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SYMMETRY IN THE COMPOSITE PLATE PROBLEM

FRANCESCA COLASUONNO AND EUGENIO VECCHI

Abstract. In this paper we deal with the composite plate problem, namely the following
optimization eigenvalue problem

inf
ρ∈P

inf
u∈W\{0}

´
Ω

(∆u)2´
Ω
ρu2

,

where P is a class of admissible densities, W = H2
0 (Ω) for Dirichlet boundary conditions

and W = H2(Ω)∩H1
0 (Ω) for Navier boundary conditions. The associated Euler-Lagrange

equation is a fourth-order elliptic PDE governed by the biharmonic operator ∆2. In the
spirit of [11], we study qualitative properties of the optimal pairs (u, ρ). In particular,
we prove existence and regularity and we find the explicit expression of ρ. When Ω is a
ball, we can also prove uniqueness of the optimal pair, as well as positivity of u and radial
symmetry of both u and ρ.
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1. Introduction

In a series of papers during the 2000’s, many mathematicians (see e.g. [10–14,37]) studied
an eigenvalue optimization problem that arises in Continuum Mechanics, usually referred
to as composite membrane problem. In physical terms, quoting [11], it can be stated as
follows:
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2 F. COLASUONNO AND E. VECCHI

Build a body of prescribed shape out of given materials (of varying densities) in such a way
that the body has a prescribed mass and so that the basic frequency of the resulting membrane
(with fixed boundary) is as small as possible.

This problem has a long history, without aiming at completeness, we just mention here
the existence result proved in [23] and the qualitative results proved in [18]. We refer
the interested reader to the monograph [28] and the references therein for more results
concerning this and related problems.

In mathematical terms, the composite membrane problem can be described in a varia-
tional way. Throughout the paper, for any measurable set S ⊂ Ω, we denote by χS its
characteristic function and by |S| its n-dimensional Lebesgue measure. Let Ω ⊂ Rn be
a bounded domain with Lipschitz boundary ∂Ω, 0 ≤ h < H be two fixed constants, and
M ∈ [h |Ω|, H |Ω|]. Define the class of admissible densities as

(1.1) P :=

{
ρ : Ω→ R :

ˆ
Ω
ρ(x) dx = M, h ≤ ρ ≤ H in Ω, and ρ 6= 0 a.e. in Ω

}
.

The composite membrane problem is given by

Θ(h,H,M) := inf
ρ∈P

inf
u∈H1

0 (Ω)\{0}

´
Ω |∇u|

2´
Ω ρ u

2
,

and a couple (u, ρ) which realizes the double infimum is called a optimal pair. The first
results proved in [11] and [12] were however obtained for a slightly more general eigenvalue
optimization problem, which we briefly describe: let A ∈ [0, |Ω|] and α > 0 be real numbers,
and let

S := {S ⊂ Ω : |S| = A}
be the class of admissible sets. The minimization problem is

Λ(α,A) := inf
S∈S

inf
u∈H1

0 (Ω)\{0}

´
Ω |∇u|

2 + α
´

Ω χSu
2´

Ω u
2

.

In this case, we call optimal pair any couple (u, S) which realizes the infimum. Let us spend
a few words concerning the results proved in [11] for the last problem. First of all, one
is interested in proving existence of optimal pairs, and it can be done relying on a sort of
bathtub principle, [29]. It is not possible however to expect uniqueness of such solutions,
unless assuming some kind of symmetry on the domain Ω. We will come back to this aspect
later on, because symmetry properties will be at the core of our investigation along this
paper. The second aspect concerns the regularity of the minimizers u and the description of
the optimal set S, which can be considered as a free boundary. Concerning the regularity of
the function u, one can rely on classical elliptic regularity theory [26] and get the sharpest
regularity. A much more delicate issue is the study of the free boundary.

More recently, in [10], the author pointed out a close relation between the composite
membrane problem and a problem in conformal geometry (see Section 6 for more details)
while an extension of the composite membrane problem to the case governed by the p-
Laplacian operator can be found in [3, 20,32].

The aim of this paper is to study a fourth-order analogue of the composite membrane
problem, that can be called composite plate problem. Similar problems have been recently
investigated for instance in [4, 15, 19], see also [17] for an analogous problem involving the
polyharmonic operator. We now introduce our problem. Let Ω ⊂ Rn be a bounded domain
with C4-boundary ∂Ω, 0 ≤ h < H be two fixed constants, and M ∈ [h |Ω|, H |Ω|]. Here we
consider the dimensions n ≥ 2, we refer to [5, 15] for the unidimensional case. Define the
class P of admissible densities ρ as in (1.1) and let the functional space W be

either W := H2
0 (Ω) or W := H2(Ω) ∩H1

0 (Ω),
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depending on the boundary conditions one wants to consider. The composite plate problem
is given by

(CP) Θ(h,H,M) := inf
ρ∈P

inf
u∈W\{0}

´
Ω |∆u|

2´
Ω ρ u

2
,

and the associated Euler-Lagrange equation is the fourth-order problem

(1.2)

{
∆2u = Θ ρ u, in Ω,
u = ∆u = 0, on ∂Ω,

when W = H2(Ω) ∩H1
0 (Ω), and

(1.3)

{
∆2u = Θ ρ u, in Ω,

u = ∂u
∂ν = 0, on ∂Ω,

when W = H2
0 (Ω).

Definition 1.1. A couple (u, ρ) ∈ W × P which realizes the double infimum in (CP) is
called CP-optimal pair.

As for its second-order analogue, this problem has a physical interpretation in Continuum
Mechanics for inhomogeneous linear elastic plates (cf. Section 2) and is related to the
following more general variational problem. Let Ω ⊂ Rn be as in (CP), α > 0 and A ∈ [0, |Ω|]
be real numbers. Let λN = λN (α, S) be the lowest eigenvalue of the following boundary
value problem with Navier boundary conditions:

(PN )

{
∆2u+ αχSu = λu, in Ω,

u = ∆u = 0, on ∂Ω,
λ ∈ R,

whose variational characterization is given by

λN (α, S) = inf
{
R(u, α, S) : u ∈ H2(Ω) ∩H1

0 (Ω), u 6≡ 0
}
,

where

R(u, α, S) :=

´
Ω(∆u)2dx+ α

´
Ω χSu

2dx´
Ω u

2dx

denotes the Rayleigh quotient.
An analogous problem appears when considering Dirichlet boundary conditions. Let λD =
λD(α, S) be the lowest eigenvalue of the following Dirichlet boundary value problem:

(PD)

{
∆2u+ αχSu = λu, in Ω,

u = ∂u
∂ν = 0, on ∂Ω,

λ ∈ R.

The variational characterization of λD is now given by

λD(α, S) = inf
{
R(u, α, S) : u ∈ H2

0 (Ω), u 6≡ 0
}
,

with R(u, α, S) defined as above. In both cases, we consider the following generalized
problem

(G) Λj(α,A) := inf
S∈S

λj(Ω, α, S) for j = N,D,

where S = {S ⊂ Ω : |S| = A} as above.
For notational ease, hereafter we will drop all subscripts j, D, N of the eigenvalues.

Definition 1.2. A couple (u, S) ∈ W×S which realizes the double infimum in (G) is called
G-optimal pair.

We observe that the set S is defined up to zero-measure sets.
Our first result for (G) reads as follows.
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Theorem 1.3. Let Ω ⊂ Rn be a bounded domain with C4-boundary ∂Ω. For any positive
α > 0 and every A ∈ [0, |Ω|], there exists a G-optimal pair (u, S). Furthermore, every
G-optimal pair (u, S) satisfies

(a) u ∈ C3,γ(Ω) ∩W 4,q(Ω), for every γ ∈ (0, 1) and q ≥ 1;
(b) there exists a non-negative number t ≥ 0 such that S = {u2 ≤ t}.

We stress that, due to the presence of a characteristic function in the equation in (G),
C3,γ(Ω) is the the sharpest regularity we can obtain for u, see Remark 3.2.

We say that problem (G) is a generalization of (CP) because there exists a positive
number ᾱ(A) such that the two problems are in one-to-one correspondence for every α ∈
(0, ᾱ(A)]. The explicit form of the optimal set S for (G) allows in turn to give a complete
description of the optimal density ρ of (CP), as stated in the following theorem.

Theorem 1.4. Under the structural assumptions on (G) and (CP), the following properties
hold.

(a) Let (u, ρ) be a CP-optimal pair, then ρ has the following form:

ρ = hχS +H χSc ,

for a set of the form S = {u2 ≤ t}.
(b) The pair (u, ρ) is a CP-optimal pair with parameters (h,H,M) if and only if (u, S)

is a G-optimal pair for (G) with parameters (α,A) given by

(1.4) α = (H − h)Θ,

(1.5) A = H|Ω|−M
H−h .

Moreover, the two minimal eigenvalues are related by

(1.6) Λ = HΘ.

(c) When h and H vary in their ranges, the corresponding α takes value in (0, ᾱ(A)] if
A < |Ω|, and in (0,∞) if A = |Ω|. In the first case, the value ᾱ(A) occurs when
h = 0.

The physical interpretation of Theorem 1.4 is that the plate can be made only out of
two materials, whose densities are given by the constants h and H. Moreover, the denser
material is farther from the boundary ∂Ω. We mentioned that there are two main issues
in the composite membrane problem, namely symmetry and symmetry breaking phenomena
and regularity of the free boundary of the generalized problem. The same lines of investiga-
tion arise naturally in our context. As a first step, we will study positivity and symmetry
properties of optimal pairs when Ω is a ball B. The assumption Ω = B could apparently be
very restrictive, especially when compared with the results available for the composite mem-
brane problem. The main reason behind this request can be roughly explained as follows.
Symmetry properties of solutions of second-order elliptic equations can be proved by means
of the moving plane method introduced by Serrin in [36], as a refinement of the reflection
principle of Aleksandrov [1,2]. One of the main ingredients of this technique is the maximum
principle. The situation changes completely when dealing with fourth-order elliptic equa-
tions. For example, symmetry and monotonicity results of Gidas-Ni-Nirenberg-type [25] for
semilinear biharmonic problems cannot hold even in the ball if the nonlinearity does not
have the right sign, cf. [6,38]. Moreover, there is a striking difference between Dirichlet and
Navier boundary conditions. Indeed, for Navier it is possible to reduce the fourth-order
equation to a second-order elliptic system, where one recovers the main properties holding
in the scalar case, we refer to [24] and references therein for a comprehensive survey of
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existing results on the topic. In particular, the first eigenfunction of ∆2 with Navier bound-
ary conditions is not sign-changing, while the same result does not hold in general domains
under Dirichlet boundary conditions, cf. [27]. A second difficulty arises due to the fact that
higher-order Sobolev spaces W 2,p(Ω) are not invariant under symmetric rearrangements,
i.e., u ∈W 2,p(Ω) does not imply that its symmetric rearrangement u∗ belongs to W 2,p(Ω),
see [16, 24]. Nevertheless, there are instances where it is possible to bypass the structural
problems appearing in the fourth-order context, e.g. [22, 40].

Let us now briefly describe our specific case.
For Navier boundary conditions, it is possible to rewrite (1.2) as the second-order elliptic
system

(1.7)

 −∆u = v, in B,
−∆v = Θ ρ u, in B,

u = v = 0, on ∂B.

Symmetry results for second-order elliptic systems on balls are available in the literature,
starting from the results by Troy [40] where the author considers C2-solutions of the fol-
lowing system of PDE’s

(1.8)

 −∆ui = fi(u1, . . . , un), in B,
ui > 0, in B,
ui = 0, on ∂B,

i = 1, . . . ,m.

The nonlinearities fi are supposed to be of class C1 and non-decreasing as functions of uj
for every j 6= i. It is clear that once you fix an optimal configuration, (1.7) becomes a co-
operative elliptic system which presents a non-autonomous right hand side g(x, u) = ρ(x)u
with no a priori symmetry assumptions on the first entry. Hence, it does not satisfy the
same assumptions of (1.8), due to the expression of ρ which is the sum of two characteristic
functions, and therefore not smooth enough to allow the existence of classical solutions. In
particular, this implies that we deal with weak solutions in the appropriate Sobolev space.
Despite these differences, the very specific structure of (1.7), combined with the special form
of the optimal ρ, allows to adapt the proof of Troy even in our case, yielding the symmetry
of the weak solutions of (1.7).

The situation is in general more complicated when dealing with Dirichlet boundary con-
ditions, since much less symmetry results are available in the literature. Nevertheless, when
Ω = B, Ferrero, Gazzola and Weth in [22] prove the radial symmetry for minimizers of
subcritical Sobolev inequalities, by means of polarization, cf. Section 5. This technique was
introduced by Brock and Solynin in [8] to avoid rearrangements methods. Indeed, since
higher-order Sobolev spaces are not closed under symmetrization, in those spaces it is not
possible to have estimates of the form

‖∆u∗‖L2 ≤ ‖∆u‖L2 ,

useful in proving that the infimum of the Rayleigh ratio is achieved at a radial symmetric
function. Again, the method used in [22] exploits the continuity of the nonlinearity there
involved, while in our case we cannot rely on such regularity. Here the fact that Θρu can be
regarded as a non-decreasing function of u plays a crucial role in adapting the polarization
technique in [22] to get the desired symmetry.

Throughout the paper we write increasing and decreasing meaning the strict monotonicity
property.

We state below our main result when Ω is a ball B. Without loss of generality we take
B := {x ∈ Rn : |x| < 1}.
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Theorem 1.5. Let Ω = B, then there exists a unique CP-optimal pair (u, ρ). Furthermore,
u is positive, radial, and radially decreasing. The set S for which ρ = hχS + HχSc is the
unique shell region {x : r(A) < |x| < 1} of measure A (i.e., r(A) > 0 is the unique positive
constant for which |{x : r(A) < |x| < 1}| = A).

We point out that if (u, ρ) is a CP-optimal pair then, for every µ ∈ R \ {0}, (µu, ρ) is a
CP-optimal pair as well, cf. Remark 4.1. This means that uniqueness of CP-optimal pairs
in Theorem 1.5 has to be intended up to a multiplicative constant in u.

A few comments on the existing literature are now in order. Theorem 1.5 is morally
stated in [28, Remark 11.4.2] as a direct consequence of the technique introduced by Pólya-
Szegö in [33, Section F.5] for the biharmonic Faber-Krahn problem. Nevertheless, it came
out that this technique is not suitable for higher-order problems 1. Furthermore, a symmetry
result for a problem somehow related to ours is stated in [4].

The paper is organized as follows. In Section 2 we describe the physical interpretation
of the problem and we recall some known results that are useful in the rest of the paper.
In Section 3 we prove Theorem 1.3 and study the dependence of Λ on the parameters α
and A. In Section 4, we show the relation between the two problems (G) and (CP) proving
Theorem 1.4, while in Section 5 we prove Theorem 1.5. Finally, in Section 6, we present an
application to a problem in conformal geometry.

2. Preliminaries and known results

We start this section with a detailed physical interpretation of problems (1.2) and (1.3).
As already mentioned in the introduction, when n = 2 these problems are related to Contin-
uum Mechanics for inhomogeneous linear elastic plates. Plates are plane structural elements
with a small thickness compared to the planar dimensions. For a transversely loaded plate
without axial deformations, the governing equation is given by the Germain-Lagrange equa-
tion

∆2u(x) =
q(x)

D
,

where u(x) is the transverse displacement of the plate at x, q is the imposed stress, which
is supposed to be a distributed external load that is normal to the mid-surface, and D is
the flexural rigidity, supposed to be constant. The constant D depends on the material of
the plate and its geometry as follows

D =
Eh3

12(1− ν)
,

where E is the Young modulus, h the thickness of the plate, and ν is the Poisson coefficient.
In particular, the units of D are [D] = N ·m. We can always write the stress q as

q = ρ · a,
where ρ is the surface density and a an acceleration. We suppose that the acceleration is
proportional to the displacement

q = ρ · a = βρu,

with [β] = s−2. Therefore, if we include all the constants in Θ in the equation in (1.2)
(or (1.3)), we get Θ = β/D and its units are [Θ] = kg−1m−2, the same as the ones of

1Quoting [24, p. 72]: (...) u∗ may not be twice weakly differentiable even if u is very smooth. In their
monograph, Pólya-Szegö [33, Section F.5] claim that they can extend the Faber-Krahn result to the Dirichlet
biharmonic operator among domains having a first eigenfunction of fixed sign. Not only this assumption
does not cover all domains (...) but also their argument is not correct. They deal with the Laplacian of a
symmetrised smooth function and implicitly claim that it belongs to L2, which is false in general. (...) This
shows that standard symmetrisation methods are not available for higher order problems.
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an eigenvalue of ∆2 (i.e., m−4), divided by a surface density. Finally, Dirichlet boundary
conditions are meant to describe a clamped plate, while Navier boundary conditions, when
Ω is a polygonal domain in R2, describe a hinged plate, cf. [31].

Throughout the paper, unless differently stated, Ω ⊂ Rn, with n ≥ 2, will denote a
bounded domain (i.e., open and connected) with C4-boundary ∂Ω. This regularity assump-
tion is needed to prove the regularity result in Theorem 1.3 up to the boundary, but it can
be weakened if we look for less regular solutions, cf. Remark 3.2. We assume throughout
the paper that 0 ∈ Ω, this can be done without loss of generality, since the problems we are
considering are invariant under translation. Furthermore, with a slight abuse of notation,
we denote

{f < t} := {x ∈ Ω : f(x) < t} ,
and analogously for {f ≤ t}.

As already mentioned in the introduction, we work with two Sobolev spaces: we use
H2

0 (Ω) for the clamped plate, and H2(Ω) ∩H1
0 (Ω) for the hinged plate. Some of our results

will be proved in the same way either for the hinged plate or the clamped one. In these
cases, to simplify the notation, we will denote both spaces byW. In both cases, we consider
the space equipped with the following norm

‖u‖2W :=

ˆ
Ω

(∆u)2 dx, u ∈ W

which is equivalent to the standard Sobolev one. The proof of the equivalence in H2
0 (Ω)

relies on the Poincaré and Calderón-Zygmund inequalities, see for instance [24, Chapter 2.7],
while in H2(Ω)∩H1

0 (Ω) it is a consequence of the equivalence in H2
0 (Ω) and the continuous

embedding H2
0 (Ω) ↪→ H2(Ω) ∩H1

0 (Ω). We stress that W endowed with ‖ · ‖W is a Hilbert
space. There is a huge literature dealing with best constants of the critical embeddings of
these spaces, e.g. [41]. We refer to the monograph [24] for a comprehensive introduction to
the subject.

We recall here two classical embedding theorems that will be useful in what follows.

Theorem 2.1. Let Ω ⊂ Rn be an open and bounded set with Lipschitz boundary ∂Ω. Let
1 ≤ p < +∞ and let m ∈ N+. Then, the following continuous embeddings hold

Wm,p(Ω) ↪→ Lq(Ω) for any q ∈

{
[1, np

n−mp ], if n > mp,

[1,∞), if n ≤ mp.

An improvement of Theorem 2.1 when n < mp is given by the following

Theorem 2.2 (Theorem 2.6 of [24]). Let Ω ⊂ Rn be an open and bounded set with Lipschitz
boundary ∂Ω. Let 1 ≤ p < +∞ and let m ∈ N+ and assume that there exists k ∈ N such
that n < (m− k)p. Then

Wm,p(Ω) ↪→ Ck,γ(Ω), for every γ ∈
(
0,m− k − n

p

]
∩ (0, 1),

with compact embedding if γ < m− k − n
p .

The following maximum principle for a forth-order problem set in a ball will be useful in
Section 5.

Lemma 2.3 (Lemma 1 of [22]). Let Ω = B := {x ∈ Rn : |x| < 1} and C+ := {w ∈ W :
w ≥ 0 a.e. in B}. Assume that u ∈ W(B) is such thatˆ

B
∆u∆v ≥ 0 for every v ∈ C+,

then u ∈ C+. Moreover, either u ≡ 0 or u > 0 a.e. in B.
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Remark 2.4. We stated Lemma 2.3 just in the case of the ball B but, for Navier bound-
ary conditions, it is actually possible to consider more general domains Ω with Lipschitz
boundary, and the proof is precisely the same as in [22, Lemma 1].

We introduce now some notation, definitions and preliminary results on the polarization
of a function. This technique will be useful when dealing with the symmetry properties in
the problem with Dirichlet boundary conditions.

Definition 2.5. Let H ⊂ Rn be a half-space with boundary ∂H, and for every x ∈ Rn, let
x̄ denote the reflection of x with respect to ∂H. For every function v : Rn → R, we define
its polarization relative to H as vH : Rn → Rn such that

vH(x) :=

{
max{v(x), v(x̄)}, if x ∈ H,
min{v(x), v(x̄)}, if x ∈ Rn \ H.

It is straightforward to check that polarization preserves continuity and moreover, if v
is a compact supported continuous function, then also vH ∈ Cc(Rn). Furthermore, every
polarization preserves the Lp-norms (1 ≤ p ≤ +∞) and the following pointwise identity
holds

(2.1) v(x) + v(x̄) = vH(x) + vH(x̄) for every x ∈ Rn.

Proposition 2.6 (Ex. 2.4 of [9], [29]). Let H ⊂ Rn be a half-space and f ∈ L1(Rn) be
non-negative, then

|{x : f(x) > s}| = |{x : fH(x) > s}| for every s > 0.

We will use the following characterization for radial, radially non-increasing functions.

Lemma 2.7 (Lemma 6.3 of [8]). A function v ∈ Cc(Rn) is radial and radially non-increasing
if and only if v = vH for every half-space H ⊂ Rn such that 0 ∈ int(H).

Lemma 2.8 (Lemma 3 of [22]). Let H be a half-space such that 0 ∈ int(H) and G = G(x, y)
the Green function of ∆2 in B relative to Dirichlet boundary conditions. Then, for every
x, y ∈ H, x 6= y the following inequalities hold

(i) G(x, y) ≥ max{G(x, ȳ), G(x̄, y)};
(ii) G(x, y)−G(x̄, ȳ) ≥ |G(x, ȳ)−G(x̄, y)|.

Moreover, if x, y ∈ int(B ∩H), the inequalities in (i) and (ii) are strict.

3. Proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3. Besides the regularity of the solutions of
either (PN ) or (PD), Theorem 1.3 provides an explicit description of the optimal set S as a
sub-level set of u2. Once established the connection between (G) and (CP), the knowledge
of the optimal set S will be crucial to provide also a description of any optimal density ρ,
which in turn will play a crucial role in the study of the symmetry properties of u.

Before proving regularity in our case, we recall the following result in a more general
setting.

Proposition 3.1 (Theorem 2.20 of [24]). Let Ω ⊂ Rn be a bounded domain, with C4-smooth
boundary ∂Ω, and let f ∈ Lp(Ω) for p ∈ (1,∞). Then

(3.1) ∆2u = f in Ω,

coupled either with Dirichlet or with Navier boundary conditions, admits a unique strong
solution2 in W 4,p(Ω).

2For strong solution we mean a function u that satisfies the equation (3.1) almost everywhere.
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Now, we are ready to prove Part (a) of Theorem 1.3.

• Proof of Part (a). Let us go back to the fourth-order PDE

∆2u+ αχSu = λu in Ω

and define the function

(3.2) f(x) := λu(x)− αχS(x)u(x).

Since u is a weak solution of either (PN ) or (PD), it holds that u ∈ H2(Ω). This implies
that f ∈ L2(Ω), and so f ∈ Lp(Ω) for every p ∈ [1, 2], being Ω bounded. Therefore, by
Proposition 3.1, we know that u ∈W 4,p(Ω) for every p ∈ [1, 2].
Now, by Theorem 2.1

H4(Ω) ⊂ Lq(Ω) for all q ∈

{
[1, 2∗], if n > 8,

[1, 2∗), if n ≤ 8,
2∗ :=

{
2n
n−8 , if n > 8,

+∞, if n ≤ 8.

If 2∗ = +∞, then u and f belong to Lp(Ω) for all p ∈ [1,∞). By Proposition 3.1, u ∈
W 4,p(Ω) for all p ∈ [1,∞). In particular, u ∈ W 4,p(Ω) for all p > n, hence u ∈ C3,γ(Ω) for
all γ ∈ (0, 1), by Theorem 2.2. If 2∗ < ∞, we use a bootstrap argument. For every j ∈ N,
we define

2∗j :=

{ 2n
n−8j , if n > 8j,

+∞, if n ≤ 8j.

It is straightforward to verify, by induction on j ≥ 1, that 2∗j+1 = (2∗j )
∗. Since u ∈ L2∗(Ω),

also f ∈ L2∗(Ω) and, again by Proposition 3.1, we have u ∈ W 4,2∗(Ω). Iterating the
application of both Proposition 3.1 and Theorem 2.1 j-times, as long as 2∗j < ∞, we get

that u ∈W 4,2∗j−1(Ω) and

W 4,2∗j−1(Ω) ⊂ L2∗j (Ω).

Now, for every n ∈ N, there exists j̄ ∈ N such that n ≤ 8j̄ and so, 2∗
j̄

= +∞. After j̄

iterations, we can conclude by using Theorem 2.2, as already done in the case 2∗ =∞. �

Remark 3.2. The regularity of u cannot be improved up to C4(Ω), at least in the more
relevant cases when ∅ 6= S ( Ω, due to the presence of the characteristic function.
We want also to stress another fact: from the modeling point of view, it is more reasonable to
work with a Lipschitz boundary ∂Ω. In this case, we can obtain the same regularity result of
Theorem 1.3-(a), but only in the interior, mainly due to the fact that the argument provided
by [24, Theorem 2.20] requires a smooth enough boundary. Therefore, if we restrict our
attention to interior regularity, we can use the same bootstrap argument presented in the
proof of Theorem 1.3-(a) to prove that a weak solution u of (PN ) (or (PD)) is such that

u ∈W 4,q
loc (Ω) ∩ C3,γ(Ω)

for every q ∈ [1,∞) and for every γ ∈ (0, 1).

Let us prove now the existence of a G-optimal pair. As for the regularity, the strategy
of the proof of existence is independent of the boundary conditions imposed. Therefore,
we will adopt the compact notation W for the Sobolev space over which we consider the
infimum.

We first prove an auxiliary result.

Proposition 3.3. Let A ≥ 0 be a fixed non-negative constant,

A :=

{
η : Ω→ R : 0 ≤ η ≤ 1 a.e. in Ω,

ˆ
Ω
η = A

}
,
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and u ∈ W such that ‖u‖L2(Ω) = 1. If we define the functional I : A → R as

I(η) :=

ˆ
Ω
η(x)u2(x) dx,

then the minimization problem

(3.3) inf
η∈A

I(η)

admits a solution η = χS, with S belonging to the following set

(3.4)
St :=

{
S ⊂ Ω : |S| = A, {u2 < t} ⊂ S ⊂ {u2 ≤ t}

}
,

where t := sup{s > 0 : |{u2 < s}| < A}.
In particular, for every α > 0

(3.5) Λ(α,A) = inf
η∈A

inf
u∈W\{0}

´
Ω(∆u)2 + α

´
Ω ηu

2´
Ω u

2

and the set S, that realizes Λ, belongs to St.

Proof. We observe that for every set S of measure A, its characteristic function χS belongs
to A. Hence, it is enough to prove that I(χS) ≤ I(η) for every S ⊂ Ω satisfying (3.4) and
for every η ∈ A. A simple splitting of the domain of integration yieldsˆ

Ω
u2(χS − η)dx =

ˆ
{u2<t}

u2(χS − η)dx+

ˆ
{u2>t}

u2(χS − η)dx+

ˆ
{u2=t}

u2(χS − η)dx

≤ t
ˆ
{u2<t}

(χS − η)dx− t
ˆ
{u2>t}

ηdx+ t

ˆ
{u2=t}

(χS − η)dx

= t

(ˆ
{u2<t}

(χS − η)dx+

ˆ
{u2>t}

(χS − η)dx+

ˆ
{u2=t}

(χS − η)dx

)

= t

ˆ
Ω

(χS − η)dx = 0.

This closes the proof of the first part of the statement and easily gives

(3.6) inf
η∈A

inf
u∈W\{0}

´
Ω(∆u)2 + α

´
Ω ηu

2´
Ω u

2
= inf

S∈St
inf

u∈W\{0}

´
Ω(∆u)2 + α

´
Ω χSu

2´
Ω u

2
.

Indeed, since
{χS : S ∈ St} ⊆ A,

we get

inf
η∈A

inf
u∈W\{0}

´
Ω(∆u)2 + α

´
Ω ηu

2´
Ω u

2
≤ inf

S∈St
inf

u∈W\{0}

´
Ω(∆u)2 + α

´
Ω χSu

2´
Ω u

2
.

The opposite inequality follows directly from the previous computation.
Now, on one hand,

inf
η∈A

inf
u∈W\{0}

´
Ω(∆u)2 + α

´
Ω ηu

2´
Ω u

2
≤ Λ(α,A),

being χS ∈ A for all S of measure A. On the other hand, by definition (G) of Λ

Λ(α,A) ≤ inf
S∈St

inf
u∈W\{0}

´
Ω(∆u)2 + α

´
Ω χSu

2´
Ω u

2
.

Together with (3.6), this implies (3.5) and concludes the proof. �
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We are now ready to proceed with the proof of the existence of a G-optimal pair. In
what follows we fix α > 0 and A ∈ [0, |Ω|] and we simplify the notation by writing

Λ := Λ(α,A) and λ(S) := λ(α, S) for every S ⊂ Ω.

• Proof of existence. Let (Sk)k be a minimizing sequence, meaning |Sk| = A for every k ∈ N
and

λ(Sk) −→ Λ as k →∞.
For every k ∈ N, we consider a first eigenfunction uk ∈ W of ∆2 + αχSk . Without loss of
generality, we can assume that ‖uk‖L2(Ω) = 1 for every k ∈ N.

Now, the sequences (χSk)k ⊂ L2(Ω) and (λ(Sk))k are bounded. Keeping in mind that the
norm used is ‖u‖2W =

´
Ω(∆u)2, the previous considerations imply that (uk)k is a bounded

sequence in W. Since both the spaces L2(Ω) and W are Hilbert spaces, we can extract two
sub-sequences, still denoted (χSk)k and (uk)k, and we can find two functions η ∈ L2(Ω) and
u ∈ W, such that

χSk ⇀ η in L2(Ω), as k →∞,
uk ⇀ u in W, as k →∞.

Hence, up to a subsequence, we have the following:

(i) uk → u in L2(Ω), as k →∞;

(ii)
´

Ω χSkukψdx→
´

Ω ηuψdx for every ψ ∈ C∞0 (Ω), as k →∞;

(iii)
´

Ω η(x)dx = A.

Indeed, (i) follows from the compact embedding W ↪→ L2(Ω); (ii) follows from (i) and
Hölder’s inequality in the direct computation∣∣∣∣ˆ

Ω
(χSkuk − ηu)ψdx

∣∣∣∣ ≤ ∣∣∣∣ˆ
Ω
χSk(uk − u)ψdx

∣∣∣∣+

∣∣∣∣ˆ
Ω

(χSk − η)uψdx

∣∣∣∣
≤ ‖uk − u‖L2(Ω)‖ψ‖L2(Ω) +

∣∣∣∣ˆ
Ω

(χSk − η)uψdx

∣∣∣∣→ 0

for every ψ ∈ C∞0 (Ω). To prove (iii) we argue as follows: since χSk ⇀ η in L2(Ω) and Ω is
bounded, we have in particular

A =

ˆ
Ω
χSk · 1 dx→

ˆ
Ω
η · 1 dx,

which gives (iii) by uniqueness of the limit.
By definition, any pair (uk, Sk) satisfies

(3.7) ∆2uk + αχSkuk = λSkuk

and so

(3.8)

ˆ
Ω

∆uk∆ψ + α

ˆ
Ω
χSkukψ = λSk

ˆ
Ω
ukψ for all ψ ∈ C∞0 (Ω).

By previous remarks, we can pass to the limit in (3.8) as k →∞, findingˆ
Ω

∆u∆ψ + α

ˆ
Ω
ηuψ = Λ

ˆ
Ω
uψ.

Integrating by parts, we recover the variational formulation of the eigenvalue equation
associated to Λ, which implies that u ∈ W solves the equation

(3.9) ∆2u+ αηu = Λu,
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in the weak sense. Now, the sets

Pa :=
{
w ∈ L2(Ω) : w(x) ≤ 1 for a.e. x ∈ Ω

}
Pb :=

{
w ∈ L2(Ω) : w(x) ≥ 0 for a.e. x ∈ Ω

}
are strongly closed in the L2-topology and convex, then weakly closed. Since (χSk)k ⊂
Pa ∩ Pb and χSk ⇀ η in L2(Ω),

0 ≤ η(x) ≤ 1 for a.e. x ∈ Ω.

Thus, η ∈ A. In order to end the proof, we need to show that we can replace the function
η with a characteristic function of a suitable set S ⊂ Rn of measure A. To this aim, let us
multiply (3.9) by u and let us integrate it over Ω. Since by (i) we have ‖u‖L2(Ω) = 1, it
follows that ˆ

Ω
(∆u)2 + α

ˆ
Ω
ηu2 = Λ.

By Proposition 3.3, we have that there exists a set S ⊂ Ω satisfying (3.4) such that

Λ =

ˆ
Ω

(∆u)2 + α

ˆ
Ω
ηu2 ≥

ˆ
Ω

(∆u)2 + α

ˆ
Ω
χSu

2.

Hence, from the definition of Λ as an infimum, we have thatˆ
Ω

(∆u)2 + α

ˆ
Ω
χSu

2 = Λ,

and therefore the pair (u, S) is a G-optimal pair. �

We can now give a precise description of the optimal set S in terms of a sub-level of u2.

• Proof of Part (b). Let (u, S) be a G-optimal pair. By the proof of the existence result,
we know that S ∈ St, with t defined as in (3.4). Hence, it is enough to prove that Nt :=
{u2 = t} ⊂ S. Now, if t > 0, Nt = {u =

√
t} ∪ {u = −

√
t}. By [26, Lemma 7.7], we have

that ∆2u = 0 a.e. in Nt, being u constant in both {u =
√
t} and {u = −

√
t}. Therefore,

the Euler-Lagrange equation associated to (G) reduces to

(Λ · Id− αχS)u = 0 a.e. in Nt.
Since u 6= 0 in Nt, this implies that Λ · Id = αχS a.e. in Nt, which yields in turn Nt ⊂ S,
being Λ, α > 0 . This concludes the proof in the case t > 0.

If t = 0, we have to prove that N0 = {u = 0} ⊂ S. By (3.4), we know that S ⊂ {u = 0},
thus χSu = 0 in Ω and the equation reduces to ∆2u = Λu in Ω. Thus, Λ = µ(Ω), where
µ(Ω) is the first eigenvalue of ∆2 in Ω with either Navier or Dirichlet boundary conditions,
and u is the corresponding first eigenfunction. Since ∆2 − Λ · Id has elliptic principal
part and constant coefficients, it is analytic hypoelliptic, see [39, Chapter 3]. Hence, u
is a real analytic function and by [30, Proposition 0], its zero set has zero measure. The
proof of this last statement relies on the Weierstrass preparation theorem. In conclusion,
0 ≤ A ≤ |{u = 0}| = 0 and since S is defined up to zero-measure sets, we can put
S = {u = 0}. �

As a consequence of the previous result, we know in particular that S contains a neigh-
borhood of ∂Ω.

The next proposition deals with the dependence of Λ on the parameters α and A. This
is the analogue of [11, Proposition 10]. For notational ease, in what follows we write Sc

instead of Sc ∩ Ω.

Proposition 3.4. The following properties hold

• for A > 0, Λ(α,A) is increasing in α;
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• Λ(α,A) is Lipschitz continuous in α with Lipschitz constant A|Ω|−1;
• for A < |Ω|, there exists a unique value of α, denoted by ᾱ(A), such that Λ(α,A) =
α;
• for A < |Ω|, Λ(α,A)− α is decreasing in α;
• Λ(α,A) is continuous and non-decreasing in A.

Proof. Let A ∈ [0, |Ω|] and take 0 < α1 < α2 to fix the ideas. Denote (u1, S1) and (u2, S2) G-
optimal pairs corresponding to (α1, A) and (α2, A) respectively. Without loss of generality,
we can assume ‖u1‖L2(Ω) = ‖u2‖L2(Ω) = 1. Then, by the optimality of (u1, S1) for the data
(α1, A), we get

Λ(α1, A) =

ˆ
Ω

(∆u1)2 + α1

ˆ
S1

u2
1 ≤

ˆ
Ω

(∆u2)2 + α1

ˆ
S2

u2
2

≤
ˆ

Ω
(∆u2)2 + α2

ˆ
S2

u2
2 = Λ(α2, A)

where the last inequality is strict if A > 0, since u2 cannot be zero a.e. in S2. Indeed, if by
contradiction u2 = 0 a.e. in S2, since S2 is of the form {u2

2 ≤ t} for some t ≥ 0, it results
that t = 0. By the discussion in the proof of Theorem 1.3-(b), this implies that A = 0,
which is a contradiction. Hence, if A > 0, Λ(α,A) is increasing in α. On the other hand,
by the optimality of (u2, S2) for the data (α2, A), we obtain

Λ(α2, A) =

ˆ
Ω

(∆u2)2 + α2

ˆ
S2

u2
2 ≤

ˆ
Ω

(∆u1)2 + α2

ˆ
S1

u2
1

= Λ(α1, A) + (α2 − α1)

ˆ
S1

u2
1 ≤ Λ(α1, A) + (α2 − α1)

A

|Ω|
,

where the last estimate comes from ´
{u2≤t} u

2

|{u2 ≤ t}|
≤

´
Ω u

2

|Ω|
,

which in turn is a simple consequence of {u2 ≤ t} ∪ {u2 > t} = Ω, {u2 ≤ t} ∩ {u2 > t} = ∅,
and  

{u2>t}
u2 ≥

 
{u2≤t}

u2.

Altogether, we get for α1 < α2

0 ≤ Λ(α2, A)− Λ(α1, A) ≤ (α2 − α1)
A

|Ω|
.

Analogously, if α1 > α2 we have

0 ≤ Λ(α1, A)− Λ(α2, A) ≤ (α1 − α2)
A

|Ω|
,

and so for all α1, α2 > 0

|Λ(α1, A)− Λ(α2, A)| ≤ A

|Ω|
|α1 − α2|,

that is Λ(·, A) is Lipschitz continuous with Lipschitz constant A|Ω|−1. In particular, for
A < |Ω|, Λ(·, A) is a contraction mapping and, by the Banach fixed-point Theorem, it
admits a unique fixed-point ᾱ(A).
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Now, suppose that A < |Ω| and 0 < α1 < α2, and estimate in the same notation as above

Λ(α2, A)− α2 ≤
ˆ

Ω
(∆u1)2 + α2

ˆ
S1

u2
1 − α2

= Λ(α1, A)− α1 − (α2 − α1)

(ˆ
Ω
u2

1 −
ˆ
S1

u2
1

)
.

In order to prove that Λ(α,A)− α is decreasing in α it remains to show thatˆ
Ω
u2

1 −
ˆ
S1

u2
1 > 0.

We argue by contradiction and supposeˆ
Ω
u2

1 −
ˆ
S1

u2
1 =

ˆ
Sc1

u1 = 0,

that is u1 = 0 a.e in Sc1. Since Sc1 = {u2
1 > t} and u1 is continuous, Sc1 is open and, up to

a translation, we can assume that 0 ∈ Sc1. Furthermore, |Sc1| = |Ω| − A > 0 and |∆2u1| =
|Λ(α1, A) · Id − α1χS1 | · |u1| ≤ (Λ(α1, A) + α1)|u1|. Hence, by the Unique Continuation
Theorem in [34], u1 ≡ 0 in Ω. This is impossible being ‖u1‖L2(Ω) = 1 and concludes the
proof of this part.

Finally, let 0 ≤ A1 < A2 ≤ |Ω| and α > 0. Denote (u1, S1) and (u2, S2) G-optimal
pairs corresponding to the data (α,A1) and (α,A2) respectively. Let S′2 ⊂ Ω be such that
|S′2| = A2 and S′2 ⊃ S1. Then, by the optimality of Λ(α,A2) we get

Λ(α,A1) =

ˆ
Ω

(∆u1)2 + α

ˆ
S′2

u2
1 − α

ˆ
S′2\S1

u2
1

≥
ˆ

Ω
(∆u2)2 + α

ˆ
S2

u2
2 − α

ˆ
S′2\S1

u2
1 = Λ(α,A2)− α

ˆ
S′2\S1

u2
1.

On the other hand, denoting by S′1 a subset of S2 having |S′1| = A1 and using the optimality
of Λ(α,A1), we have

Λ(α,A1) ≤
ˆ

Ω
(∆u2)2 + α

ˆ
S′1

u2
2 ≤

ˆ
Ω

(∆u2)2 + α

ˆ
S2

u2
2 = Λ(α,A2).

Therefore,

0 ≤ Λ(α,A2)− Λ(α,A1) ≤ α
ˆ
S′2\S1

u2
1,

and so Λ(α, ·) is non-decreasing and

|Λ(α,A1)− Λ(α,A2)| ≤ α
ˆ
S′2\S1

u2
1 → 0 as A1 → A2.

�

Proposition 3.5. Every set {u2 = s}, s ≥ 0, has zero measure, except possibly {u2 = t}
when α = ᾱ(A).

Proof. We use the same notation as in the proof of Theorem 1.3-(b). The argument is
similar to the one contained in [11, Theorem 1-(c)], but we present it here for the sake of
completeness. If s > t, Ns ⊂ Sc. Hence,

0 = ∆2u = (Λ · Id− αχS)u = Λu a.e. on Ns.
Since Λ > 0 and u 6= 0 on Ns, |Ns| = 0. Now, if s = t, Ns ⊂ S and so

0 = (Λ− α)u a.e. on Ns.
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Thus, if α 6= ᾱ(A) = Λ, we can conclude again that |Nt| = 0. Finally, if s < t, again Ns ⊂ S
and ∆2u = (Λ− α)u in the open set {u2 < t}. The function v := u− s solves the equation

∆2v = (Λ− α)v + (Λ− α)s in {u2 < t}.

Therefore, v is a real analytic function and so |{v = 0}| = |{u = s}| = 0. �

4. Proof of Theorem 1.4

In this section, as in [11], we highlight the relations between the two problems (G) and
(CP), which will be useful in proving the symmetry results later on.

• Proof of Theorem 1.4. For (a), let us consider a CP-minimizer (u, ρ). We write any ρ ∈ P
as ρ = H + (ρ−H) and so the PDE in (1.2) (or (1.3)) reads as

(4.1) ∆2u+ Θ(H − ρ)u = ΘHu in Ω.

Claim: it is possible to choose α > 0 and A ∈ [0, |Ω|] for which (4.1) can be seen in the
form

∆2u+ αηu = Λ(α,A)u in Ω

for some η ∈ A := {η : Ω→ R : 0 ≤ η ≤ 1,
´

Ω η = A}.

In order to prove the claim, we put

(4.2) α := Θ(H − h) > 0, η :=
H − ρ
H − h

, and consequently A :=
H|Ω| −M
H − h

.

Thus, we need to show that

(i) 0 ≤ H−ρ
H−h ≤ 1;

(ii) 0 ≤ H |Ω|−M
H−h ≤ |Ω|;

(iii) Λ
(

Ω,Θ(H − h), H |Ω|−MH−h

)
= ΘH.

Now, (i) follows immediately by the bounds h ≤ ρ ≤ H, while (ii) follows from the assump-
tion M ∈ [h|Ω|, H|Ω|]. Hence, Proposition 3.3 applies and we know that

Λ(α,A) = inf
η∈A

inf
u∈W\{0}

´
Ω(∆u)2 + α

´
Ω ηu

2´
Ω u

2
,

with α, η, A as in (4.2). In terms of ρ, by (4.2) this reads as

(4.3) Λ(α,A) = ΘH + inf
ρ∈P

inf
u∈W\{0}

´
Ω(∆u)2 −Θ

´
Ω ρu

2´
Ω u

2
.

By the definition of Θ as an infimum,
´

Ω(∆u)2 −Θ
´

Ω ρu
2 ≥ 0, hence

(4.4) inf
ρ∈P

inf
u∈W\{0}

´
Ω(∆u)2 −Θ

´
Ω ρu

2´
Ω u

2
≥ 0.

On the other hand, since ρ ≤ H, and using again the definition of Θ, we get

(4.5)

inf
ρ∈P

inf
u∈W\{0}

´
Ω(∆u)2 −Θ

´
Ω ρu

2´
Ω u

2
= inf

ρ∈P
inf

u∈W\{0}

(´
Ω(∆u)2´

Ω ρu
2
−Θ

) ´
Ω ρu

2´
Ω u

2

≤ H inf
ρ∈P

inf
u∈W\{0}

(´
Ω(∆u)2´

Ω ρu
2
−Θ

)
= 0.
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Combining together (4.4) and (4.5), we obtain

inf
ρ∈P

inf
u∈W\{0}

´
Ω(∆u)2 −Θ

´
Ω ρu

2´
Ω u

2
= 0,

and, by (4.3), (iii) is proved. This concludes the proof of the claim.
Now, by Proposition 3.3, we know that η = χS for a set S ∈ St as in (3.4). Hence, by

(4.2),

ρ = H − (H − h)η = H − (H − h)χS = hχS +HχSc ,

which closes the proof of part (a).
We are now ready to prove (b). Here and in what follows, ρ and S are as in the state-

ment of part (a). We first observe that the “only if” part and the fact that Λ(α,A) =
Θ(h,H,M)H for α, A as in (1.4)-(1.5) have been shown in the proof of (a). Hence, it
remains to prove that if (u, S) realizes Λ := Λ(α,A), with α as in (1.4), and A as in (1.5),
then (u, ρ) realizes Θ := Θ(h,H,M). By assumption, we have

Λ = ΘH =

´
Ω(∆u)2 + Θ(H − h)

´
Ω χSu

2´
Ω u

2
,

thus

Θ =

´
Ω(∆u)2 −Θ

´
Ω ρu

2 + ΘH
´

Ω(χS + χSc)u
2

H
´

Ω u
2

=

´
Ω(∆u)2 −Θ

´
Ω ρu

2

H
´

Ω u
2

+ Θ.

Therefore,

Θ

ˆ
Ω
ρu2 =

ˆ
Ω

(∆u)2,

that is (u, ρ) realizes Θ.
For part (c), we observe that, by h < H, Λ > 0 and (1.4), we immediately get α > 0.

Furthermore, if A ∈ [0, |Ω|),

α =
H − h
H

Λ(α,A)

{
< Λ(α,A) if h > 0,

= Λ(α,A) if h = 0.

While, if A = |Ω|, S = Ω and ρ ≡ h by part (a). Thus, Θ(H,h,M) = µ(Ω)/h for any H > h.
Hence, by (1.4), α = (H − h)µ(Ω)/h can take any value in (0,∞) varying H ∈ (h,∞). �

Remark 4.1. We end this section by noting explicitly that, by part (a) of the previous
theorem it follows in particular that, if h = 0, ρ ≡ 0 in S. Now, since |{ρ = 0}| = 0 by
the definition of admissible densities ρ ∈ P, |S| = 0. Moreover, since S is defined up to a
zero-measure set, Sc = Ω. Therefore, when h = 0 problem (CP) reduces to the standard
eigenvalue problem for the biharmonic operator.
We further observe that by the very definition of t = t(u) in (3.4), denoting by (u, ρu) a
CP-optimal pair, since ρu = hχ{u2≤t(u)} + Hχ{u2>t(u)}, we have that ρµu = ρu. Indeed

t(µu) = µ2t(u) and so {u2 ≤ t(u)} = {(µu)2 ≤ t(µu)}.

5. Proof of Theorem 1.5

The aim of this section is to address qualitative properties of the CP-optimal pairs (u, ρ),
such as positivity and radial symmetry in the case Ω = B := {x ∈ Rn : |x| < 1}.

We start with the positivity of u.

Proposition 5.1. Let Ω = B and let (u, ρ) be a CP-optimal pair, then u > 0 in B.
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Proof. Let w be a solution of

(5.1) ∆2w = Θρ|u| in B,

coupled either with Navier or with Dirichlet boundary conditions. By Lemma 2.3, w > 0
a.e. in B, otherwise we would have u ≡ 0 in B which is impossible. Now, suppose by
contradiction that u is sign-changing and consider the functions w − u and w + u. Then

∆2(w − u) = 2Θρu− and ∆2(w + u) = 2Θρu+ in B.

Hence, ˆ
B

∆(w − u)∆vdx ≥ 0 and

ˆ
B

∆(w + u)∆vdx ≥ 0 for all v ∈ C+.

Again by Lemma 2.3, we get that either ±u ≡ w or |u| < w a.e. in B. In the first case,
being w > 0, up to a change of sign of u, we are done. In the latter, we multiply (5.1) by
w, integrate over B and getˆ

B
(∆w)2 = Θ

ˆ
B
ρ|u|w < Θ

ˆ
B
ρw2,

which implies ´
B(∆w)2´
B ρw

2
< Θ.

This contradicts the minimality of Θ and concludes the proof. �

Remark 5.2. As for Lemma 2.3, if we deal with Navier boundary conditions, we can consider
more general open sets in Proposition 5.1.
There is a simple consequence of the positivity result in Proposition 5.1: for α ≤ ᾱ(A) we
have an equivalence between (CP) and (G) therefore, recalling Theorem 1.4, the optimal
set S can be written as a sub-level set of the function u itself, i.e.

S = {u ≤
√
t}.

For the symmetry issues we need to distinguish the case with Dirichlet boundary condi-
tions from the one with Navier boundary conditions.

Before proving the symmetry result for Dirichlet boundary conditions, we need to prove
some preliminary lemmas.

In the rest of the section we consider a CP-optimal pair (u, ρ) and we extend u ∈ C0(B) :=
{ϕ ∈ C(B) : ϕ = 0 on ∂B} by defining it to be zero outside B. We must consider an
extension of ρ as well. We will denote it by

ρu := hχ{u≤
√
t} +Hχ{u>

√
t},

where we are considering sub-level sets of the extended function u.

Lemma 5.3. Let H ⊂ Rn be a half-space. Then

[ρu u]H ≡ ρuH uH.

Proof. We prove this lemma by using the definitions of the two functions involved, namely

[ρu u]H(x) =

{
max{ρu(x)u(x), ρu(x̄)u(x̄)}, if x ∈ H,
min{ρu(x)u(x), ρu(x̄)u(x̄)}, if x ∈ Rn \ H,

and

ρuH(x)uH(x) =

{
huH(x), if uH(x) ≤

√
t,

HuH(x), if uH(x) >
√
t.

Now, for every x ∈ Rn four cases may occur:
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• x ∈ {u ≤
√
t} and x̄ ∈ {u ≤

√
t};

• x ∈ {u ≤
√
t} and x̄ 6∈ {u ≤

√
t};

• x 6∈ {u ≤
√
t} and x̄ ∈ {u ≤

√
t};

• x 6∈ {u ≤
√
t} and x̄ 6∈ {u ≤

√
t}.

We start with considering x ∈ H. In the first case

[ρu u]H(x) = max{hu(x), hu(x̄)} = huH(x).

Furthermore, since u(x) ≤
√
t and u(x̄) ≤

√
t, also uH(x) = max{u(x), u(x̄)} ≤

√
t and so

ρuH(x)uH(x) = huH(x).

If the second case occurs, we know that u(x̄) > u(x) and consequently

[ρu u]H(x) = max{hu(x), Hu(x̄)} = Hu(x̄) = HuH(x).

On the other hand, since u(x̄) >
√
t, also uH(x) = max{u(x), u(x̄)} >

√
t, which implies

ρuH(x)uH(x) = HuH(x)

and concludes the proof also in this case. With similar arguments it is possible to check the
remaining cases both for x ∈ H and x ∈ Rn \ H. �

Lemma 5.4. Let (u, ρu) be a CP-optimal pair in the ball B and H ⊂ Rn a half-space. If
ρuu = [ρuu]H, then u = uH.

Proof. Suppose first that h > 0. By hypothesis and Lemma 5.3, we know that for every
x ∈ Rn

(5.2)

{
hu(x) if u(x) ≤

√
t

Hu(x) if u(x) >
√
t

=

{
huH(x) if uH(x) ≤

√
t

HuH(x) if uH(x) >
√
t.

Suppose by contradiction that there exists x ∈ Rn such that uH(x) 6= u(x). Then, if
u(x) ≤

√
t and uH(x) ≤

√
t, by (5.2), hu(x) = huH(x) which is absurd. Analogously, the

case u(x) >
√
t and uH(x) >

√
t cannot occur if uH(x) 6= u(x). Now, if u(x) ≤

√
t and

uH(x) >
√
t, by (5.2), we get hu(x) = HuH(x) and so clearly u(x) 6= 0. Hence,

√
t < uH(x) =

h

H
u(x) < u(x) ≤

√
t

which is a contradiction. Analogously, we can rule out the opposite case u(x) >
√
t and

uH(x) ≤
√
t, and conclude the proof for h > 0.

If h = 0, by Remark 4.1, u >
√
t in B, and consequently uH can attain values only in

{0} ∪ (
√
t,∞). Now, if x ∈ Rn \B, u(x) = 0. Then, in view of (5.2), for every x ∈ Rn \B

0 =

{
0, if uH(x) ≤

√
t,

HuH(x), if uH(x) >
√
t,

which implies that uH(x) ≤
√
t and therefore uH(x) = 0. Hence, u(x) = 0 = uH(x) for every

x ∈ Rn \B. Analogously it can be seen that u ≡ uH in B and the proof is concluded. �

Let G : B × B → R be the Green function for the biharmonic operator with Dirichlet
boundary conditions on the ball. We recall that G has an explicit representation due to
Boggio [7]. We are now considering the trivial zero extension of G to the whole of Rn×Rn.
We define ũ : Rn → R as

ũ(x) := Θ

ˆ
Rn
G(x, y)ρu(y)u(y) dy,
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then ũ ≡ 0 in Rn \B and ũ|B is the unique solution of the problem ∆2v = Θ
(
hχ{u≤

√
t} +Hχ{u>

√
t}

)
u, in B,

v = ∂v
∂ν = 0, on ∂B.

By uniqueness and by the trivial extension of u, if (u, ρ) is a CP-optimal pair, ũ ≡ u.

Lemma 5.5. Let H be a half-space such that 0 ∈ int(H), and for every x ∈ Rn

(5.3) w(x) := Θ

ˆ
Rn
G(x, y)ρuH(y)uH(y)dx.

Then the following inequalities hold

(i) w(x) ≥ w(x̄) for every x ∈ H;
(ii) w(x) ≥ uH(x) for every x ∈ H;
(iii) w(x) + w(x̄) ≥ uH(x) + uH(x̄) for every x ∈ Rn.

Moreover, if ρuu 6≡ [ρuu]H, then (iii) is strict for every x ∈ int(B ∩H).

Proof. For the proofs of (i), (ii), and (iii), we refer to [22, Lemma 4]. We now show the last
part of the statement whose proof is slightly different from the one contained in [22], since
in our case the function f is ρuu which is not continuous. However, formula (4.18) of [22]
still holds, namely for every x ∈ Rn
(5.4)

w(x) + w(x̄)− [uH(x) + uH(x̄)]

= Θ

ˆ
H

(
G(x, y) +G(x̄, y)− [G(x, ȳ) +G(x̄, ȳ)]

)(
ρuH(y)uH(y)− ρu(y)u(y)

)
dy ≥ 0.

By Lemma 2.8, we know that if x, y ∈ int(B ∩H),

G(x, y) +G(x̄, y) > G(x, ȳ) +G(x̄, ȳ),

thus, by (5.4) and by Lemma 5.3, it is enough to prove that we can find a positive-measure
subset of int(B ∩H) in which

ρuHuH > ρuu.

We first observe that

(5.5) ρuHuH ≡ ρuu ≡ 0 in Rn \B.

Indeed, since u > 0 in B and u ≡ 0 in Rn \B,

(5.6) uH(x) =

{
max{0, u(x̄)} = u(x̄), if x ∈ H,
min{0, u(x̄)} = 0, if x ∈ Rn \ H

for every x ∈ Rn \ B. Furthermore, since 0 ∈ int(H), |x̄| ≥ |x| for every x ∈ H. Thus,
x 6∈ B implies x̄ 6∈ B, and so u(x̄) = 0 in the first line of the definition (5.6), which yields
(5.5). Moreover, uH ≡ u on B ∩ ∂H, because for every x ∈ ∂H it holds x = x̄. Therefore,
ρuHuH 6≡ ρuu ensures that there exists y ∈ B \∂H for which ρuH(y)uH(y) 6= ρu(y)u(y). We
can always assume y ∈ int(B ∩ H), since if this is not the case, ȳ will do the job, being by
(2.1) and Lemma 5.3

0 6= ρuH(y)uH(y)− ρu(y)u(y) = ρu(ȳ)u(ȳ)− ρuH(ȳ)uH(ȳ).

Hence, there exists y ∈ int(B ∩H) such that

(5.7)

{
hu(y) if u(y) ≤

√
t

Hu(y) if u(y) >
√
t
6=

{
huH(y) if u(y) ≤

√
t

HuH(y) if u(y) >
√
t.
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Now, since y ∈ H, if u(y) >
√
t, also uH(y) >

√
t, and so we have only the following three

possible cases.

Case u(y) >
√
t. By (5.7) and the fact that y ∈ H, we know that Hu(y) < HuH(y).

Hence, by the continuity of u and uH we can find a neighborhood Uy of y such that

Uy ⊂ int(B ∩H) ∩ {u >
√
t} ∩ {uH >

√
t}

and

(5.8) ρuH(x)uH(x) > ρu(x)u(x) for every x ∈ Uy.

Case u(y) ≤
√
t and uH(y) >

√
t. Again, by (5.7), we get HuH(y) 6= hu(y), and since

uH ≥ u in H and H > h, this yields

HuH(y) ≥ Hu(y) > hu(y).

Now, if u(y) <
√
t, we can find a neighborhood Uy such that

Uy ⊂ int(B ∩H) ∩ {u <
√
t} ∩ {uH >

√
t}

and HuH(x) > hu(x) for every x ∈ Uy, that is to say (5.8) holds also in this case. If

u(y) =
√
t then clearly uH(y) > u(y) and by continuity there exists a neighborhood Uy ⊂

int(B ∩H) ∩ {uH >
√
t} where uH > u. This implies that

HuH(x) > Hu(x) > hu(x) for every x ∈ Uy,

and in turn (5.8) holds for both x ∈ {u ≤
√
t} and x ∈ {u >

√
t}.

Case u(y) ≤
√
t and uH(y) ≤

√
t. By (5.7), we get huH(y) > hu(y) and by continuity we

can find Uy ⊂ int(B ∩H) where uH > u. Let x ∈ Uy. If uH(x) ≤
√
t, then also u(x) ≤

√
t,

and so huH(x) > hu(x) is equivalent to ρuH(x)uH(x) > ρu(x)u(x). If uH(x) >
√
t, then

HuH(x) > Hu(x) > hu(x).

Hence, for both x ∈ {u ≤
√
t} and x ∈ {u >

√
t},

ρuH(x)uH(x) > ρu(x)u(x).

Then, also in this case (5.8) holds, which concludes the proof. �

Lemma 5.6. Let H ⊂ Rn be a half-space with 0 ∈ int(H), and w be defined as in (5.3).
Then,

(5.9)

ˆ
B
wρuHuH ≤

ˆ
B
ρuHw

2.

Furthermore, if equality holds, then ρuu ≡ [ρuu]H.

Proof. By Lemma 5.5 we get

(5.10)

ˆ
B

[ρuHw
2 − ρuHuHw]dx =

ˆ
H
{ρuH(x)w(x)[w(x)− uH(x)]

+ ρuH(x̄)w(x̄)[w(x̄)− uH(x̄)]}dx

≥
ˆ
H

[w(x)− uH(x)] · [ρuH(x)w(x)− ρuH(x̄)w(x̄)]dx ≥ 0.

We stress that in the last inequality we have also used the fact that, if x ∈ H then x̄ 6∈ H
and in particular

uH(x) = max{u(x), u(x̄)} ≥ min{u(x), u(x̄)} = uH(x̄).
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Consequently, if uH(x) ≤
√
t, then also uH(x̄) ≤

√
t, and so

ρuH(x) ≥ ρuH(x̄) for every x ∈ H.

We can now prove the last part of the statement as in [22, Lemma 5]. If equality holds
in (5.9), then also in (5.10) we have equality. This is only possible in two situations:
w(x) − uH(x) = uH(x̄) − w(x̄) for every x ∈ int(H ∩ B), or ρuH(x̄)w(x̄) = 0 for all x ∈
int(H ∩ B). In the first case, we conclude by Lemma 5.5 that ρuu ≡ [ρuu]H. If the second
case occurs, then since both w and ρuH are positive in B, we conclude that B ⊂ H and so
again ρuu ≡ [ρuu]H, being u ≡ 0 outside B. �

We are now ready to end the proof of Theorem 1.5 for Dirichlet boundary conditions.

• Proof of Theorem 1.5 for Dirichlet. Let (u, ρu) be a CP-optimal pair, with u > 0 in B,
and let H ⊂ Rn be a half-space such that 0 ∈ int(H). Then, by the definition (5.3) of w we
know that w solves the problem{

∆2v = ΘρuHuH, in B,

v = ∂v
∂ν = 0, on ∂B.

Thus, by Lemma 5.6 we get

(5.11) ‖∆w‖2L2(B) = Θ

ˆ
B
w ρuHuH ≤ Θ

ˆ
B
ρuHw

2,

and so
‖∆w‖2L2(B)´
B ρuHw

2
≤ Θ.

By Proposition 2.6 also ρuH is an admissible density (i.e.
´
B ρuH = M), then by the

minimality of Θ equality must hold in (5.11), and so u = uH by Lemmas 5.6 and 5.4.
Therefore, by the arbitrariness of H and by Lemma 2.7, we get that u is a radial, radially
non-increasing function and by its shape, S is radial and Sc is convex. In view of Proposition
3.5 and since S is defined up to a set of measure zero, S is the unique open shell region
of measure A, S = {x : r(A) < |x| < 1}. In particular, S and Sc are of class C∞. In
conclusion, for Ω = B there is a unique CP-optimal pair (u, ρ). It remains to prove the
strict monotonicity of the radial profile of u. To this aim, we observe that, thanks to the
regularity of the boundaries of S and Sc and the fact that ρ is constant in both S and Sc,
u
∣∣
S

and u
∣∣
Sc

are of class C4 in int(S) and int(Sc) respectively, cf. [24, Theorem 2.20]. Now,
we have just proved that u is radially non-increasing. Suppose by contradiction that there
exists an open subset U of B where u is constant, consequently either U ⊂ S = {u <

√
t}

or U ⊂ Sc = {u >
√
t}. Thus, ∆2u = 0 in U , which contradicts the positivity of u, being

∆2u = Θρu > 0 in all of B. Here we are tacitly assuming h > 0, the case h = 0 being even
simpler. �

We consider now the case of Navier boundary conditions. Here we can write our fourth-
order problem (PN ) as the second-order system (1.7), that is −∆u = v, in B,

−∆v = Θ ρ u, in B,
u = v = 0, on ∂B.

Proposition 5.7. Let (u, v) be a weak solution of (PN ) such that u > 0 and v > 0 in B.
Then u and v are radial and radially decreasing in B.
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Proof. For the proof of this result we refer to the ones of [40, Theorem 1 and Lemmas 4.1-4.3]
for system (1.8). We just skecth the proof below, and we highlight how we can overcome the
lack of the regularity assumptions required in [40] to the solution (ui)

m
i=1 (i.e., ui ∈ C2(B))

and the nonlinearity (fi)
m
i=1 (i.e., fi ∈ C1) of (1.8), thanks to the special form of our system.

As in [40], we arbitrarily choose the x1 axis and denote by Tξ the hyperplane e1 · x = ξ.

Since B is bounded, for sufficiently large ξ > 0, the plane Tξ does not intersect B. We
decrease ξ (i.e., the plane Tξ moves continuously toward B, preserving the normal) until ξ0,
that is the smallest value of ξ for which Tξ begins to intersect B. From ξ = ξ0 to ξ = 0, the
plane Tξ, cuts off from B an open set Σ(ξ), which is the part of B that does not contain
the origin. Let Σ′(ξ) denote the reflection of Σ(ξ) with respect to the plane Tξ. For every

x ∈ Σ(ξ), we denote by xξ the reflection of x with respect to Tξ.
The proof can be split into the following three steps.

Step 1. Let x0 ∈ ∂B be such that ν(1)(x0) > 0. Then there exists δ > 0 such that ∂u
∂x1

< 0

and ∂v
∂x1

< 0 in B ∩B(x0, δ).

This can be proved as in [40, Lemma 4.1]. We observe that in our case f1(v) = v and
f2(u) = Θρuu, hence fi(0) = 0 for i = 1, 2. This allows to avoid the case (ii) in the proof
of [40, Lemma 4.1] which would require the C2-regularity of v = ∆u.

Now, take ξ ∈ (0, ξ0) sufficiently close to ξ0. Since ν(1)(x) > 0 for every x ∈ ∂B∩∂(Σ(ξ)),
as a consequence of Step 1., it follows that for every x ∈ Σ(ξ)

(5.12)
∂u

∂x1
(x) < 0,

∂v

∂x1
(x) < 0, u(x) < u(xξ), v(x) < v(xξ).

As in the proof of [40, Lemma 4.3], decrease ξ below ξ0 until a critical value ξ̄ ≥ 0 beyond
which (5.12) does not hold any more for u or v. Then, for every x ∈ Σ(ξ̄)

(5.13)
∂u

∂x1
(x) ≤ 0,

∂v

∂x1
(x) ≤ 0, u(x) ≤ u(xξ̄), v(x) ≤ v(xξ̄).

Step 2. Let ξ ∈ (0, ξ0), then

u(x) < u(xξ), v(x) < v(xξ) for every x ∈ Σ(ξ),

∂u

∂x1
(x) < 0,

∂v

∂x1
(x) < 0 for every x ∈ B ∩ Tξ.

This can be proved by using (5.12) and (5.13) as in [40, Lemma 4.2]. We observe that the
special form of fi, i = 1, 2 (i.e., the fact that f1 does not depend on u and f2 does not depend
on v) allows us to avoid the use of the Mean Value Theorem in this proof. Furthermore,
the proof of [40, Lemma 4.2] relies on the Hopf Lemma and the Strong Maximum Principle
for C2-solutions of second-order elliptic equations in domains with corners. In our case we
can apply the Strong Maximum Principle and the Hopf Lemma in e.g. [21, Theorem 2.2]
or [35, Theorem 2.5.1, Theorem 2.7.1 and comments on p. 40], which require only C1(B)
regularity of the solution (u, v).

As a consequence of Step 1. and Step 2., it is possible to prove that the value ξ̄ ≥ 0 is
indeed equal to 0. This can be done by following the argument by contradiction proposed
in [40, Lemma 4.3]-Case (i). Here again the use of the Mean Value Theorem can be avoided
thanks to the special form of the fi’s in our problem.

Furthermore, by Step 2., we get

∂u

∂x1
(x) > 0,

∂v

∂x1
(x) > 0 for every x ∈ B ∩ {x ∈ Rn : x1 < 0}
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and by continuity of partial derivatives of u and v,

(5.14)
∂u

∂x1
(x) = 0,

∂v

∂x1
(x) = 0 for every x ∈ B ∩ T0.

Step 3. The functions u and v are symmetric with respect to the plane T0.
This can be proved as in [40, Lemma 4.2], by using (5.14).

The conclusion of the proof then follows by the arbitrariness of the x1 axis. �

• Proof of Theorem 1.5 for Navier. By Proposition 5.1 u > 0, this together with the strong
maximum principle implies that v > 0. Therefore, we can apply Proposition 5.7. The
conclusion of Theorem 1.5 for Navier, concerning the properties of S, can be repeated
verbatim as in the case for Dirichlet boundary conditions. �

Remark 5.8. Let us denote by ΘN and ΘD the values of (CP) with Navier and Dirichlet
boundary conditions, respectively. Since H2

0 (Ω) ⊂ H2(Ω) ∩ H1
0 (Ω), ΘN ≤ ΘD. We can

follow the argument in [22] to prove that actually the strict inequality holds, namely

ΘN < ΘD.

Indeed, let (u, ρ) ∈ H2(Ω)∩H1
0 (Ω)×P be a CP-optimal pair for Navier. Let us assume by

contradiction that u does not have a sign in Ω. Consider now the problem

(5.15)

{
−∆v = |∆u|, in Ω,

v = 0, in ∂Ω.

By regularity theory, a solution v of (5.15) is such that v ∈ H2(Ω) ∩H1
0 (Ω), and therefore

is an admissible candidate for the problem (CP) with Navier boundary conditions. On the
other hand, we can argue as in the proof of Proposition 5.1 to get by the maximum principle
that v > |u| in Ω. Hence, being ρ > 0 a.e. Ω, we have´

Ω(∆v)2´
Ω ρv

2
<

´
Ω(∆u)2´

Ω ρu
2

= ΘN ,

which contradicts the minimality of ΘN . Thus, u has sign, and so we can take u > 0 in Ω.
This, combined with −∆u ≥ 0 (by maximum principle, being ∆2u = ΘNρu > 0 in Ω and
∆u = 0 on ∂Ω), allows to employ the Hopf Boundary Point Lemma, which gives

∂u

∂ν
< 0 on ∂Ω.

In order to conclude, it is enough to notice that if (u, ρ) is a CP-optimal pair with Dirichlet
boundary conditions, then ∂u

∂ν = 0 on ∂Ω, hence, it cannot be a CP-optimal pair with Navier
boundary conditions as well.

6. A nonlinear eigenvalue minimization problem in conformal geometry

In [10], Chanillo showed the close relation between a nonlinear eigenvalue minimization
problem for the Laplace-Beltrami operator −∆g and the composite membrane problem.
More precisely, let (Ω, g0) be a 2-dimensional bounded Riemannian manifold with smooth
boundary ∂Ω and consider the conformal class of the metric g0,

(6.1) [g0] :=
{
gRiemannian metric on Ω : ∃ f such that g = e2fg0

}
.

Consider another class of Riemannian metrics which is strictly contained in [g0],

(6.2) C := {g ∈ [g0] : g satisfies (6.3) and (6.4)} ,
where

(6.3) there exists a positive constant A > 0 such that ‖f‖L∞(Ω) ≤ A;
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and

(6.4) there exists a positive constant M > 0 such that

ˆ
Ω
dVg =

ˆ
Ω
e2fdVg0 = M.

The problem is now to minimize the first eigenvalue of the Laplace-Beltrami operator −∆g

with Dirichlet boundary conditions, subject to the constraints provided by the class C. In
other words, find a couple (u, g) which realizes

(6.5) inf
g∈C

inf
u∈H1

0 (Ω)\{0}

´
Ω ∆guu dVg´

Ω |u|2 dVg
.

In the same paper, it is raised the question whether similar results can be obtained for
higher order conformally invariant operators, with special attention devoted to the Paneitz
operator P gn/2. The problem can be stated as follows. Let (Ω, g0) be a 4-dimensional bounded

Riemannian manifold with smooth boundary ∂Ω. Inside the conformal class [g0], we want
to consider the smaller class of Riemannian metrics,

(6.6) C := {g ∈ [g0] : g satisfies (6.3) and (6.7)} ,
where now

(6.7) there exists a positive constant M > 0 such that

ˆ
Ω
dVg =

ˆ
Ω
e4fdVg0 = M.

The problem is now to minimize the first eigenvalue of P g2 with Dirichlet boundary con-
ditions, subject to the constraints provided by the class C. In other words, to find a pair
(u, g) which realizes

(6.8) inf
g∈C

inf
u∈H2

0 (Ω)\{0}

´
Ω P

g
2 uu dVg´

Ω |u|2 dVg
.

We stress that the Paneitz operator P g2 has a leading term given by the fourth order dif-
ferential operator (−∆g)

2. In particular, if we are in the flat case (i.e. g is the standard
Euclidean flat metric gE),

P gE2 = ∆2.

In [10, Proposition 4] it has been proved that the problem (6.8) is equivalent to

(6.9) inf
ρ∈Pg0

inf
u∈H2

0 (Ω)\{0}

´
Ω P

g
2 uu dVg0´

Ω |u|2 ρdVg0

,

where, for fixed 0 < h < H, M > 0, we have defined

Pg0 :=

{
ρ : Ω→ R+ : h ≤ ρ ≤ H,

ˆ
Ω
ρ dVg0 = M

}
.

For the sake of completeness, we recall here a few facts concerning the conformal change
g = e2fg0. The volume forms are related by

dVg = enfdVg0 ,

where n is the dimension of the Riemannian manifold Ω, namely 4 in our case. The Paneitz
operator related to g is given by

P g2 (u) = e−4fP g0
2 (u) for every u ∈ C∞(Ω).

The first problem is to understand what happens in the flat case, i.e. for g0 = gE , where
gE denotes the standard Euclidean metric. We denote by dx the volume form associated
with gE . We can notice that (6.9) can be now written as

inf
ρ∈Pg0

inf
u∈H2

0 (Ω)\{0}

´
Ω(∆u)2 dx´

Ω ρu
2dx

,
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which coincides with (CP). Therefore we have the following

Theorem 6.1. There exists a pair (u∞, ρ∞g0) which realizes (6.8). In particular,

ρ∞ = ef∞ = hχS +H χSc ,

where

S = {u2
∞ ≤ t} for a certain t > 0.

Furthermore,

u∞ ∈W 4,q(Ω) ∩ C3,γ(Ω) for every q ≥ 1 and γ ∈ (0, 1).
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