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The development of metastatic cancer is a multistage process, which often

requires decades to complete. Impairments in DNA damage control and

DNA repair in cancer cell precursors generate genetically heterogeneous

cell populations. However, despite heterogeneity most solid cancers have

stereotypical behaviours, including invasiveness and suppression of

immune responses that can be unleashed with immunotherapy targeting

lymphocyte checkpoints. The mechanisms leading to the acquisition of

stereotypical properties remain poorly understood. Reactivation of embryo-

nic development processes in cells with unstable genomes might contribute

to tumour expansion and metastasis formation. However, it is unclear

whether these events are linked to immune response modulation. Tumours

and embryos have non-self-components and need to avoid immune

responses in their microenvironment. In mammalian embryos, neo-antigens

are of paternal origin, while in tumour cells DNA mismatch repair and repli-

cation defects generate them. Inactivation of the maternal immune response

towards the embryo, which occurs at the placental–maternal interface, is key

to ensuring embryonic development. This regulation is accomplished by the

trophoblast, which mimics several malignant cell features, including the

ability to invade normal tissues and to avoid host immune responses,

often adopting the same cancer immunoediting strategies. A better under-

standing as to whether and how genotoxic stress promotes cancer

development through reactivation of programmes occurring during early

stages of mammalian placentation could help to clarify resistance to drugs

targeting immune checkpoint and DNA damage responses and to develop

new therapeutic strategies to eradicate cancer.
1. Introduction
Cancer is a multistage disease that affects millions of people on this planet.

Development and progression of cancer can be driven by the acquisition of

genome instability, which is facilitated by stressful conditions affecting the

DNA replication process, including high proliferation rate, low DNA repair

capacity and exogenous or endogenous insults to DNA. The acquisition of an

unstable genome predisposes to the emergence of genetically distinct sub-

clonal cell populations and intra-tumour heterogeneity, which pose major

challenges in understanding cancer, managing patients and designing effective

treatment strategies [1–3]. However, although heterogeneous, most solid

cancers have stereotypical behaviours that involve phases of growth, expansion,

stabilization and acquisition of malignant properties such as tissue
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Figure 1. Emergence of cancer features by selection. Mutagenesis, oncogene
activation, loss of functional BRCA1/2, accumulation of RS and loss of
p53-mediated tumour barrier might predispose to hyper-mutagenesis-
mediated emergence of clones that are positively selected for their ability
to evade immune response and invade tissues.
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invasiveness, immune evasion and stimulation of angiogen-

esis. The heterogeneous nature of cancer cells is difficult to

reconcile with the occurrence of these common behaviours.

Tumours heavily rely on adaptive responses to DNA metab-

olism impairments for their continued proliferation as in the

case of replication stress (RS), which can be defined as the

presence of multiple alterations affecting DNA replication

intermediates [4], and replication stress response (RSR)

[5–8]. As cancer cells recapitulate several aspects of embryo-

genesis, including rapid proliferation and consequent RS,

they could also hijack the suppression mechanisms that

embryos put in place against the maternal immune response

towards fetal neo-antigens. These mechanisms are extremely

powerful at repressing the maternal immune response and

rely on a large number of molecules and pathways, some of

which are targets of cancer immunotherapy, such as PD-L1

[9]. These processes are orchestrated by the trophoblast, which

is made of unique cell types that evolved recently in mammalian

organisms [10]. The trophoblast forms the outer layer of the

blastocyst. Its function is to provide nutrients and shelter to

the embryo through the formation of the outer chorionic sac

and the fetal portion of the placenta. Trophoblast cells are

unique and evolved by co-opting genes normally expressed

elsewhere in the organism. During this process, few completely

novel genes appeared in the genome of mammals, whereas

others were derived by coevolution of duplicated genes and

from horizontal transfer mostly due to retroviral insertions

[11]. The trophoblast orchestrates the invasion of the endo-

metrium and the attachment to the uterus wall, the building

of new vessels connecting the maternal to the fetal circulation

and the suppression of the maternal immune responses against

fetal neo-antigens, making possible the bearing of live young in

mammalian organisms.

Strikingly, cancer cells recapitulate many of these features.

It is, therefore, possible that reactivation of trophoblast/

placenta programmes in cancer cell precursors contributes to

tumourigenesis. Most importantly, reactivation of trophoblast-

specific pathways could contribute to the inactivation of

lymphocyte-mediated control of tumour growth by repurpos-

ing pathways normally active during placenta formation and

normally required to prevent maternal immune response

against fetal antigens. This hypothesis posits that the so-called

‘pseudo-malignant’ trophoblast and cancer cells exploit com-

parable mechanisms at molecular level to achieve their

proliferative, immunosuppressive and invasive processes

[12–14]. A corollary to this hypothesis is that evolution of

feto-maternal immune tolerance and invasive placentation

might have also favoured the emergence of mechanisms for

cancer metastasis in mammals, in which cancer occurs with

high frequency [15]. Here, we explore the possible links between

solid cancer development and mammalian placentation that

could have contributed to the display of cancer features.
2. Genotoxic stress in early cancer
precursors

A key feature of cancer cells is the presence of multiple signs

of exposure to genotoxic stress resulting in widespread

genome instability. The source of this stress might be ascribed

to deregulation of normal DNA stability maintenance pro-

cesses, in particular during DNA replication. DNA lesions

and defects in the apparatus that carries out DNA replication,
including lack of nucleotides, and promotes DNA repair can

induce RS [16]. Significantly, RS can be elicited by oncogene

activation [6] and lack of functional DNA repair proteins

such as RAD51 and BRCA2 that operate at replication forks

and protect nascent DNA from Mre11 nuclease-mediated

degradation [16–19].

The effects of RS have been studied in primary somatic

cells, which respond to it by promoting cellular senescence

through activation of the ATM–p53 axis [6]. Activation of

this pathway has been shown to act as a barrier to tumour

progression (hence referred to as RS tumour barrier) in early

cancer lesions and adenomas [20,21] (figure 1). The ‘RS

tumour barrier’ can be overcome following the loss of

ATM, Chk2 or p53, often observed in tumour cells. RS is

monitored by the ATR–Chk1 pathway, which is activated

in the presence of extensive RPA-coated DNA and aberrant

double- to single-stranded junctions in the context of

double-strand breaks and stalled replication forks [4]. Acti-

vation of the ATR–Chk1-dependent response is observed

in early cancer precursors indicating the presence of RS

[6]. However, in contrast to ATM–p53, ATR–Chk1 loss is

more rarely observed in cancer cells as these proteins are

essential for cell survival. Consistent with this, decreased

levels of ATR and treatment with ATR inhibitors (ATRi),

presently being tested in phase I–II clinical trials, suppress

tumour growth [22–25], whereas an extra copy of Chk1

facilitates cellular transformation [26].

The ATM–p53-dependent tumour barrier relies on the

activation of the senescence programme and the acute elimin-

ation of damaged cells through apoptosis [6]. Although the

loss of the RS tumour barrier is essential to progress from
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Figure 2. Emergence of cancer features by reactivation of embryonic path-
ways: Mutagenesis, oncogene activation, loss of functional DNA repair
genes such as BRCA1/2, accumulation of RS, activation of RS-induced
inflammatory pathways mediated by cGAS-STING and loss of ATM/p53-
mediated tumour barrier might induce epigenetic changes predisposing
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tissue invasion.
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early lesions to the later stage of cancer development, it is not

clear how this progression takes place.

Cancer features such as the ability to invade tissues and

evade immune responses might emerge in a continuous sto-

chastic evolutionary process that could be positively selected

(figure 1). According to this, evolution of multiple cancer cell

clones, as tracked by mutation analysis, can lead to the for-

mation of cells with genetic changes predisposing to the

acquisition of malignant features. These cells can remain

silent or can be positively selected for their ability to grow

and bypass immune responses, behaving as ‘hopeful mon-

sters’ [27]. However, as cancer occurs with high frequency

and develops fast once reaching a detectable size it is not

clear whether the rate at which these clones evolve is suffi-

ciently high to drive tumour formation. Also, it is unlikely

that complex features such as the ability to invade tissues

arise from a completely stochastic process. The driving

force leading to the selection of an invasive behaviour

remains largely unexplained, assuming that the tumour

microenvironment operates a limited selection of evolving

tumour cells. Finally, the high mutation frequency might

negatively impact on the fitness of the emerging clones,

favouring instead the formation of ‘hopeless monsters’,

which are likely to die or remain silent [27] (figure 1).

One possibility to explain the emergence of cancer clones

with a partial or full spectrum of malignant features is the

reactivation, possibly at a transcriptional level, of embryonic

pathways, encoding for complex biological processes such

as tissue invasion, cell migration and angiogenesis

(figure 2). This state could be stably inherited by malignant

clones, which could perpetuate the acquired properties in

the presence of an evolving mutational spectrum supporting

the development of malignant features. This hypothesis

implies that early transformation events, likely triggered by

RS, somehow impose an inheritable cell fate change acquired

through cellular reprogramming and/or dedifferentiation to

a status that recapitulates early embryonic development.

These changes might be driven by DNA damage and DNA

damage response and might occur in parallel with stochastic

mutagenic events, which might positively affect cell fate

changes. These events, when taking place in adult stem

cells might not lead to senescence or cell death due to

weaker checkpoint mechanisms, predisposing instead to

the emergence of embryonic properties in cells that are less

differentiated. The de-repression of endogenous programmes

normally active during embryogenesis such as the epithelial

to mesenchymal transition (EMT) [28] or the formation of

extra-embryonic tissues, including the placenta, might be

responsible, at least in part, for the acquisition of features

such as the ability to evade immune control and invade

surrounding tissues. These changes could be mediated by

epigenetic reprogramming to more undifferentiated states.

Establishment of epigenetic memory could then be

responsible for the stable inheritance of these features.

Importantly, cell fate transitions might be favoured by the

presence of an inflammatory state activated by RS and conse-

quent chromosome instability [29]. In this case, chromosomal

instability and/or loss of replication fork protection mechan-

isms induced by inactivation of fork protection genes

frequently mutated in cancer such as BRCA1, BRCA2 or

ATM might generate cytosolic DNA promoting the activation

of the cGAS-STING cytosolic DNA-sensing pathway and

downstream non-canonical NF-kB signalling [30]. These
pathways are active in metastatic cells and might link

genome instability to EMT and inflammation [29]. Intrigu-

ingly, cancer prone mutations in SAMHD1, which is

required for replication fork stability and regulation of

Mre11-dependent degradation of nascent DNA, activate

the IFNg pathway promoting cancer development [31].

Collectively, these and other evidence indicate a direct

link between genotoxic stress response and activation of

inflammatory pathways promoting cancer.

The impact of these pathways might be significant when

occurring in stem cells, derailing their developmental pro-

gramme. As it has been suggested that cancer frequency in

different tissues correlates with the number of cell divisions

of tissue-specific stem cells [32], it would be of great value

to assess the effect of RS in stem cells and test whether RS

and RSR impose a change in cell fate that recapitulates

early embryonic programmes.

Alternatively, these same pathways might directly lead to

the emergence of stem cell like properties in somatic cells

[33–35], in line with results showing stem cell signalling

and transcriptional pathways active in several tumours

[36,37]. Notably, activation of TLR3-dependent innate

immune responses, which are in part shared with the

cGAS-STING pathway, is required for efficient cellular

reprogramming [38]. Also, in vivo reprogramming drives

Kras-induced cancer development [39]. Collectively, these

findings indicate a strong link among the triad of inflam-

mation, cellular reprogramming and cancer development.

Interestingly, recent survey of chemoresistant triple

negative breast cancers has highlighted the activation

of convergent transcriptional programmes induced by
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neoadjuvant chemotherapeutic treatments based on

taxane and anthracyclines. These programmes lead to the

re-emergence of embryonic properties, including the ability

to degrade the extracellular matrix, withstand hypoxia,

undergo EMT and promote angiogenesis [40]. It would

important to understand whether this is a common behav-

iour of cancer cells treated with agents inducing further

genome instability and whether these signatures emerge

also in response to DNA damage occurring at earlier

stages of cellular transformation. These findings might also

impact on our understanding of the effects of chemotherapy

based on DNA damaging agents, which on the one hand

kill proliferating cells, but on the other hand might contribute

to activating pathways that are detrimental for residual

cancer cells.
 :180081
3. Immunological control of tumour
development

Together with genome instability, a major hallmark of cancer

cells is their ability to evade immune responses. Indeed, if

successful tumour growth depends initially on genetic and

epigenetic changes of tumour cells it then relies on the mol-

ecular editing these changes impose on immune cells, in

particular T lymphocytes. Cancer cells must escape T lym-

phocyte responses to develop endless growing tumours.

The interplay between tumour cells and the immune system

is defined as cancer immunoediting [41]. The most complex

forms of immunoediting are the adaptive responses mediated

by CD4 and CD8 tumour-specific T lymphocytes driven by

tumour neo-antigens, resulting in either tumour elimination,

equilibrium between immune surveillance and tumour

growth, or tumour escape from immune responses [41]. Fur-

thermore, in parallel to the relations between neo-antigenic

profile of tumour cells and tumour-specific T-cell responses,

tumour proteins can affect T-cell functions in the tumour

microenvironment, as is the case when tumour cells favour

T regulatory (T-reg) suppressor cell recruitment at tumour

sites, and effector T cells are rendered functionally inactive

by T-reg cells even in the presence of very antigenic tumour

cells [42]. In fact, once tumours become detectable with cur-

rent diagnostic tools, namely when they reach millimetre

size range, immune responses are no longer capable of effec-

tively eliminating cancer cells. However, the recent successes

of immunotherapy with checkpoint inhibitors demonstrated

that, at least for highly antigenic tumours, it is possible,

even in metastatic patients, to rescue T lymphocyte responses

that can eliminate cancer cells and control or even eradicate

tumours [43]. Among the tumours that respond to checkpoint

inhibitors are the ones that display inactivation of the mis-

match repair (MMR) system, which recognizes and corrects

base mispairs, insertions and deletions that occur during

DNA synthesis [44]. MMR-defective tumours represent

approximately 20% of human tumours and have peculiar

properties, which include early onset, metastatic potential

but generally favourable prognosis, and remarkable response

to immune checkpoint blockade. The biological and clinical

features of MMR-deficient tumours are thought to be associ-

ated with their intrinsic ability to continuously generate new

mutations, leading to increased levels of neo-antigens, which

in turn trigger effective immune surveillance [45]. However,

it is also conceivable that MMR deficiency (another form of
genotoxic stress) might lead to transcriptional reprogram-

ming leading to suppression of immune surveillance.

Consistent with these observations, in an animal model of

tumours with defective DNA repair, there is evidence that

increasing mutational load (and thus the neo-antigen

burden) in colorectal cancer by DNA-alkylating agents

might sensitize to immune checkpoint blockade [46]. How-

ever, a number of tumours remain resistant to these

treatments and the causes of this resistance are unknown

[47]. While it is largely agreed that a high number of

mutations (greater than 10 mutations/megabase) in cancer

cells is required to obtain response to immunotherapy with

checkpoint inhibitors, there is little explanation as to why

the majority of patients with highly mutated tumours do

not respond to this immunotherapy [47]. A deeper under-

standing of the immune responses elicited by cancer cells,

also comparing escape mechanisms from immune responses

in unmutated cells such as trophoblast cells could help detail-

ing the mechanisms behind the immunosuppressive features

displayed by the tumour environment.
4. Placentation: an embryonic process
linked to cancer development in
mammals

A number of cancer features can be recapitulated by an

embryonic process unique to mammals, namely the for-

mation of the placenta. Placentation is a complex multistage

process leading to development of a disposable infrastructure

that allows fast, efficient and regulated development of most

mammalian organisms. This process starts with the contri-

bution of extra-embryonic cells that form a vascularized

adhesion plaque in the context of the maternal decidua, the

modified region of the endometrium, the inner layer of

the uterus, to which the embryo will adhere [48]. Many

of the mechanisms leading to the formation of the placenta

are still poorly understood [49].

Among the properties shared by trophoblast and cancer

cells is the ability to invade healthy tissues, to form new

vessels and to promote an environment that is protected

from the immune system (figure 3). The rapid development

of the embryo in placental mammals begins when the blasto-

cyst attaches to the uterine wall [49]. This is a complex event

that is orchestrated by the trophoblast at the outer layer of the

blastocyst rapidly proliferating and invading the maternal

decidua, thus leading to the formation of a mature placenta,

which has an embryonic side and a maternal component.

Notably, a recent analysis has shown that several genes that

cause embryonic lethality when deleted have a primary func-

tion in placenta trophoblast cells [50], indicating the essential

role of placenta for development.

There are three major types of placenta that can be found

in different species. They are classified based on their degree

of attachment and invasiveness. Epitheliochorial placentas

are the least invasive, as they have three layers of maternal

tissue separating the fetus from the maternal blood. Endothe-

liochorial placentas are instead partially invasive as only the

endothelial wall of the maternal blood vessels and connective

tissue separate the fetus from the maternal blood. Haemo-

chorial placentas, which are the most diffuse type, are also
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the most invasive ones. In this type of placentas, fetal tissues

are directly in contact with the maternal blood [51].

The embryonic side of the placenta comprises a number of

anatomical structures that include the villi, which attach to

the uterus. The villi in haemochorial placentas are made by

columns of different cells, including cytotrophoblast cells,

which constitute the major cell type of the placenta [48].

Some of these cells are markedly polyploid with large nuclei,

similar to aggressive cancer cells. Cytotrophoblast differen-

tiates into distinct cell types: the syncytiotrophoblast cells,

forming the external layer of the villi, which are cells are term-

inally differentiated and are important for feto-maternal

nutrient exchanges; and at the tip of the villus there are instead

cells of the extravillous trophoblast (EVT), which have proper-

ties astonishingly similar to metastatic cancer cells. Among

these, there is the ability to migrate into the uterus wall and

to invade the uterus glands and vessels [52]. Following the

invasion of the uterus wall EVT cells penetrate the maternal

arteries substituting their endothelium. Similar to cancer cells

EVT cells undergo EMT and secrete exosomes to prepare for

tissue invasion [53]. In contrast to cancer-invading cells, EVT

cells are eliminated at the end of pregnancy. The study of

EVT cells might be useful to understand how cancer cells

develop their invasive potential [53].

Owing to these invasion mechanisms that impact on the

integrity of the receiving tissue, the process is markedly

inflammatory. Inflammatory pathways are essential for a suc-

cessful implantation as shown by the requirement for

molecules such as prostaglandin E and inflammatory cyto-

kines TNF and IL6 [10]. However, at some point, the

placenta activates anti-inflammatory mechanisms necessary

to support the continuation of the pregnancy by shielding

the fetus from maternal immune-mediated attack [10]. With-

out these mechanisms, the presence of paternal genetic

material acting as neo-antigens would trigger an immune-

mediated attack against the fetus, which would be destroyed

by the maternal immune system, terminating the pregnancy

[54]. The fetus escapes rejection from the maternal immunity

thanks to a multitude of immunomodulatory properties of

the feto-maternal interface that allow the survival of the

immunologically distinct fetus by imposing a strong

feto-maternal tolerance [54,55]. Strikingly, some of the mech-

anisms driving feto-maternal tolerance are reactivated in

cancer, raising the possibility of a straightforward parallelism

between cancer predisposing elements and feto-maternal

tolerance [56]. Consistent with this, recently, a number of

placenta-related genes have been found to be highly
expressed in metastatic lung cancer [57]. These tumours

show increased expression of genes encoding nuclear factors

promoting cell proliferation while downregulating genes

involved in the control of the immune response.
5. Molecular pathways shared by placenta
and cancer cells

There are several pathways shared between placenta and

cancer cells at molecular level. These pathways regulate hyper-

proliferation, invasion, angiogenesis and immunoevasion.

Similar to cancer cells, proliferation is supported by high

levels of IGF/MAPK, activation of anti-apoptotic pathways

based on BCL2 expression, multiple genome duplication

events leading to polyploidy and several others. Sustained

angiogenesis is instead promoted by the activation of VEGF,

HIF1a and FGF-based pathways [9].

The invasive portion of the placenta is made up of the EVT.

Several parallels can be made between invasive EVT cells and

cancer cells [9]. Both cancer cells and trophoblast cells promote

migration through activation of EMT, which leads to loss of

cell-to-cell contact inhibition. Important for this process is the

WNT pathway, the expression of proteins degrading the extra-

cellular matrix and the change in integrin patterns favouring

cell movements through tissues. A number of pro-metastatic

genes have been shown to be overexpressed in cancer cells.

Among these, there are integrin a7b1, TGF-b and VEGF.

These genes appear to be regulated by HIF1a [58] and seem

to play a role in placenta formation [9]. Also, HIF1a has

been shown to support trophoblast differentiation [59],

which in the early stages of embryo development takes place

in hypoxic conditions due to lack of blood vessels.

EVT and more generally syncytiotrophoblast cells are

markedly polyploid [9] and, similar to cancer cells, poly-

ploidy might make trophoblast cells resistant to DNA

damaging agents. Alternatively, resistance to DNA damage

might also influence polyploidy occurrence, which might

develop in response to DNA damage and RS. Consistent

with this, cells derived from mice carrying mutations in

Fan1 nuclease, which is involved in repairing DNA cross-

links, undergo polyploidization in response to DNA

cross-linking [60]. A similar situation might occur in placenta

cells, which might develop polyploidy in response to

persistent RS due to high levels of proliferation.

Modulation of the maternal immune system is a major

challenge for the developing pregnancy. This process appears
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to be regulated in trophoblast cells by reduced expression of

HLA class I cell surface proteins, expression of non-classical

HLA class G with immunosuppressive properties [61], acti-

vation of enzymes that restrict the supply of tryptophan to

immune cells such as indoleamine 2,3-dioxygenase (IDO)

[62] and high expression of PD-L1 [63]. Furthermore,

STING protein, which participates in IFNg activation in

response to foreign and self-DNA, has been shown to be

highly expressed in placenta [64].

The placenta is also infiltrated by regulatory and immu-

nosuppressive cells such as T-reg, which express CD25 on

their surface [65]. The development of immune tolerance,

which is critical to sustain placentation and live bearing, is

indeed critically dependent on T-reg-based mechanisms,

similar to cancer immunoediting processes [66]. Among the

genes regulating T-reg cell specification, there is Fox3p, the

expression of which requires the presence of CNS1 promoter

element. The deletion of CNS1 leads to a specific downregu-

lation of peripheral T-regs, inducing increased resorption of

the semiallogeneic fetuses, a phenomenon that is not seen

with syngeneic fetuses [65]. Notably, CNS1 is only present

in placental mammals and likely evolved due to a transposon

insertion in the Fox3p gene promoter locus. This observation

suggests that evolution of T-reg cell based feto-maternal tol-

erance mechanisms played an essential role in the evolution

of placentation. Finally, placental cells also produce exosomes

containing immunosuppressive molecules such as PD-L1,

similar to cancer cells [67,68].

These elements strongly support the links among cancer,

placentation and development of immune tolerance. All these

mechanisms are clearly shared with cancer cells, which acti-

vate pathways to invade tissues and escape immune control

using the same molecules activated during placentation.

Similarities are not limited to cell behaviour and functional

aspects but are present also at genome level. Placentation is

indeed associated with widespread hypomethylation of CpG

islands in trophoblast cells. Remarkably, global methylation

status of cytosine in placenta cells is markedly similar to

cancer cells [69,70]. Strikingly, this similarity is not limited to

quantitative levels of methyl cytosine but involves the presence

of similar patterns of hyper- and hypomethylation associated

with trophectoderm-derived cells at specific chromosome

regions and genes [71].

The methylation status of the embryonic tissues could

favour cell fate transitions that enable further downstream

developmental events. In contrast to somatic tissues, which

undergo differentiation and acquisition of further methylation,

the persistence of a hypomethylated state in extra-embryonic

tissues might have favoured the plasticity typical of placenta

development in different mammalian organisms, which

have evolved different types of placentation with different mor-

phology and different degrees of attachment to the uterus wall

[72,73]. How similarity at epigenetic level between cancer cells

and trophectoderm is achieved is difficult to explain but could

provide important clues about how the functional properties

shared between cancer and placenta cells arise.
6. Activation of embryonic cell fate
transitions in cancer cells

A deeper understanding of the epigenetic and functional

similarities between cancer and trophectoderm cells would
require the identification of the mechanisms that lead somatic

cancer cells to acquire early embryonic features in the context

of other elements such as genome instability and hyper-

mutagenesis. If RS is one of the early events associated

with oncogene activation and loss of tumour suppressors, it

is plausible to speculate that RS or RSR plays a role in the

acquisition of this trophectoderm-like state in cancer cells.

Considering that the acquisition of methylation increases

with cell differentiation it is possible that the epigenetic

state of cancer cells shared with trophectoderm is linked to

de-differentiation events, possibly associated with RS and

RSR. This could be compatible with the effect of chemother-

apy based on DNA damaging agents, which imposes

convergent transcriptional programmes active in therapy-

resistant tumours [40]. Alternatively, RS and RSR might

favour the emergence of cancer features in somatic cells

that have an epigenetic state already more similar to trophec-

toderm cells. This might be the case for adult stem cells

residing in somatic tissues [74].

The alteration of the methylation state might parallel the

occurrence of chromatin transitions that lead to the acqui-

sition of a configuration similar to the more open one

present in embryonic cells [74]. Intriguingly, recent evidence

has shown that RSR in yeast cells leads to a global loss of his-

tones and to chromatin relaxation [75,76]. Furthermore,

activation of DNA damage response has been linked to criti-

cal ubiquitin-dependent post-translational modifications in

linker H1 histones, leading to more relaxed chromatin in

the context of DNA double-strand breaks [77]. Intriguingly,

consistent with a major switch in chromatin accessibility

status occurring in cancer cells, the expression of linker his-

tone H1.0, which is one of the multiple H1 variants, affects

the differentiation state of cancer cells and the self-renewal

potential of cells that drive tumour growth [3].

Loss of repressive chromatin state might be associated with

the reactivation of transposable elements (TEs), including ret-

rotransposons, which can act as promoters, enhancers or

insulators, and which are believed to have contributed to the

evolution of the placenta through the upregulation of specific

gene pathways [78], possibly linked to cancer development.

On the one hand, TEs might play a major role in activating

innate immune responses based on IFNg in placental trophec-

toderm cells, which express high levels of STING [64] and

which might contribute to fetus responses to viruses in the

absence of a fully active immune system. On the other hand,

TEs reactivation in non-placental cells might activate cGAS-

STING-dependent inflammatory processes that promote

cellular reprogramming that accompanies cellular transform-

ation. Therefore, the transition to an epigenetic configuration

present in trophectoderm cells might favour the emergence

of properties associated with trophoblast in cancer cell precur-

sors. This could be particularly relevant in cells that have

mutated BRCA1 gene, the inactivation of which has been

shown to de-repress DNA sequences associated with TEs

such as tandemly repeated satellite DNA that can phenocopy

BRCA1 loss in cell cycle checkpoint defects, DNA damage and

genomic instability [79].

If the link between RSR and chromatin de-repression is

confirmed in other systems, it could be the starting point to

understand the molecular mechanisms predisposing to

alterations in the epigenetic configuration following the

occurrence of RS and activation of RSR. Furthermore, a role

for ATR-dependent RSR in driving these changes might
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explain the requirement for ATR cancer cell survival as

reflected by the efficacy of ATR inhibitors in killing tumour

cells [80].

Significantly, PD-L1, which is a major protein involved in

T-cell suppression in cancer and placenta cells, the targeting

of which has shown effective responses in a subset of

tumours, has been shown to be upregulated in response to

genotoxic stress [81]. This upregulation requires ATM/

ATR/Chk1 kinases and is enhanced by depletion repair

genes such as BRCA2 through STAT1–3 signalling and

IRF1, which are involved in IFNg-mediated responses trig-

gered by cGAS-STING pathway activated in the presence of

RS [81].

Intriguingly, recent machine learning-based methods

identified a common root in different types of cancer charac-

terized by the presence of stemness features [82,83].

Significantly, these studies highlighted the presence of a

strong link between stemness features and genome instabil-

ity, especially occurring after mutations in repair genes

such as BRCA1/2. In all these cases, stemness was linked

to PD-L1 expression [82].

If these factors, which appear to be separate, are considered

as a natural progression of events that start with the occurrence

of RS, it can be speculated that ATR-dependent RSR contrib-

utes to the acquisition of stemness features together with

the activation of PD-L1 in the context of more general

inflammatory and immunosuppressive responses.

Stemness features might then confer typical cancer prop-

erties by supporting the emergence of embryo development

pathways linked to placenta formation. In particular, RSR-

dependent de-differentiaton to a stem-like state or activation

of RSR in stem-like cells might recapitulate the phenomenon

by which early embryonic stem cells undergo differentiation

towards more proximal lineages [84,85].

Response to stress has been linked to the formation and

the evolution of the trophectoderm cells and more in general

of the placenta, in which initial inflammatory events driven

by contact with the maternal tissues have led to the evolution

of anti-inflammatory and anti-maternal immunity strategies,

among which trophectoderm expression of PD-L1 plays a

central role [9,10].

A key feature of trophoblast is its direct derivation from

cells with totipotent capacity. The zygote and the initial

stages of embryonic development in mammals are con-

sidered totipotent as they can give rise to embryonic and

extra-embryonic lineages and, therefore, are capable to pro-

mote the formation of the conceptus. The zygote is by

definition a cell originated by a stressful event such as the

fusion of the male and female germ cells [86]. The totipotent

state is characterized by de-repression of a number of genes,

including retrogenes associated with the stress response [86].

Similar to the zygote and early embryonic cell stages, it can

be speculated that RSR in cancer cells activates the genes

linked to the establishment of totipotency. A totipotent-like

state in embryonic stem cells that recapitulates the zygotic

transcriptional activation is driven by genes such as DUX4,

which directs the totipotency programme inducing several

gene products, including Zscan4 and many retroelements

[87,88]. Significantly, DUX4 is sometimes mutated in cancer

cells [89,90]. Zscan4 instead contributes to genome stability

of embryonic stem cells and has been shown to be expressed

in cancer cells [91]. The overexpression of many genes active

in totipotent germ cells has been documented in highly
invasive lung cancers [48]. Cancer cells also bear mutations

in genes that control the totipotent state, the inactivation of

which might lead to the acquisition of totipotent-like features

[92]. Among these, there are Tet 1/2/3 [93] and HDACs [94].

Significantly, some types of cancers deriving from totipo-

tent germ cells such as the chorion carcinoma, which is a rare

tumour occurring in the context of gestational trophoblastic

disease, are among the most invasive human tumours [95].

These cancers are the best example of tumours deriving

from totipotent stem cells as they can give rise to several dif-

ferentiated tissues and can recapitulate aberrant placentation.

These tumours derive from the fertilization of a female oocyte

that has lost DNA (complete mole) or by the fertilization of

an intact germ cell by multiple sperms leading to tri- and tet-

raploid genotypes (partial moles) [96,97]. The genome

configuration in these germ cells with unbalanced ploidy

and gene dosage might lead to extreme RS and activation

of RSR, the effect of which might divert the zygote towards

a placenta-like differentiation programme in which the

embryo proper is unable to develop. It can be speculated

that some of the molecular processes linked to these events

might re-emerge at later stages in adult stem cells conferring

the migratory, invasive, pro-angiogenetic and immunomodu-

latory properties shared between cancer and placenta.

Interestingly, early clinical attempts of targeting PD-1 inhibi-

tory signalling with pembrolizumab in drug-resistant

gestational trophoblastic disease have documented sustained

tumour responses, thus suggesting that circumvention of

tumour immune evasion is therapeutically effective also in

this clinical scenario [98].
7. Conclusion and future directions
Here, we tried to sum up the properties shared by cancer and

placental cells and discussed the possible reactivation of these

features in adult cancer. We have highlighted several proper-

ties of cancer cells that may arise from the activation of

processes central to placenta development, among which

the activation of shared immunoediting mechanisms could

play a major role in cancer development. Additional con-

siderations can be made by observing the occurrence and

the frequency of cancer in different species.

If malignant cancer recapitulates features of invasive

placentation, species in which placentation has not evolved

should experience cancer at a different level. In these animals,

cancer should be less frequent and/or show milder features,

which might not include widespread metastatic diffusion and

immune evasion. Several studies have shown that cancer is

present at different rates in different species and that some

species are intrinsically resistant to malignant cancer

[99,100]. Although a higher number of cells and/or a

higher number of cell doublings should increase the chance

for mutations to occur and accumulate, some animals of

large size are protected from cancer. This is known as

Peto’s paradox and it might be explained by the acquisition

of resistance to cancer through natural selection [99]. Differ-

ent mechanisms that protect and promote cancer-free status

have been discovered in large or long-lived animals. For

example, elephants have at least 20 copies of the tumour-

suppressor gene p53 [101], whereas in naked mole-rats

(Heterocephalus glaber) high-molecular-mass hyaluronan

could mediate cancer resistance [102]. Therefore, natural
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selection and likely reproductive rates, predation, lifespan

and many other factors determine overall cancer rates. It is,

however, worth mentioning that placental mammals, in par-

ticular the ones with highly invasive haemochorial placentas,

have the highest malignant cancer rates among all animals

[103]. It would be interesting to compare different types of

placentation with the rates of malignancies in different

species. Interestingly, metastatic solid tumours have not

been reported so far in non-placental mammals such as

monotremes, which lay eggs rather than bearing live young

[103]. Intriguingly, non-mammalian organisms, which rely

more on innate immunity-based mechanisms for their

defence from microbes and parasites, suffer from tumours

that have different behaviours from those occurring in mam-

mals. Indeed, tumours in fish mostly affect blood cells, and

solid tumours including carcinomas and sarcomas which

are rare in these species, are mostly locally invasive and

rarely metastatic [104]. Amphibians are also very resistant

to cancer development as only two types of tumours are

known in these species, including the renal adenocarcinoma

of Rana pipiens and the lymphosarcoma of Xenopus laevis
[105]. Although the remarkably low frequency of metastatic

features of cancers occurring in non-mammalian organisms

might be due to species-specific cancer-resistance mechanisms,

it strongly correlates with lack of placentation.

The relationship between invasive placentation and

metastasis could be explained by antagonistic pleiotropy

[15]. According to this hypothesis, metastatic cancer could

be a negative cost associated with the evolution of invasive

placentation. Basically, the evolution of placentation might

have greatly increased the fitness of the organism in which

it evolved and therefore it might have been positively

selected. In this case, the consequence of bearing a genetic

programme predisposing to metastatic behaviour, which

occurs later in life, would have been tolerated and not coun-

ter-selected. However, it could also be argued that a link

between placentation and species-specific malignancy rates

is more related to mechanisms that suppress invasion and

that evolved in the organisms in which placentation appeared

[15]. In this model, which involves positive pleiotropy,

maternal responses to embryo attachment might have led to

the loss of invasive placentation in some lineages of mam-

mals, suppressing trophoblast invasion. These mechanisms

might have played a role in protecting organisms against

cancer invasiveness. These observations might explain the

different relations among organisms with non-invasive pla-

centation and metastatic cancers, including the ones

observed in marsupials, in which metastatic cancer occurs

despite the lack of invasive placentation.

However, we would like to point out that the degree of

invasiveness might not be the major factor correlating with
metastatic cancer. Invasiveness appeared before placentation

during animal evolution as it is active in wound healing and

EMT. Therefore, placenta invasiveness might not directly cor-

relate with some of the malignant cancer features although it

can increase cancer aggressiveness in some species. It is

instead more likely that evolution of immunotolerance mech-

anisms towards fetal neo-antigens, especially the ones based

on sophisticated immune controls orchestrated by T-reg cells

at the feto-maternal immune barrier, might have played a

more important role in the acquisition of mechanisms

by which cancer cells escape immune control and invade

surrounding tissues.

Overall, these observations might help to define a novel

area of cancer research, which could take advantage of the

comparisons between cancer rates and developmental strat-

egies of different species. In particular, the study of

mammalian placentation could help to identify novel anti-

tumour targets able to suppress the immune tolerance

shared between placentation and cancer. It is indeed likely

that placentation has evolved a number of yet to be known

strategies to promote immunotolerance. Their discovery

could allow the identification of new targets for cancer

therapy.

The study of placenta-specific genes re-expressed in

cancer cells might also give the possibility of identifying

new targets of therapy with limited toxicity. Among these,

an example worth mentioning are PLAC1 and syncytins,

which are placenta-specific genes [11]. PLAC1 is re-expressed

in prostate, breast and ovary cancer and is a potential target

for antibody–drug conjugate-based prostate cancer immu-

notherapy [106]. Syncytins, a family of placenta-specific

genes evolved from retroelements and involved in placenta

cell fusion are also highly expressed in breast and other can-

cers, where they contribute to cancer cell fusion with

endothelium, a process that can be targeted by syncytin

inhibiting peptides [107].

To conclude, if cancer progression and placenta formation

share common molecular pathways that are physiologically

required only for pregnancy, they might be the perfect

target for cancer therapy with relatively low toxicity.
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