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Abstract

We study a dynamic game in which players can steal parts of a homo-

geneous and perfectly divisible pie from each other. The effectiveness of a

player’s theft is a random function which is stochastically increasing in the

share of the pie the agent currently owns.We show how the incentives to

preempt or to follow the rivals change with the number of players involved

in the game and investigate the conditions that lead to the occurrence of

symmetric or asymmetric equilibria.
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1 Introduction

In this paper, we introduce and study what we call the stealing game. A steal-

ing game is a dynamic game in which a number of agents steal portions of a
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homogeneous and perfectly divisible pie from each other. The portion of the pie

that a player can steal is stochastic. However, the expected value of this random

variable is increasing in the agent’s current holdings such that larger players are

able on average to steal larger portions. Within such a framework, agents must

decide when and whom to rob, with the goal of finishing the game as the leader,

i.e., the player who holds the largest share of the pie.1

Our primary goal is to solve for the optimal timing strategies of the agents.

We want to find the best moment for a player to behave aggressively and steal

part of the pie owned by his rivals. Such a decision is affected by an intuitive

trade-off between preempting or postponing one’s move. A player who moves

as soon as possible eliminates the possibility of being preempted, but he is then

forced to passively suffer the potential retaliation of those who waited. On the

other hand, a player who postpones his move can observe the new state of the

world and react optimally. However, the agent faces the risk of being preempted

and robbed by a rival, in which case his market share goes down as does the

expected effectiveness of his stealing attempt.

We characterize the pure strategy equilibria of the stealing game under dif-

ferent specifications for the number of players, the duration of the game, and the

number of stealing possibilities players are endowed with. We start by explicitly

solving a two-period stealing game in which players have a single stealing oppor-

tunity. Despite its simplicity, this setting highlights the strategic peculiarities of

the game and shows how the above-mentioned trade-off has different solutions

depending on the number of participants. No player postpones his move in a

1As an example of a situation that matches some of the key features of the game, consider the

case of electoral competition among political candidates. By campaigning on specific topics, a

candidate may target a particular opponent and thus “steal”a portion of his voters. Moreover,

larger players (i.e., candidates with many supporters) are usually able to raise more funds, so

they can afford more expensive campaigns, which are in turn expected to be more effective.
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two-player game. A three-player game displays multiple equilibria and, in some

of them, all agents postpone their moves. Finally, when the number of players is

larger than three, we show that the number of preempting equilibria is strictly

larger than the number of postponing equilibria and that asymmetric equilibria

may also occur. We then generalize some of these results to a setting in which

n players have K stealing opportunities in a stealing game that lasts for T > K

periods.

The paper is organized as follows: Section 2 reviews the relevant literature.

Section 3 formally introduces the stealing game. Section 4 defines the equilibria

of the game when players have a single stealing opportunity and there are only

two periods. Section 5 generalizes the results, and Section 6 concludes.

2 Literature review

In terms of approach, modelling strategy, and topic of investigation, the stealing

game has ties with various strands of the literature. The game is a timing game,

i.e., a game in which agents must decide when to move (in our specific case, when

to use their stealing attempts). The stealing game actually shares something in

common with different archetypes of timing games. The two-player game belongs,

in fact, to the class of preemption games. These are games in which it is better to

act before one’s rivals; famous examples are the Stackelberg quantity game (Von

Stackelberg 1934) and the centipede game (Rosenthal 1981). On the other hand,

the game with more than two players displays some features that are typical of a

war of attrition (Maynard Smith 1974), a strategic situation in which preempting

the others is disadvantageous.2

2More recent literature on timing games has focused on generalizing former results (Bulow

and Klemperer 1999), in providing a unified framework to study preemption games and wars

of attrition (Park and Smith 2008), or in experimentally testing some of the theoretical results
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The stealing game can also be seen as a dynamic contest where agents compete

over different periods with the goal of winning a final prize. Within the rich

literature on dynamic contests (see Konrad 2009 for a review), the framework

recently discussed in a paper by Sela and Erez (2013) shares some similarities

with our stealing game. The authors study a specific form of repeated competition

where, in any given period, a firmwins a contest against its rival with a probability

that is positively affected by the firm’s relative allocation of a finite resource.

Firms are budget-constrained: they start with a given budget, and this budget is

progressively eroded by the allocation they implement in each period. The game

thus differ in a number of dimensions with respect to a stealing game such as the

payoff structure (a prize in each period versus a unique final prize in our game),

the number of players involved (n = 2 versus n ≥ 2 in our game), and the way

the agents compete (by allocating resources versus by stealing resources in our

game). Nevertheless, an important feature that characterizes both games is the

idea that players are budget-constrained (in our case, with respect to the number

of stealing possibilities) and thus must choose the timing profile of their actions as

well as the fact that, in any given period, the outcome of the interactions among

agents is stochastic.

The idea that players compete by allocating finite resources across periods

is also reminiscent of the Colonel Blotto game introduced by Borel (1921). In

this game, two contestants must simultaneously deploy their armies over various

battlefields, and in every battlefield, victory goes to the agent who positions the

greater force. The winner of the game is the agent who wins in the majority of

battlefields. Indeed, the basic structure of the stealing game is a specific version

of a Blotto game where players can deploy at most one unit (i.e., one stealing

possibility) over a subset of battlefields/periods. Our game is then enriched by

(Brunnermeier and Morgan 2010).
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other elements, such as the presence of more than two players and the positive

relationship between a player’s strength and the expected effectiveness of his

move.

Concerning the last point, Rinott, Scarsini, and Yu (2012) introduce and

study a gladiator game. The game is a stochastic version of the Blotto game

where the coaches of two teams of gladiators must decide how to allocate a finite

amount of “total strength”within their teams. Gladiators are then involved in

a sequence of one-to-one fights. In any given fight, the probability of winning is

a probabilistic function of the fighters’strength. At the end of each fight, the

winner recovers his initial strength and remains to fight a new challenger. Thus,

some stochastic elements in the determination of the winner as well as a positive

relationship between a player’s current strength and his probability of winning

are characteristics similar to our stealing game.

Finally, and partly moving to a different strand of the literature, Dubovik

and Parakhonyak (2014) study a dynamic model of targeted competition (i.e., a

model in which a player can compete/fight against a specific chosen rival). More

precisely, three drug cartels compete over three markets, where each market is

served by a different couple of cartels. Each cartel can allocate resources to fight

the rival in any of the markets where he operates, and the amount of damage that

a cartel can inflict on a rival is positively related to the cartel’s local strength,

as measured by its manpower. There are thus some important similarities to the

approach that we adopt in modeling the stealing game. In fact, the stealing game

also provides a model of targeted competition (whenever n ≥ 3, each player must

choose not only when to steal but also from whom). Moreover, our model also

features a positive relationship between the current strength of a player and his

expected ability to damage a rival. On the other hand, these two models differ in

a number of ways. For instance, in our game, the aforementioned relationship is
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stochastic rather than deterministic, all players are active in a common market,

agents do not accrue payoffs over time, and the analysis is not restricted to a

situation with three players.

3 The stealing game

The stealing game is a discrete-time stochastic dynamic game in which n ≥ 2

risk-neutral players compete for the possession of a perfectly divisible resource

the size of which is constant and normalized to 1. Let πti ∈ [0, 1] be the share of

the resource that agent i ∈ {1, ..., n} holds at time t ∈ {1, ..., T + 1} where T ≥ 2

is finite and common knowledge. The vector πt = (πt1, ..., π
t
n) such that

∑
i π

t
i = 1

thus defines the allocation at time t with π1 =
(
1
n
, ..., 1

n

)
.

The goal of the players is to be the largest shareholder at the moment the

game is over (i.e., at t = T + 1). Throughout the game, the only way in which an

agent can increase his holdings is to steal part of the resource from someone else.

Each agent is endowed with K < T stealing opportunities. A player’s problem

consists of deciding when to use these opportunities (agents can use at most one

stealing opportunity per period) and which opponent to target (agents can steal

from a single rival).3 The vector kt = (kt1, ..., k
t
n) with kti ∈ {0, ..., K} describes

players’remaining stealing opportunities at the beginning of period t.

The state of the game at time t is thus defined by θt = (πt, kt). In any period

t ∈ {1, ..., T}, agents first observe θt and then simultaneously choose whether to
3There are a number of things to notice here. First, we set K < T because we are interested

in studying a situation in which stealing opportunities are a scarce resource, and players must

decide when to use them. Second, an agent can freely change the rival he targets across periods:

agent a may steal from b in a certain period and then from c in a subsequent period. Finally,

we assume for simplicity that there are no explicit monetary costs associated with the act of

stealing. Such an assumption implies little loss of generality since all the results would remain

valid as long as stealing costs do not exceed a certain threshold.
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remain inactive (action ati = ∅) or steal from a specific opponent j (action ati =

j). Obviously, an agent who runs out of stealing opportunities must necessarily

remain inactive. We indicate with Ati a player’s action space and with at =

(at1, ..., a
t
n) an action profile.

Whenever an agent plays ati = j, the maximal amount sti ∈ [0, 1] that agent

i can steal from j is determined by the realization of the random variable Sti .

Let s̄ti denote the expected value of S
t
i . The following assumption states that on

average larger players are better thieves, i.e., players whose stealing attempts are

expected to be more effective.

Assumption 1 s̄ti = f(πti) with f(0) = 0 and f ′(·) > 0.

Clearly, there may be cases of “excess demand”, i.e., situations in which one

or more players simultaneously steal from agent j but j’s holdings are not enough

to satisfy aggregate demand. More formally,
∑

l:atl=j
stl > πtj. Whenever such an

event occurs, we assume that thieves obtain a share that is proportional to the

strength of their stealing attempts. We can thus define the actual amount yti ≤ sti

that agent i manages to steal from j as follows

yti = min

{
sti,

sti∑
l:atl=j

stl
πtj

}
(1)

Agents’payoffs are determined by the final allocation of the resource. More

precisely, the player who, in period T + 1, holds the largest share gets a prize of

size 1. The others get zero. If there is more than one market leader, the prize is

equally shared among the winners.

We follow the standard practice in the stochastic games literature (see for

instance Maskin and Tirole 2001) and focus on Markov strategies. Let ht =

(a1, ..., at−1) be the history of the game at the beginning of period t, i.e., the

sequence of actions chosen up to period t − 1. A Markov strategy depends only
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on the current state θt and not on the entire history of play ht. Formally, it

is given by σi =
(
σ1i , ..., σ

T
i

)
where σti maps the current state into actions, i.e.,

σti : Θ → Ati. Notice that we only consider pure strategies as every σ
t
i selects a

specific action in Ati and does not involve any randomization. We indicate with

σ = (σ1, ..., σn) a profile of pure Markov strategies.

We use as a solution concept the notion of Markov perfect equilibrium (MPE).

AMPE is a subgame perfect equilibrium in which all players use Markov strategies

(see againMaskin and Tirole 2001). Let ūi (σ) indicate the agent’s expected payoff

given the strategy profile σ. A profile σ̂ = (σ̂1, ..., σ̂n) is a pure strategy MPE if

for any t, ht, and i

ūi (σ̂i, σ̂−i | ht) ≥ ūi (σi, σ̂−i | ht) for all σi. (2)

3.1 Some preliminary results

The following lemma, whose proof is trivial and is therefore omitted, reduces the

set of strategies that can be part of a MPE. It states that in any equilibrium, all

agents use all their stealing opportunities.

Lemma 1 Let the strategy profile σ̂ = (σ̂1, ..., σ̂n) be a Markov perfect equilib-

rium. Then, σ̂i is such that kT+1i = 0 for any i ∈ N .

Lemma 2 defines instead the relationship between an agent’s current holdings

(πti) and the expected value of his loot (ȳti). It states that ȳ
t
i is strictly increasing

in πti. The result immediately follows from Assumption 1 and the definition of y
t
i

(see expression 1).

Lemma 2 ȳti = g(πti) with g(0) = 0 and g′(·) > 0.

In the remaining of the paper, we will also extensively use the notion of a

“circle”of players.
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Definition 3 Given any set of agents M ⊆ N where |M | = m ≥ 2, a circle of

players Ctm forms in M at time t if for any i ∈M there is a unique j ∈M such

that atj = i.

In other words, a circle of players Ctm is such that at time t all agents who

belong to the subset M steal from each other.

In the following, we investigate the stealing game under various specifications

for the parameters. We adopt a “bottom-up”approach, that is, we start from the

simplest possible setting and progressively generalize the analysis. Our primary

goal is to solve for the optimal timing decisions of the players. The fact that the

stealing game is a dynamic game that may involve many players competing over

many periods often renders unfeasible a complete characterization of the equilibria

in terms of strategy profiles that define a complete plan of action for every possible

contingency that may arise. Therefore, we will often define the equilibria of the

game in terms of the action profiles that emerge on the equilibrium path rather

than in terms of complete strategy profiles. In other words, we do not distinguish

between strategy profiles that may differ in terms of off-path equilibrium behavior

but still lead to the same equilibrium outcome.

4 The game with T = 2 and K = 1

We start the analysis of the game by focusing on a basic, yet highly informative,

case. More precisely, we study a stealing game that lasts two periods (i.e., T = 2)

and in which players have only one stealing opportunity (i.e., K = 1). We first

analytically solve the game with two and three players, then extend the results

to the case in which n > 3.

9



4.1 The two-player game

If n = 2, each player has only one opponent from which he can steal. The

game is essentially a 2x2 game where players must only decide when to use their

single stealing opportunity. The following proposition states that in the unique

equilibrium of the game, both agents steal from each other in t = 1. The proof

is trivial (in expectations stealing in t = 1 is strictly dominant) and is therefore

omitted.

Proposition 4 The stealing game with two players has a unique MPE. In this

equilibrium, both agents belong to the circle C12 .

4.2 The three-player game

When n = 3, the stealing game presents multiple equilibria. These can be char-

acterized as follows:

Proposition 5 The three-player stealing game has four pure strategy MPE:

- two equilibria are such that every agent belongs to a circle C13 (all players move

in t = 1);

- two equilibria are such that every agent belongs to a circle C23 (all players move

in t = 2).

Defining the set of players as N = {a, b, c}, Proposition 2 thus identifies the

following equilibrium outcomes:

O1 = ((b, ∅), (c, ∅), (a, ∅)) O3 = ((∅, b), (∅, c), (∅, a))

O2 = ((c, ∅), (a, ∅), (b, ∅)) O4 = ((∅, c), (∅, a), (∅, b))

All the equilibria are Pareto equivalent with ūi (σ̂) = 1
3
for all i since all players

are equally likely to finish the game as the largest shareholder. The interesting
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feature of the three-player game, versus the two-player game, is that equilibria

exist in which all agents postpone their moves. While in the two-player case, any

strategy that prescribes a player to postpone his move is dominated, a similar

relationship does not hold when the number of players equals three. There exist

in fact states of the world where postponing one’s move pays off. Consider, for

instance, a situation in which player a is the unique agent who moves in the first

period, and assume he steals from player b. Clearly, this is an ideal scenario for

player c, because he can now observe the new state θ2 and then decide how to

use his stealing opportunity (which is still fully effective).

4.3 The game with n > 3 players

We now extend the analysis of the stealing game to a situation in which more than

three players compete over two periods and have a single stealing opportunity.

As before, our primary interest lies in investigating the timing of agents’moves

and their decision whether to preempt or postpone their stealing opportunity.

The following proposition defines the preempting equilibria, the ones in which all

players move in t = 1.

Proposition 6 The stealing game with more than three players has multiple pure

strategy MPE in which all players move in t = 1. All these equilibria are such

that every agent belongs to a circle of players.

Notice that the number of preempting equilibria rapidly explodes with the

number of players. In fact, for any n > 3, equilibrium profiles are not only those

that support the (n − 1)! possible circles that involve all the players (i.e., the

circles C1n) but also those in which the set N is partitioned and smaller circles

(possibly of different sizes) emerge in every part.
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There also exist postponing equilibria in which all the players use their stealing

opportunities in t = 2. However, the conditions that define them are stricter, as

shown by the following proposition.

Proposition 7 The stealing game with more than three players has multiple pure

strategy MPE in which all players move in t = 2. All these equilibria are such

that every agent belongs to a circle of players, and every circle contains at least

three players.

Proposition 4 indicates that there cannot exist postponing equilibria that

feature circles made of two players because within any circle of this kind, players

would like to deviate in order to preempt their rival. In fact, Proposition 1 showed

that the only circle that qualifies as an equilibrium when n = 2 is the one in which

both players move in t = 1.

Comparing Propositions 1 through 4, it is possible to state three additional

results that characterize a stealing game in which n ≥ 2 agents compete over two

periods and have a single stealing opportunity:

- whenever n 6= 3, not all the strategy profiles where every agent belongs to a

circle of players are equilibria.

- for any n ≥ 4, the number of preempting equilibria is strictly larger than the

number of postponing equilibria.4

4Consider, for instance, a stealing game with n = 5. Proposition 3 implies that preempting

equilibria can emerge only in partititions (5) and (3, 2). The number of preempting equilibria is

thus 44: there exist 4! = 24 equilibrium outcomes in partition (5) and 20 equilibrium outcomes in

partition (3, 2) (ten couples can be drawn from a set of 5 elements; for any of these couples there

are two possible circles that can emerge in the part that involves 3 players). On the contrary,

Proposition 4 states that postponing equilibria can emerge only in partitition (5) since players

must necessarily belong to a circle C25 . It follows that there are only 24 postponing equilibria.
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- for any n ≥ 4, there exist equilibria that are asymmetric with respect to the

timing decision.5

5 The game with T > 2 and K < T

As a further generalization, we consider a stealing game that lasts for T periods

and where players have K ∈ {1, ..., T − 1} stealing possibilities. The widening

of players’action spaces, paired with the stochastic nature of the game, rapidly

enlarges the state space. This fact renders unfeasible a clear categorization of

agents’best responses. As such, not only a proper characterization of the equi-

libria, but also the mere description of the action profiles that emerge along the

various equilibrium paths, appear to be out of reach.

It is, however, possible to state some very general results. These maintain the

same qualitative features as those presented in the previous sections, at least for

what concerns the timing of agents’first move. The main insights are that in

equilibrium, all players may remain idle for some initial periods (the two-player

case being an exception), and that when a player uses his first stealing oppor-

tunity, he necessarily belongs to a circle of players. The following proposition

formalizes these results:

Proposition 8 All pure strategy MPE of a stealing game in which n ≥ 2 players

compete over T > 2 periods and have K < T stealing opportunities are such that:

- if n = 2, both agents belong to the circles Ct2 for any t = {1, ..., K};

- if n ≥ 3, each agent belongs to a circle Ct
∗
m where t∗ is the period in which the

agent uses his first stealing opportunity. In particular, t∗ = 1 if m = 2 whereas

t∗ ∈ {1, ..., T −K + 1} if m ≥ 3.

5Let N = {a, b, c, d, e}. The outcome O1 = ((b, ∅), (a, ∅), (∅, d), (∅, e)(∅, c)) is an example of

an asymmetric equilibrium: a and b belong to the circle C12 and move in t = 1 while c, d, and

e belong to a circle C23 and move in t = 2.
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6 Conclusions

We analyzed what we called the stealing game, a stochastic game in which players

must decide when to steal portions of a homogeneous good from each other with

the goal of finishing with the largest share. The peculiarity of the game is that the

expected effectiveness of a player’s theft is increasing in the agent’s holdings. We

showed that in a stealing game with two agents, players always want to preempt

their rival and thus employ their stealing opportunities as soon as possible. Al-

ternatively, we showed that with three players, the game also displays equilibria

in which all the agents postpone their moves. Finally, we showed that when the

number of players is larger than three, asymmetric equilibria exist, and not all

the players necessarily steal in the same periods.
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Appendix

Proof of Proposition 2. We prove that the four outcomes are equilibrum out-

comes by showing that no player has any incentive to deviate. Define the set of

players as N = {a, b, c} and denote the four candidate equilibrium outcomes as:
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O1 = ((b, ∅), (c, ∅), (a, ∅)) O3 = ((∅, b), (∅, c), (∅, a))

O2 = ((c, ∅), (a, ∅), (b, ∅)) O4 = ((∅, c), (∅, a), (∅, b))

In what follows, we evaluate player a’s possible deviations from the strategies

that support outcomes O1 and O3. This implies no loss of generality since agents

are initially symmetric and what we show about strategies that support O1 and

O3 also holds for the strategies that support O2 and O4. We indicate with σ̂ a

strategy profile that leads to outcome Ox with x ∈ {1, 3}. The resulting expected

allocation π̄3 (σ̂) = (π̄3a (σ̂) , π̄3b (σ̂) , π̄3c (σ̂)) is given by

π̄3 (σ̂) =

(
1

3
+ ȳta − ȳtc,

1

3
+ ȳtb − ȳta,

1

3
+ ȳtc − ȳtb

)
with t ∈ {1, 2} (3)

Because of Assumption 1, Lemma 2, and the fact that agents are symmetric and

move simultaneously, it follows that ȳti = ȳtj for any i, j ∈ {a, b, c}. Therefore,

π̄3i (σ̂) = π̄3j (σ̂) for any i, j ∈ {a, b, c} and the expected payoff of agent a is

ūa (σ̂) = 1
3
.

By Lemma 1, all deviations such that player a does not use his stealing oppor-

tunity are dominated. We thus only need to show that no deviations in which

a uses his stealing opportunity are profitable. Agent a can deviate from σ̂a by

stealing from a different rival (we analyze this possibility in Case 1 below) and/or

by stealing in a different period (Cases 2a and 2b).

Case 1) Consider any outcome Ox, x ∈ {1, 3}, and let player a deviate and steal

from c rather than from b. We denote such a deviation by σ̃a and the resulting

profile by σ̃ = (σ̃a, σ̂−a). The final expected allocation is given by

π̄3 (σ̃) =

(
1

3
+ ȳta − ȳtc,

1

3
+ ȳtb,

1

3
+ ȳtc − ȳta − ȳtb

)
with t ∈ {1, 2} (4)

Notice that in σ̃ all players still move simultaneously and thus, by Assumption

1, s̄ti = s̄tj for any i, j ∈ {a, b, c}. By expression (1) and Lemma 2, it then follows
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that ȳta = ȳtb whereas ȳ
t
a ≤ ȳtc (strict inequality holds when s̄ti >

1
6
, in which

case ȳta = ȳtb = 1
6
as agents a and b share c’s initial endowment). Therefore,

π̄3a (σ̃) ≤ 1
3
. Consider first the case π̄3a (σ̃) = 1

3
and observe that π̄3b (σ̃) > 1

3
. Given

that π̄3a (σ̃) = π̄3a (σ̂) and π̄3b (σ̃) + π̄3c (σ̃) = π̄3b (σ̂) + π̄3c (σ̂) = 2
3
, it follows that

player a’s probability of winning the game (i.e., the probability of π3a (·) being

larger than both π3b (·) and π3c (·)) is smaller with σ̃ rather than with σ̂. It follows

that ūa (σ̃) < 1
3
. The same result holds a fortiori if π̄3a (σ̃) < 1

3
. Therefore, the

deviation to σ̃a is unprofitable.

Case 2a) Consider outcome O1 and let player a evaluate the possibility to post-

pone his stealing attempt to the second period. We denote such a deviation by

σ̌a and the resulting profile by σ̌ = (σ̌a, σ̂−a). The expected allocation at the

beginning of t = 2 is given by

π̄2 (σ̌) =

(
1

3
− ȳ1c ,

1

3
+ ȳ1b ,

1

3
+ ȳ1c − ȳ1b

)
(5)

with ȳ1b = ȳ1c and π̄
2
a (σ̌) ≥ 0. In expectations, agent a will thus target player

b as π̄2b (σ̌) > π̄2c (σ̌). If π̄2a (σ̌) = 0 then, by Assumption 1, s̄2a = 0. Therefore,

ȳ2a = y2a = 0, π3a (σ̌) = 0 and ua (σ̌) = 0. If instead π̄2a (σ̌) > 0 then ȳ2a > 0 and the

expected final allocation will be

π̄3 (σ̌) =

(
1

3
− ȳ1c + ȳ2a,

1

3
+ ȳ1b − ȳ2a,

1

3
+ ȳ1c − ȳ1b

)
(6)

with ȳ2a < ȳ1i for any i ∈ {b, c} such that π̄3a (σ̌) < π̄3c (σ̌) < π̄3c (σ̌). Therefore,

ūa (σ̌) < 1
3
and the deviation is unprofitable.

Case 2b) Consider outcome O2 and let player a deviate and steals from b in t = 1

rather than in t = 2 (the same reasoning applies in case a decides to steal from

c). We denote such a deviation by σ̈a and the resulting profile by σ̈ = (σ̈a, σ̂−a).

The expected allocation at the beginning of t = 2 is given by
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π̄2 (σ̈) =

(
1

3
+ ȳ1a,

1

3
− ȳ1a,

1

3

)
(7)

In t = 2 player c will thus steal from a. Player b with π̄2b (σ̈) ≥ 0 takes this

into account and decides whether to steal from a or c, depending on the actual

realization y1a. If b steals ȳ
2
b ≥ 0 from c, then the expected final allocation is

π̄3 (σ̈) =

(
1

3
+ ȳ1a − ȳ2c ,

1

3
− ȳ1a + ȳ2b ,

1

3
+ ȳ2c − ȳ2b

)
(8)

with ȳ1a = ȳ2c because of Assumption 1 and Lemma 2. Therefore, π̄
3
b (σ̈) < π̄3a (σ̈) <

π̄3c (σ̈) with π̄3a (σ̈) = 1
3
. By the same reasons discussed in Case 1, it follows that

ūa (σ̈) < 1
3
. If instead, b steals from a, then the expected final allocation is

π̄3 (σ̈) =

(
1

3
+ ȳ1a − ȳ2c − ȳ2b ,

1

3
− ȳ1a + ȳ2b ,

1

3
+ ȳ2c

)
(9)

and, a fortiori, ūa (σ̈) < 1
3
. Therefore, the deviation to σ̈a is unprofitable.

In summary, all possible deviations are strictly unprofitable and we can thus

conclude that the four outcomes are indeed equilibrium outcomes. Moreover,

in discussing the possible deviations of generic player a, we have spanned all

possible outcomes of the game. In addition to outcomes Ox, x ∈ {1, 2, 3, 4},

all remaining outcomes belong in fact to at least one of these categories: i) at

least one player does not use his stealing opportunity (these outcomes cannot

be equilibria outcomes because of Lemma 1); ii) all players move in the same

period but do not belong to a circle Ct3 with t ∈ {1, 2} (these outcomes cannot

be equilibria outcomes as discussed in Case 1); iii) two players move in period

t ∈ {1, 2} while the third agent moves in period t′ 6= t (these outcomes cannot be

equilibria outcomes as discussed in Cases 2a and 2b). It follows that the outcomes

Ox, x ∈ {1, 2, 3, 4}, are the unique equilibrium outcomes. Therefore, the strategy

profiles that support these outcomes are the unique pure strategy Markov perfect

equilibria of the game.
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Proof of Proposition 3. The proof generalizes parts of the proof of Proposition

2 (in particular, Cases 1 and 2a). Take any strategy profile σ̂ that supports an

outcome in which each agent uses his stealing opportunity in t = 1 and belongs

to a circle of players. Notice that ūi (σ̂) = 1
n
for any i ∈ N . Say that, according

to σ̂, generic player a belongs to a circle C1m where he steals from agent b. Now

let a evaluate possible deviations. If a moves in t = 1 but robs agent c 6= b (it

does not matter whether c also belongs to C1m or not) then, in the modified profile

σ̃ = (σ̃a, σ̂−a), player b is not robbed by anyone. The expected final allocation

π̄3 (σ̃) is such that π̄3a (σ̃) = π̄3a (σ̂) = 1
n

+ ȳ1a − ȳ1d (d is the player who robs a

in σ̂ and in σ̃). However, π̄3b (σ̃) = 1
n

+ ȳ1b such that π̄
3
a (σ̃) < π̄3b (σ̃). It follows

that ūa (σ̃) < 1
n
and the deviation to σ̃a is unprofitable. If instead player a

postpones his move and steals from b (or any other player) in t = 2 (we indicate

such a strategy with σ̌a), then π̄3a (σ̌) = 1
n
− ȳ1d + ȳ2a such that, by Assumption

1 and Lemma 2, π̄3a (σ̌) < 1
n
. Therefore, ūa (σ̌) < 1

n
and the deviation to σ̌a is

unprofitable.

Proof of Proposition 4. The proof generalizes parts of the proof of Proposition

2 (in particular, Cases 1 and 2b). Consider any strategy profile σ̂ that supports an

outcome in which each agent uses his stealing opportunity in t = 2 and belongs to

a circle of players C2m with m ≥ 3. Agent a’s possible deviations (a steals from a

different player in t = 2, or brings his move forward to t = 1) are unprofitable (see

the proofs of Propositions 2 and 3). As for the restriction on the minimum size of

any circle of players, consider a circle with two players C22 . The strategic situation

in C22 replicates the one that characterizes the stealing game when n = 2. As such

(see Proposition 1), no circle C22 can be part of any equilibrium as both players

would like to deviate and use their stealing opportunity in t = 1.

Proof of Proposition 5. The proof is trivial for the case with n = 2: both

players use all their stealing attempts as soon as possible (and thus belong to
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circles Ct2 for any t = {1, ..., K}) as this is a dominant strategy. When n ≥ 3, a

necessary condition for any strategy profile to qualify as an equilibrium profile is

that each agent belongs to a circle of players at the moment he moves for the first

time. Indeed, if this was not the case, there would certainly exist at least one

player who could profitably deviate (see the proofs of Propositions 2, 3, and 4).

Moreover, agents that belong to circles of two players must necessarily use their

first stealing opportunity in period t′ = 1 (see Proposition 1). Agents that belong

to circles of more than two players can instead use their first stealing opportunity

at any t′ ∈ {1, ..., T −K + 1} where the upper bound is due to the fact that, by

Lemma 1, players plan to use all their stealing attempts throughout the game.
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