group of automorphisms. This points out the difference between the compact and the non-
compact case, and together with the results in [16, §4.3] it suggests that the non-compact
ambient provides a natural setting to obtain new examples.

From now on, we consider the natural cohomogeneity one action on M = TS3 ∼= S3×R3

induced by the transitive SO(4)-action on S3. Then, we have

TS3 ∼= SO(4)×SO(3) R3.

We refer the reader to [1, 14, 17, 18] for basic notions on cohomogeneity one isometric
actions. Following the notation of [18], we consider the Lie algebra so(4) ∼= su(2) + su(2)
and we fix the following basis of su(2)

H :=
1

2

(
i 0
0 −i

)
, E :=

1

2
√

2

(
0 1
−1 0

)
, V :=

1

2
√

2

(
0 i
i 0

)
.

Let γ : R → M be a normal geodesic such that p := γ(0) ∈ S3 and γt := γ(t) is a
regular point for all t 6= 0. The singular isotropy subalgebra is so(4)p = su(2)diag, while the
principal isotropy subalgebra k := so(4)γt , t 6= 0, is one-dimensional and spanned by (H,H).
We consider the following basis of so(4) ∼= su(2) + su(2)

E1 := (E, 0), V1 := (V, 0), E2 := (0, E), V2 := (0, V ),

U := (H,H), A := (H,−H).
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We let ξ := ∂
∂t , and for any Z ∈ so(4) we denote by Ẑ the corresponding fundamental vector

field on M. Then, a basis of TγtM for t 6= 0 is given by

(ξ, Â, Ê1, V̂1, Ê2, V̂2)γt .

We shall denote the dual coframe along γt by (ξ∗, A∗, E∗1 , V
∗

1 , E
∗
2 , V

∗
2 )γt , where ξ∗ := dt.

Let K ⊂ SO(4) be the principal isotropy subgroup corresponding to the Lie algebra k.
The space of K-invariant 2-forms on TγtM , t 6= 0, is spanned by

ω1 := ξ∗ ∧A∗, ω2 := E∗1 ∧ V ∗1 , ω3 := E∗2 ∧ V ∗2 ,

ω4 := E∗1 ∧ E∗2 + V ∗1 ∧ V ∗2 , ω5 := E∗1 ∧ V ∗2 − V ∗1 ∧ E∗2 .
These forms extend as SO(4)-invariant 2-forms on the regular part M0 := S3×R+. By [18],
their differentials along γt are

(3.1)
dω1|γt = 1

4 ξ
∗ ∧ (ω2 − ω3) , dω2|γt = dω3|γt = 0 ,

dω4|γt = −2A∗ ∧ ω5, dω5|γt = 2A∗ ∧ ω4.

We now describe the general SO(4)-invariant symplectic 2-form ω on M. Along γt, t 6= 0,
we have

ω|γt =
5∑
i=1

fi(t)ωi,

for suitable smooth functions fi ∈ C∞(R+). By [18, Prop. 6.1], the SO(4)-invariant 2-form
ω on M0 corresponding to ω|γt admits a smooth extension to the whole M if and only if
the functions fi extend smoothly on R as follows:

i) f1 and f4 are even and f2, f3, f5 are odd;
ii) f ′3(0) = 1

2 f1(0) + f ′2(0), f ′5(0) = −1
4 f1(0)− f ′2(0), and f4(0) = 0.

Moreover, ω|p is non-degenerate if and only if f1(0) 6= 0.
Using (3.1), we compute dω and we see that ω is closed if and only if

f4, f5 ≡ 0,

{
f ′2 = −1

4 f1

f ′3 = 1
4 f1

.

Combining this with the extendability conditions, we obtain that every SO(4)-invariant
symplectic 2-form ω on M can be written as

(3.2) ω|γt = f1(t)ω1 + f2(t)ω2 + f3(t)ω3, t 6= 0,

with f1 ∈ C∞(R) even and nowhere vanishing, and

f2(t) = −1

4

∫ t

0
f1(s) ds = −f3(t).

Notice that ω3|γt = −6f1f
2
2 ω1 ∧ ω2 ∧ ω3 at every regular point of the geodesic γt. As f1 is

nowhere zero, we may assume that f1 < 0, so that the volume form ξ∗∧A∗∧E∗1∧V ∗1 ∧E∗2∧V ∗2
defines the same orientation on TγtM as 1

6 ω
3|γt for all t ∈ R+.
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We now search for an SO(4)-invariant closed 3-form ψ ∈ Ω3(M)SO(4) so that the pair (ω, ψ)
defines an SO(4)-invariant symplectic half-flat structure on M. For the sake of simplicity,
we make the following Ansatz

ψ = du, u ∈ Ω2(M)SO(4).

As before, along γt, t 6= 0, we can write

(3.3) u|γt =

5∑
i=1

φi(t)ωi,

for some smooth functions φi ∈ C∞(R+) satisfying the same extendability conditions as the
fi’s. Then, omitting the dependence on t for brevity, we have

(3.4) ψ|γt = ψ2 ξ
∗ ∧ ω2 + ψ3 ξ

∗ ∧ ω3 + φ′4 ξ
∗ ∧ ω4 + φ′5 ξ

∗ ∧ ω5 + 2A∗ ∧ (φ5 ω4 − φ4 ω5),

where ψ2 := 1
4 φ1 + φ′2 and ψ3 := φ′3 − 1

4 φ1.
By [11], the pair (ω, ψ) defines an SU(3)-structure if and only if the following conditions

hold:

a) the compatibility condition ω ∧ ψ = 0;
b) the stability condition P (ψ) < 0, P being the characteristic quartic polynomial defined

on 3-forms (see below for the definition);
c) denoted by J the almost complex structure induced by (ω, ψ), then the complex volume

form Ψ := ψ + i ψ̂ with ψ̂ := Jψ fulfills the normalization condition (1.1);
d) the symmetric bilinear form g := ω(·, J ·) is positive definite.

The compatibility condition a) along γt reads f2ψ3 + f3ψ2 = 0. Since f2 = −f3 6= 0, this
implies

(3.5) ψ2 = ψ3.

Recall that at each point q ∈ M the 3-form ψ gives rise to an endomorphism S ∈
End(TqM) defined as follows for every θ ∈ T ∗qM and every v ∈ TqM

ιvψ ∧ ψ ∧ θ = θ(S(v))
ω3

6
.

The endomorphism S satisfies S2 = P (ψ)Id, and it gives rise to the almost complex structure
J := 1√

|P (ψ)|
S when P (ψ) < 0.

From the expressions

ιξψ ∧ ψ|γt = 2
(
ψ2

2 − (φ′4)2 − (φ′5)2
)
ξ∗ ∧ ω2 ∧ ω3 − 4

(
φ′4φ5 − φ4φ

′
5

)
A∗ ∧ ω2 ∧ ω3,

ιÂψ ∧ ψ|γt = 4
(
φ4φ

′
5 − φ′4φ5

)
ξ∗ ∧ ω2 ∧ ω3 − 8

(
φ2

4 + φ2
5

)
A∗ ∧ ω2 ∧ ω3,

we see that the endomorphism S ∈ End(TγtM) maps the subspace of TγtM spanned by ξ

and Â|γt into itself with associated matrix given by

(3.6) − 1

f1f2
2

(
4 (φ′4φ5 − φ4φ

′
5) 8

(
φ2

4 + φ2
5

)
2
(
ψ2

2 − (φ′4)2 − (φ′5)2
)
−4 (φ′4φ5 − φ4φ

′
5)

)
.
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Since the curve γt must be a normal geodesic for the metric g induced by (ω, ψ), it follows
that the tangent vector ξ is orthogonal to the orbit SO(4) · γt at every regular point of γt.
In particular, we have

0 = g(ξ, Â) = ω(ξ, J(Â)) =
1√
|P (ψ)|

ω(ξ, S(Â)) =
4

f2
2

√
|P (ψ)|

(φ′4φ5 − φ4φ
′
5),

from which we get

(3.7) φ′4φ5 = φ4φ
′
5.

Using (3.5), (3.7) and the definition of P (ψ), we obtain

(3.8) P (ψ) =
16

f2
1 f

4
2

(
φ2

4 + φ2
5

) (
ψ2

2 − (φ′4)2 − (φ′5)2
)
.

Consequently, the stability condition b) reads

(3.9) ψ2
2 − (φ′4)2 − (φ′5)2 < 0, φ2

4 + φ2
5 6= 0,

for all t ∈ R+.
We now note that the vector field J(ξ) is tangent to the SO(4)-orbits and it belongs to

the space of K-fixed vectors in Tγt(SO(4) ·γt)K, which is spanned by Â|γt . Since the geodesic
γt has unit speed, we see that

(3.10) 1 = g(ξ, ξ) = ω(ξ, J(ξ)) = − 2

f2
2

√
|P (ψ)|

(
ψ2

2 − (φ′4)2 − (φ′5)2
)
.

Using (3.8), the relation (3.10) implies that

(3.11) 4
(
φ2

4 + φ2
5

)
= f2

1

(
(φ′4)2 + (φ′5)2 − ψ2

2

)
.

Let us now focus on c). From (3.6) and (3.11), we obtain J(ξ) = 1
f1
Â|γt . Using this and

the identity ψ̂ = Jψ = −ψ(J ·, ·, ·), we have

(3.12) ψ̂|γt = ξ∗ ∧
(

2
φ4

f1
ω5 − 2

φ5

f1
ω4

)
+ f1A

∗ ∧
(
ψ2 (ω2 + ω3) + φ′4 ω4 + φ′5 ω5

)
.

Now, the normalization condition ψ ∧ ψ̂ = 2
3 ω

3 gives

4(φ2
4 + φ2

5)− f2
1 (ψ2

2 − (φ′4)2 − (φ′5)2) = 2 f2
1 f

2
2 .

Combining this with (3.11), we obtain

(3.13) φ2
4 + φ2

5 =
1

4
(f1f2)2.

Note that (3.8), (3.11) and (3.13) imply

P (ψ) ≡ −4

along the geodesic γt. Thus, the stability of ψ holds also at t = 0.
Going back to (3.7), we see that either φ4 = λφ5 or φ5 = λφ4 for some λ ∈ Rr{0}. Since

φ4 and φ5 extend as an even and an odd function on R, respectively, we see that either
φ4 ≡ 0 or φ5 ≡ 0. As f1f2 is an odd function on R, (3.13) implies that

(3.14) φ4 ≡ 0, φ5 = ±1

2
f1f2.
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The matrix associated with the symmetric bilinear form ω(·, J ·) along γt, t ∈ R+, is

1 0 0 0 0 0

0 f2
1 0 0 0 0

0 0 −2
φ′5φ5
f1f2

0 −2 ψ2φ5
f1f2

0

0 0 0 −2
φ′5φ5
f1f2

0 −2 ψ2φ5
f1f2

0 0 −2 ψ2φ5
f1f2

0 −2
φ′5φ5
f1f2

0

0 0 0 −2 ψ2φ5
f1f2

0 −2
φ′5φ5
f1f2


,

and condition d) can be written as

−2
φ′5φ5

f1f2
> 0, ψ2

2 < (φ′5)2.

The former condition is equivalent to (f2
2 )′′ > 0, while the latter is satisfied whenever ψ is

stable (cf. (3.9)).
Note that the metric g extends smoothly over the singular orbit S3 to a Hermitian sym-

metric bilinear form. The restriction of g on TpS3 is positive definite as gp(Â, Â) = f2
1 (0) > 0

and the orbit SO(4) · p is isotropy irreducible. Moreover, TpM = TpS3 ⊕ J(TpS3), and from
this we see that gp is positive definite.

Summing up, the existence of a complete SO(4)-invariant symplectic half-flat structure
(ω, ψ) on M is equivalent to the existence of a smooth function f1 ∈ C∞(R) satisfying the
following conditions:

1) f1 is even and negative;

2) the function f2(t) := −1
4

∫ t
0 f1(s)ds satisfies (f2

2 )′′ > 0;

3) there exists an even smooth function ψ2 ∈ C∞(R) satisfying ψ2
2 = [(f2

2 )′′]2 − f2
2 .

Indeed, given f1 we define the symplectic form ω on M as in (3.2), with f3 = −f2. As
for ψ, we let ψ3 := ψ2, φ4 := 0, and φ5 := ±1

2f1f2 in (3.4). Then, (3.11) and (3.13) imply

ψ2
2 = (φ′5)2−f2

2 , and we can choose the sign in the definition of φ5 so that the extendability
condition φ′5(0) = −ψ2(0) given in ii) is satisfied. It is also easy to see that we may choose
φ1, φ2, φ3 so that ψ2 = 1

4 φ1 + φ′2 and ψ3 = φ′3 − 1
4 φ1, and the corresponding u as in (3.3)

extends to a global 2-form on M. The resulting 3-form ψ is then stable by condition 3) and
(3.8). The stability condition together with the inequality in 2) implies that the induced
bilinear form g is everywhere positive definite. Hence, we have proved the following result.

Proposition 3.1. The existence of a complete SO(4)-invariant symplectic half-flat structure
(ω, ψ) on TS3 = SO(4)×SO(3)R3 with ψ ∈ dΩ2(M) is equivalent to the existence of a smooth
function f1 ∈ C∞(R) satisfying conditions 1), 2), 3).

Recall that the symplectic half-flat structure (ω, ψ) is strict if and only if the unique

2-form σ ∈ [Ω1,1
0 (M)] fulfilling dψ̂ = σ ∧ ω is not identically zero. Starting from (3.12),
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using (3.1) and the identity dA∗|γt = 1
4 (ω3 − ω2) (cf. [18, (3.27)]), we obtain

dψ̂|γt =

((
f1φ
′
5

)′ − 4
φ5

f1

)
ω1 ∧ ω5 + (f1ψ2)′ ω1 ∧ (ω2 + ω3),

whence

σ|γt =
1

f1
(f1ψ2)′ (ω2 + ω3) +

1

f1

((
f1φ
′
5

)′ − 4
φ5

f1

)
ω5.

By [3], we know that the scalar curvature of the metric g induced by a symplectic half-flat
structure is given by Scal(g) = −1

2 |σ|
2. Hence, in our case we have

Scal(g)|γt = − 1

f2
1 f

2
2

[(
(f1ψ2)′

)2 − ((f1φ
′
5

)′ − 4
φ5

f1

)2
]

= −
(

(f1ψ2)′

f1φ′5

)2

,

where the second equality follows from the relations obtained so far.
We may construct plenty of complete SO(4)-invariant strict symplectic half-flat structures

on M by choosing a suitable f1 as above. For instance, the function

f1(t) := − cosh(t), t ∈ R,
fits in with conditions 1), 2), 3). With this choice, the scalar curvature is

Scal(g)|γt = − tanh2(t)
(6 cosh2(t)− 5)2

4 cosh4(t)− 8 cosh2(t) + 5
.

This shows that the resulting symplectic half-flat structure is strict and non-homogeneous.
Note that the vanishing of σ is equivalent to the vanishing of Scal(g). Hence, setting

(f1ψ2)′ = 0, the resulting SU(3)-structure (ω, ψ) is Calabi-Yau and the associated metric is
the well-known Stenzel’s Ricci-flat metric on TS3 (cf. [19]).

Finally, we remark that the scalar curvature always vanishes at t = 0. Indeed, (f1ψ2)′(0) =
0, as f1ψ2 is even, while f1(0)φ′5(0) 6= 0. This implies that an SO(4)-invariant symplectic
half-flat structure (ω, ψ) with ψ exact has constant scalar curvature if and only if it is
Calabi-Yau.
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