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M 3Fusion: A Deep Learning Architecture for
Multi-{Scale/Modal/Temporal} satellite data fusion

P. Benedetti, D. Ienco, R. Gaetano, K. Ose, R.G. Pensa and S. Dupuy

Abstract—Modern Earth Observation systems provide remote
sensing data at different temporal and spatial resolutions. Among
all the available spatial mission, today the Sentinel-2 program
supplies high temporal (every 5 days) and high spatial resolution
(10m) images that can be useful to monitor land cover dynamics.
On the other hand, Very High Spatial Resolution (VHSR)
imagery is still essential to figure out land cover mapping
characterized by fine spatial patterns. Understanding how to
jointly leverage these complementary sources in an efficient way
when dealing with land cover mapping is a current challenge in
remote sensing. With the aim of providing land cover mapping
through the fusion of multi-temporal High Spatial Resolution
and VHSR satellite images, we propose a suitable end-to-end
Deep Learning framework, namely M3Fusion, which is able
to simultaneously leverage the temporal knowledge contained in
time series data as well as the fine spatial information available
in VHSR images. Experiments carried out on the Reunion Island
study area confirm the quality of our proposal considering both
quantitative and qualitative aspects.

Index Terms—Land Cover Mapping, Data Fusion, Deep Learn-
ing, Satellite Image Time series, Very High Spatial Resolution,
Sentinel-2.

I. INTRODUCTION

Modern Earth Observation (EO) systems produce huge
volumes of data every day. Earth Observation programs (e.g.,
Copernicus) supply image acquisition at high spatial resolu-
tion (10m) with high temporal revisit period (every 5 days).
This information can be organized into time series of high-
resolution satellite imagery (SITS) that are particular useful for
area monitoring over time. Other Earth Observation programs
are able to provide image information at finer spatial resolution
(between 0.5 to 2m) but with a low revisiting frequency. An
example of EO program that supplies this kind of information
is the SPOT6/7 mission that produces images with a spatial
resolution of 1.5m. Such kind of images supply Very High
Spatial Resolution (VHRS) information and they are extremely
useful to characterize land use or land cover by means of their
spatial structure [1].
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In the context of land use and land cover classification,
employing high spatial resolution (HSR) time series, instead
of a single image of the same resolution, can be useful to
distinguish land usage classes according to their temporal
profile or evolution [2]. On the other hand, the use of fine
spatial information (VHSR images) helps to differentiate other
kind of classes that need spatial context information at a finer
scale [3].

Due to the diverse, although complementary, information
carried out by each of these different Earth Observation
sources, how to intelligently combine satellite image time
series and VHSR images via a dedicated fusion process, for a
particular task at hand, constitutes an important challenge in
the field of remote sensing [4], [3].

Considering data fusion at sensor level [3], several works
exist that combine time series of satellite images at different
resolutions together. For instance, in [5], the authors propose
two methods to combine MODIS and LANDSAT time series
images to produce a synthetic daily surface reflectance product
at ETM+ spatial resolution. [6] extends this work providing a
method that deal with cloudy phenomena as well as scales
up over big surfaces. In [7], the authors propose a novel
approach to combine two VHSR images (acquired at two
different timestamps on the same area) coming from different
sensors. Also in this case, the fusion process produces new
synthetic surface reflectance images.

Conversely, when a particular task needs to be addressed, a
different data fusion scenario is considered (fusion at feature
level [3]). For instance, when multiple sources of remote
sensing data are combined to deal with land cover/land use
mapping, the results of the fusion process are not new synthetic
images but directly the land cover classification. For instance,
[8], [9] do not produce reflectance product but they directly
solve the particular task at hand [3]. In both research studies,
they first extract an independent set of features for each data
source (time series, VHSR image) and, successively, they stack
these features together to feed a traditional supervised learning
method (i. e., Random Forest).

Recently, the deep learning revolution [10] has shown that
neural network models are well adapted tools for automatically
managing and classifying remote sensing data. The main char-
acteristic of this type of model is the ability to simultaneously
extract features optimized for image classification and the
associated classifier. This advantage is fundamental in a data
fusion process such as the one involving high resolution time
series (i. e. Sentinel-2) and VHSR data (i. e. Spot6/7). Recent
works have demonstrated the quality of deep learning for
remote sensing data fusion. [11] introduces a regression deep
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learning architecture to infer NDVI information for cloudy
areas exploiting information coming from Sentinel 1 and
Sentinel 2 times series available before and after the date
affected by the cloud phenomena. In [12] the authors propose
a deep learning architecture to fuse together hyperspectral and
LIDAR signals with the goal to produce a land cover map.
[13] proposes to exploit deep learning to combine PAN and
MS information still to cope with land cover classification.

To the best of our knowledge, no Deep Learning architecture
has already been introduced to deal with the challenging fusion
problem involving optical High-Resolution Satellite Image
Time Series and Very High Resolution imagery to provide
land cover mapping [14].

As regards deep learning methods, we distinguish two main
families of approaches: convolutional neural networks [10]
(CNN) and recurrent neural networks [15] (RNN). CNN are
well suited to model the spatial autocorrelation available in
an image. RNN networks, instead, are specifically tailored to
manage time dependencies [16], [17], [18] from multidimen-
sional time series. In this article, we propose to leverage both
CNN and RNN to address the fusion problem between a HSR
time series of Sentinel-2 images and a single VHSR scene
(SPOT6/7) on the same study area with the goal of performing
land use mapping.

The method we propose, named M3Fusion (Multi-
Scale/Modal/Temporal Fusion), is a deep learning architecture
that integrates both a CNN module (to integrate VHSR infor-
mation) and an RNN module (to manage HSR time series
information) in an end-to-end learning process. Differently
from general data fusion approaches [5], [6], [7], [3] in
which the result is a set of new synthetic surface reflectance
images, the outcome of our deep-learning based data fusion
process is the final land cover classification avoiding the
generation of any other intermediate product. Each information
source is integrated through its dedicated module and the
extracted descriptors are then concatenated to perform the final
classification. All the non-linear transformations are learned
together resulting in an architecture that is able to manage,
simultaneously, multi-temporal and multi-scale information,
thus enabling the extraction of complementary and diversely
useful features for land use mapping.

To validate our approach, we conduct experiments on a data
set regarding the Reunion Island site. This site is a French
Overseas Department located in the Indian Ocean (east of
Madagascar) and it will be described in Section II. The rest
of the article is organized as follows: Section III introduces
the M3Fusion Deep Learning Architecture for the multi-
source classification process. The experimental setting and the
findings are discussed in Section IV. Finally, conclusions are
drawn in Section V.

II. DATA

The study was carried out on the Reunion Island, a French
overseas department located in the Indian Ocean. The dataset
consists of a time series of 34 Sentinel-2 (S2) images acquired
between April 2016 and May 2017, as well as a very high
spatial resolution (VHSR) SPOT6/7 image acquired in April

2016 and covering the whole island. The S2 images used are
those provided at level 2A by the THEIA pole 1, where the
bands at 20m resolution were resampled at 10m via bicubic
interpolation. A preprocessing was performed to fill cloudy
observations through a linear multi-temporal interpolation over
each band (cfr. Temporal Gapfilling, [8]), and six radiometric
indices were calculated for each date: NDVI, NDWI, bright-
ness index (BI), NDVI and NDWI of infrared means (MNDVI
and MNDWI), and vegetation index Red-Edge (RNDVI) [8],
[9]. A total of 16 variables (10 surface reflectances plus 6
indices) are considered for each pixel of each image in the
time series.

The SPOT6/7 image, acquired on April 6th 2016 and
originally consisting of a 1.5 m panchromatic band and 4
multispectral bands (blue, green, red and near infrared) at 6 m
resolution, was pansharpened to produce a single multispectral
image at 1.5 m resolution and then resampled at 2 m via bicu-
bic interpolation because of the network architecture learning
requirements2. Its final size is 33 280 × 29 565 pixels on 5
bands (4 Top of Atmosphere reflectance plus the NDVI). This
image was also used as a reference to realign the different
images in the time series by searching and mapping anchor
points, in order to improve the spatial coherence between the
different sources.

The field database was built from various sources: (i) the
Registre parcellaire graphique (RPG) reference data of 2014,
(ii) GPS records from June 2017 and (iii) photo interpretation
of the VHSR image conducted by an expert, with knowledge
of the territory, for distinguishing between natural and urban
spaces. RPG is part of the European Land Parcel Identifi-
cation System (LPIS), provided by the French Agency for
services and payment. The RPG supplies a thematic layer
(in vector format) with information about the land cover for
each polygon (vector) it contains. All polygon contours have
been resumed using the VHSR image as a reference. The final
dataset is composed of a total of 322 748 pixels (2 656 objects)
distributed over 13 classes, as indicated in Table I.

Class Label # Objects # Pixels
1 Crop Cultivations 380 12090
2 Sugar cane 496 84136
3 Orchards 299 15477
4 Forest plantations 67 9783
5 Meadow 257 50596
6 Forest 292 55108
7 Shrubby savannah 371 20287
8 Herbaceous savannah 78 5978
9 Bare rocks 107 18659
10 Urbanized areas 125 36178
11 Greenhouse crops 50 1877
12 Water Surfaces 96 7349
13 Shadows 38 5230

Table I: Characteristics of the Reunion Dataset
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Figure 1: Visual representation of M3Fusion.

III. CONTRIBUTIONS

A. M3Fusion model overview

Figure 1 visually describes the Multi-Scale/Modal/Temporal
Fusion (M3Fusion) approach proposed in this work. First of
all, we define the input data for our deep learning model.
M3Fusion takes as input a dataset {(xi, yi)}Mi=1 where each
example is associated with a class value yi ∈ 1, ..., C. An
example xi is defined as a pair xi = (tsi, patchi) such
that tsi is the (multidimensional) time series of a Sentinel-
2 pixel (10 m resolution) and patchi is a subset of the image
Spot6/7 (at 2 m resolution) centered around the corresponding
Sentinel-2 pixel. Note here that every exemple is purposely
built to encompass two different acquisition modes at two
different scales for a given sample area: a pixel-based spectral
dynamic via multi-temporal HSR data, and a patch-based fine-
scale spatial/contextual information via the single date VHSR
scene. For every patchi, we fix the window size to 25×25
pixels on the Spot6/7 (which corresponds to a window size
5x5 on a Sentinel-2 image) centered around a Sentinel-2 pixel
described by the corresponding tsi.

In order to merge the temporal information (Sentinel-2) and
the VHSR information (Spot 6/7), we designed a deep learning
architecture which has two parallel branches, one for each of
the two modes (spatial/temporal). For the Sentinel-2 pixel-
based time series we use a Recurrent Neural Network (RNN)
architecture. In particular, we used a Gated Recurrent Unit
(GRU) introduced in [20] which has already demonstrated its
effectiveness in the remote sensing field [21], [22]. On the
other hand, the spatial information supplied by the VHSR
image is integrated in the pipeline via the use of a Convo-
lutional Neural Network, a more suitable family of models
for spatial/contextual feature extraction [1].

The two branches of analysis learn complementary features
that are successively combined for the land cover mapping,
performed at the scale of the Sentinel-2 pixel. Following
the idea proposed in [23] in which auxiliary classifiers were

1Data are available via http://theia.cnes.fr, preprocessed in surface re-
flectance via the MACCS-ATCOR Joint Algorithm [19] developed by the
National Centre for Space Studies (CNES).

2This was done to ensure a direct and non-overlapping correspondence
between the time series pixels (10 m) and a block of VHSR pixels (5 × 5).

introduced with the aim to learn two sets of complementary
features that are as much as possible discriminative when used
alone; we also introduce two additional auxiliary classifiers,
working independently on each branch of analysis, as shown
in the Figure 1. A third classifier, working on the fusion (by
concatenation) of the two sets of features, produce the final
land use classification.

Each of the above mentioned classifiers is built by di-
rectly connecting the associated features to the output neu-
rons on which the SoftMax activation function is succes-
sively applied [10]. The model weights are learned by back-
propagation. The cost-function associated to the model is
derived by a linear combination of the individual cost function
of each of the classifiers.

B. Integration of HSR time series information

Recurrent Neural Networks are well established machine
learning techniques that demonstrate their quality in different
domains such as speech recognition, signal processing, and
natural language processing [24], [25]. Unlike standard feed
forward networks (e.g., Convolutional Neural Networks –
CNNs), RNNs explicitly manage temporal data dependencies
since the output of the neuron at time t-1 is used, together
with the next input, to feed the neuron itself at time t.

Recently, recurrent neural network (RNN) approaches have
demonstrated their quality in the remote sensing field to pro-
duce land use mapping using time series of optical images [16]
and recognize vegetation cover status using Sentinel-1 radar
time series [22]. Motivated by these recent research results, we
introduce an RNN module to integrate information from the
Sentinel-2 time series into our fusion process. In our model,
we choose the GRU unit (Gated Recurrent Unit) introduced
by [20] since it has a moderate number of parameters to learn
and it has already demonstrated its effectiveness in the field
of remote sensing [16], [21]. We coupled the Gated Recurrent
Unit with an attention mechanism [26].

The input of a RNN unit is a sequence of variables (xt1 ,...,
xtN ) where a generic element xti is a feature vector and
ti refers to the corresponding time stamp. In the context of
HSR satellite image time series, xti is a vector with as many
components as the number of spectral bands (including raw
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bands and indexes) carried by each satellite image. Equations
1, 2 and 3 formally describes the GRU neuron.

zti = σ(Wzxxti +Wzhhti−1 + bz) (1)
rti = σ(Wrxxti +Wrhhti−1 + br) (2)
hti = zt � ht−1+ (3)

(1− zti)� tanh(Whxxt +Whr(rt � hti−1) + bh)

The � symbol indicates an element-wise multiplication
while σ and tanh represent Sigmoid and Hyperbolic Tangent
function, respectively.

The GRU unit has two gates, update (zt) and reset (rt),
and one cell state, i.e., the hidden state (ht). Moreover, the
two gates combine the current input (xt) with the information
coming from the previous timestamp (ht−1). The update
gate effectively controls the trade off between how much
information from the previous hidden state will carry over
to the current hidden state and how much information of the
current timestamp needs to be kept. On the other hand, the
reset gate monitors how much information of the previous
timestamps needs to be integrated with current information.
As all hidden units have separate reset and update gates, they
are able to capture dependencies over different time scales.
Units more prone to capturing short-term dependencies will
tend to have a frequently activated reset gate, but those that
capture longer-term dependencies will have update gates that
remain mostly active [20]. This behavior enables the GRU unit
to remember long-term information.

Attention mechanisms [26] are widely used in automatic
signal processing (language or 1D signal) and they allow to
gather together the information extracted by the GRU model
at the different timestamps. The output returned by the GRU
model is a sequence of feature vectors learned for each date:
(ht1 ,..., htN ) where each hti has the same dimension d.
Their matrix representation H ∈ RN,d is obtained vertically
stacking the set of vectors. The attention mechanism allows
us to combine together these different vectors hti , in a single
one rnnfeat, to attentively combine the information returned
by the GRU unit at each of the different timestamps. The
attention formulation we use, starting from a sequence of
vectors encoding the learned descriptors (ht1 ,..., htN ), is the
following one:

va = tanh(H ·Wa + ba) (4)
λ = SoftMax(va · ua) (5)

rnnfeat =

N∑
i=1

λi · hti (6)

where matrix Wa ∈ Rd,d and vectors ba, ua ∈ Rd are
parameters learned during the process. These parameters allow
to combine the vectors contained in matrix H . The purpose
of this procedure is to learn a set of weights (λt1 ,..., λtN ) that
allows the contribution of each time stamp to be weighted
by hti through a linear combination. The SoftMax(·) [16]
function is used to normalize weights λ so that their sum is
equal to 1. The output of the RNN module is the feature vector

rnnfeat: they encode temporal information related to tsi for
the pixel i.

C. Integration of VHSR information

The VHSR information is integrated in M3Fusion through
a CNN module. Computer vision literature offers several
convolutional architectures [27], [28] aimed at classifying
images. Most of these networks are designed to process RGB
images (three channels) having size higher than 200x200
pixels. Such networks are composed by multiple (tens or
hundreds) layers. In our scenario, the image patch has a size
of 25x25 pixels and it involves five channels. In order to
adopt a CNN module that well fits our scenario and remains
computational affordable parameter-wise, we design the CNN
module depicted in Figure 2.

5 
@25x25

256 
@19x19

256 
@9x9

512 
@7x7

512 
@7x7

1024 
@7x7

512 
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512@1

GlobalAvg 
Pooling

Conv(512, 
1x1)

Conv(512, 
3x3)

Conv(512, 
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2x2,s=2)
Conv(256, 

7x7)
Concat

Figure 2: Convolutional Neural Network Structure

Our CNN network applies a first 7×7 kernel to the five-
channel patch in order to produce 256 feature maps. Then, a
max pooling layer is used to reduce the size and the number
of parameters. Two successive convolution operations, with
a 3×3 kernel, extract 512 feature maps each, which in their
turn, are concatenated and reduced again by a convolution 1×1
kernel. The final size is then 512×7×7.

Finally, a Global Average Pooling operation enables the
construction of a feature vector of size 512.

Each convolution is associated with a linear filter, followed
by a Rectifier Linear Unit (ReLU) activation function [29] to
introduce non-linearity and a batch normalization step [30].
The ReLU activation function is defined as follows:

ReLU(x) =Max(0,W · x+ b) (7)

This activation function is defined on the positive part of
the linear transformation of its argument (W · x + b). The
choice of ReLU nonlinearities is motivated by two factors:
the good convergence properties it guarantees and ii) the
low computational complexity it provides [29]. Furthermore,
batch normalization [30] accelerates Deep Network training
convergence by reducing the internal covariate shift.

The key points of our proposal are twofold: a) a higher
number of filters in the first step and b) the concatenation of
feature maps at different resolutions. The first point is related
to the higher amount of spectral information (five channels) in
input of our model compared to RGB images. To better exploit
the high spectral richness of these data, we have increased the
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number of feature maps generated at this stage. The second
point concerns the concatenation of feature maps. With the
goal of exploiting information at different resolutions we adopt
a philosophy similar to [28] in which feature maps, at different
level of the Deep architecture, are concatenated together. The
output of this module is a vector of dimensions 512 (cnnfeat)
which summarizes the spatial context (patchi) associated to
the i-th Sentinel-2 pixel.

D. The End-To-End Fusion process

One of the advantages of deep learning, compared to
standard machine learning methods, is the ability to link, in a
single pipeline, the feature extraction step and the associated
classifier [10]. This capability is particularly important in a
multi-source, multi-scale and multi-temporal fusion process,
such as the one represented by our scenario. M3Fusion lever-
ages this characteristic to extract complementary knowledge
from two data sources that describe the same information from
different points of view. In addition, the combination/fusion of
the data sources is optimized for the specific task at hand: land
cover mapping. Our approach combines together (fuses) the
heterogeneous spectral information belonging to the two data
sources via multiple non-linear combination of the radiometric
information.

To further strengthen the complementarity as well as the
discriminative power of the learned features for each in-
formation branch, we adapt the technique proposed in [23]
to our problem. In [23], the authors propose to learn two
complementary representations (using two convolutional net-
works) from the same image. The discriminative power is
enhanced by two auxiliary classifiers, linked to each group
of features, in addition to the classifier that uses the merged
information. The complementary is enforced by alternating
the optimization of the parameters of the two branches. In
our case, we have two complementary sources of information
(sentinel-2 time series and VHSR data) to which two auxiliary
classifiers are connected to independently increase their ability
to discriminate among land cover classes.

In detail, the classifier that exploits the full set of features
is fed by concatenating the output features of both CNN
(cnnfeat) and RNN (rnnfeat) modules together. Empirically,
we have observed that the RNN module overfits the data.
To alleviate this problem, we add a Dropout layer [31] on
rnnfeat with a drop-rate equals to 0.4. The learning process
involves the optimization of three classifiers at the same time,
one specific to rnnfeat, a second one related to cnnfeat and
the third one that considers [rnnfeat, cnnfeat].

The cost function associated to our model is :

Ltotal = α1 ∗ L1(rnnfeat,W1, b1)+

= α2 ∗ L2(cnnfeat,W2, b2)+

= Lfus([cnnfeat, rnnfeat],W3, b3) (8)

where

Li(feat,Wi, bi) = Li(Y, SoftMax(feat ·Wi + bi))

with Y being the true value of the class variable.
L1(rnnfeat,W1, b1) (resp. L2(cnnfeat,W2, b2)) is the cost

function of the first (resp. the second) auxiliary clas-
sifier that takes as input the set of descriptors re-
turned by the RNN module (resp. CNN module) and
the parameters W1, b1 (resp. W2, b2) to make the predic-
tion. Lfus(cnnfeat, rnnfeat,W3, b3) is the cost function
of the classifier that uses the combined set of features
([cnnfeat, rnnfeat]). This last cost function is parameterized
through W3 et b3. Each cost function is modeled through
categorical cross entropy, a typical choice for multi-class
supervised classification tasks [16].
Ltotal is optimized end-to-end. Once the network has been

trained, the prediction is carried out only by means of the
classifier involving W3 and b3, which uses all the features
learned by the two branches. The cost functions L1 et L2, as
highlighted in [23], operate a kind of regularization that forces,
within the network, the features extracted to be discriminative
independently.

We underline that the data fusion step is achieved inter-
nally by the proposed deep learning architecture without the
necessity to resample images at the same spatial and spectral
resolution.

IV. EXPERIMENTS

In this section, we present and discuss the experimental
results obtained on the study site introduced in Section II.

In the evaluation, we investigate several points deeply
related to a more clear understanding of our framework.
As first point, we perform an in-depth evaluation of the
performance of our proposal. In this part we assess: i) how
the performances of the CNN module change varying the
amount of spatial information considered; ii) the benefit of
forcing source specific features to be as much as possible
discriminative by themselves, and iii) the effectiveness of the
fusion method with respect to the use of each information
source alone. The second set of experiments are more related
to the comparison between the ability of M3Fusion and a
standard machine learning classifier (Random Forest)to deal
with land cover mapping. In this part we evaluate: i) the
per-class performance of our framework compared to the
one of the competitor and ii) the robustness of M3Fusion
considering different splits of the original datasets. Finally, in
the last part of the evaluation, we perform a qualitative study
considering the maps obtained by the competing methods. This
evaluation supplies some examples that support the quality and
effectiveness of our framework.

A. Experimental Settings

Here we describe the implementation details of M3Fusion
and the competitor we will use in Section IV-E, namely
Random Forest classifier (RF), which is commonly used for
supervised classification in the field of remote sensing [9].

For the RF model, we fix the number of generated random
trees to 200. We use the publicly available Python implementa-
tion supplied by the scikit-learn library [32]. In order to fairly
compare the two methods, we supply the same input data set
both to RF and to M3Fusion. Each example of the data set
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provided to the Random Forest approach has a size of 3 669,
corresponding to 25 × 25 × 5 (patchi) plus 34 × 16 (tsi).

In our model, we choose the value d (number of hidden units
for the RNN module) equals to 1 024. We empirically fix α1

and α2 to 0.3. During the learning phase, we use the Adam
method [33] to learn the model parameters with a learning rate
equal to 2 · 10−4. The training process is conducted over 400
epochs. The model that reaches the lowest value of the cost
function (at training time) is used in the test phase.
M3Fusion is implemented using the Python Tensorflow

library. The learning phase takes about 15 hours while the
classification on the test data takes about one minute on a
workstation with an Intel (R) Xeon (R) CPU CPU E5-2667
CPU v4@3.20Ghz with 256 GB of RAM and TITAN X GPU.

The data are prepared as follows. We divide the dataset
into two parts, one for learning and the other one to test the
performance of the supervised classification methods. We used
30% of the objects for the training phase (97 110 pixels - 797
objects) while the remaining 70% are used for the test phase
(225 638 pixels - 1 859 objects). We impose that pixels of the
same object belong exclusively to the training or to the test
set [8]. The values are normalized, per spectral band, in the
interval [0, 1].

Finally, the assessment of the classification performances is
done considering global precision (Accuracy), F-Measure [16]
and Kappa.

B. Evaluating the Patch Size for the CNN Module

The first experiment we conduct is meant to understand the
influence of the patch size considering the CNN module. To
this purpose, we vary the patch size considering the following
different values: 15x15, 25x25, 35x35 and 45x45.

Figure 3: Accuracy, F-Measure and Kappa of the four different
VHSR patch size

Figure3 shows the Accuracy, F-Measure and Kappa result-
ing from the application of the four different patch sizes to
our CNN module, considering only the VHSR information.
We observe that high values of patch size (i.e., 45x45), instead
of improving the CNN performance, degrade the final results.

Applying patches of size 45x45 is equivalent to analyze areas
of 90m x 90m. Probably, what is happening is that the spatial
context is too wide and the information contained in this patch
is not discriminant enough to characterize the spatial context
of a particular kind of land cover. Reducing the spatial patch to
areas of 30m x 30m (15x15) or 50m x 50m (25x25) will supply
more discriminative information for the characterization of the
land cover. This experiment suggests that the patch needs to
be accurately chosen considering the particular task at hand.

C. Assessment of the Impact of Auxiliary Classifiers

Another component that characterizes the M3Fusion
model is the use of auxiliary classifiers in order to strengthen
the discriminative power of each set of learned features
independently [23]. With the aim of validating the importance
of the auxiliary classifier within our model, we perform an
experiment consisting in the comparison of M3Fusion with
a modified version deprived of the auxiliary classifiers, named
M3Fusion − NoAux. Figure 4 reports the F-Measure per
class of this comparative analysis.

Figure 4: Per-Class F-Measure for M3Fusion with and
without auxiliary classifiers.

Generally, we note that the version with auxiliary classifiers
outperforms M3Fusion−NoAux no matter which land cover
class is considered. This result underlines the importance of
boosting the independent discriminative power of the learned
features (per source) as much as possible before fusing them
to perform the final classification.

D. M3Fusion vs. CNN vs. RNN

M3Fusion leverages both spatial and temporal information
with the aim of improving the land cover mapping task. Here,
we investigate whether the use of both VHSR and SITS infor-
mation, together, can effectively improve the final land cover
mapping. To assess this point, we evaluate the performances
of M3Fusion compared to the ones achieved by the two
modules (CNN and RNN) independently. To this purpose, we
proceed as follows. For each type of information (VHSR and
SITS, respectively), we train a CNN (resp. RNN) with the
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same structure as the corresponding branch in M3Fusion.
As done before, we report the results in terms of F-Measure
per-class to understand how the different classifiers behave on
recognizing the different land cover classes involved in our
task. Figure 5 visually summarizes the F-Measure results.

Figure 5: F-Measure by class of both M3Fusionts and
M3Fusionvhsr branches, compared to M3Fusion method.

As we can note, the M3Fusion approach clearly outper-
forms the individual classifiers that use only one type of infor-
mation. We observe that, systematically, the fusion approach
effectively exploits the complementarity of the two sources of
information improving the final classification performances.
This phenomenon is particularly clear for some classes such
as (1),(7),(8), (9) and (11) (resp. Crop Cultivations, Shrubby
savannah, Herbaceous savannah, Bare rocks and Greenhouse
crops) where the gain in F-Measure is higher than 0.15
points. A possible explanation is that the detection of the
different type of savannah as well as the crop culture cannot
be efficiently reached without considering, simultaneously, the
temporal evolution of the spectral profile as well as the spatial
context.

E. Comparative Analysis

Figure 6 provides the results of a comparative analysis
between our model and Random Forest (RF), an ensemble
learning method that is commonly employed in the field of
Remote Sensing for dealing with the land cover mapping task.

We observe that M3Fusion reaches higher performance
indices than Random Forest on all the land cover classes.
The highest gains are related to classes (1), (3), (9), (10) and
(11) (resp. Crop Cultivation, Orchards, Bare rocks, Urbanized
areas and Greenhouse crops). Considering the characteristics
of such classes, the different gains are the results of the effec-
tiveness of M3Fusion to combine temporal and fine spatial
information together leveraging the complementary of the two
sources of information. With the aim of better understanding
the misclassification behavior of the two approaches, we report
in Figure 7 the confusion matrix of both M3Fusion and RF.
A closer look at these statistics points out that M3Fusion is

Figure 6: Per class F-Measure results of Random Forest and
M3Fusion methods.

more precise than the competitor. This consideration emerges
from the fact that the corresponding heat map (Figure 7b)
has a more visible diagonal structure (the dark red blocks
concentrated on the diagonal). This is not the case for Random
Forest (Figure 7a) where the distinction between classes is less
sharp.

This behavior is particularly visible for the Greenhouse
crops land cover (class (11) ), where the majority of the
elements belonging to this class are categorized as Urban-
ized areas (class (10)). A similar phenomena affecting the
performance of the Random Forest classifier can be observed
between Bare rocks and Urbanized area classes. On the other
hand, M3Fusion tends to have some confusion on these
classes too, but the extent of this phenomenon is attenuated
with respect to the Random Forest method. Notice that these
classes represent land cover that have very similar temporal
radiometric behavior but they can be characterized by different
spatial context; this spatial context is intelligently leveraged
by the fusion process performed by M3Fusion to reduce the
misclassification error.

As further comparative analysis, in Table II we report a sum-
mary of the results obtained by applying the two approaches
(M3Fusion and RF) on the fusion of the two information
sources (VHSR and SITS) as well as on each single source pf
information individually. In the latter case, the approaches are
named as follows: RFts and M3Fusionts stand for RF and
M3Fusion applied on time series data only; RFvhsr and
M3Fusionvhsr stand for RF and M3Fusion applied on
VHSR data only. This analysis is similar to the one presented
in Section IV-D, but here we also evaluate the Random Forest
classifier on each source separately. We compare the different
methods by means of Accuracy, (average) F-Measure and
Kappa. As we previously observed in Section IV-D, also
for the Random Forest approach the use of multiple sources
results in a general improvement of land cover mapping
performances. This behavior points out once again that the two
sources of information carrying out complementary knowledge
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(a)

(b)

Figure 7: Heat Maps representing the confusion matrices of
(a) Random Forest and (b) M3Fusion.

and the joint use of temporal and fine spatial information
positively influence the land cover classification task.

After a closer look at the values of all the evaluation metrics,
we can state that, on the Reunion Island dataset, the data
fusion process implemented by M3Fusion is more effective
than the one carried out by the Random Forest classifier.
The Deep Learning data fusion approach smartly leverages
the complementary information reaching a gain of more than
0.06 Accuracy point with respect to the best individual source
application scenario (M3Fusionvhsr) while, in the case of
Random Forest, this gain is limited to less than 0.02 Accuracy
points compared to its best individual source result (RFts).

F. Robustness of M3Fusion

The results presented so far are related to a single 30%/70%-
split of our data set. It is known that, depending on the split

Accuracy F-Measure Kappa
RFts 0.8543 0.8519 0.8258
M3Fusionts 0.8319 0.8325 0.8033
RFvhsr 0.8237 0.8140 0.7908
M3Fusionvhsr 0.8369 0.8364 0.8677
RF 0.8716 0.8681 0.8491
M3Fusion 0.9149 0.9148 0.9000

Table II: Accuracy, F-Measure, Kappa of different methods
considering the fusion process as well as one source at time

of the data, the performances of the different methods may
vary as simpler or more difficult examples are involved in the
training or test set. With the objective of understanding the
robustness of our method with respect to this phenomenon,
we build four different random 30%/70%-splits of the dataset,
using the same protocol described in Section IV-A. The results
achieved by M3Fusion and RF on the five splits are shown
in the Table III.

RF M3Fusion
Accuracy F-Measure Kappa Accuracy F-Measure Kappa

0 0.8772 0.8737 0.8536 0.9114 0.9112 0.8963
1 0.8759 0.8720 0.8521 0.8950 0.8954 0.8771
2 0.8716 0.8681 0.8491 0.9149 0.9148 0.9000
3 0.8824 0.8790 0.8625 0.9114 0.9107 0.8953
4 0.8757 0.8708 0.8536 0.9061 0.9051 0.8899

Table III: Accuracy, F-Measure, Kappa on different random
splits

We note that M3Fusion, always supplies better perfor-
mances, in terms of all the involved metrics, than Random
Forest does. We observe that the performances of M3Fusion,
in terms of accuracy, vary between 0.8950 and 0.9149 while,
those achieved by Random Forest vary between 0.8716 and
0.8824. It is worth noting that the best accuracy value observed
for Random Forest (0.8824) is lower than the worst accuracy
achieved by our approach (0.8950).

Gain
Accuracy F-Measure Kappa

0 +0,0342 +0,0374 +0,0426
1 +0,0191 +0,0234 +0,0250
2 +0,0433 +0,0466 +0,0508
3 +0,0289 +0,0317 +0,0328
4 +0,0303 +0,0343 +0,0362

Table IV: M3Fusion’s gain in term of Accuracy, F-Measure,
Kappa for each split

Finally, in Table IV, we report the gain of M3Fusion with
respect to Random Forest considering the whole set of evalu-
ation metrics. It is worthy of note that the gain in F-Measure
and Kappa is always higher than the gain in Accuracy. This
phenomenon indicates that not only M3Fusion outperforms
the competitor on the majority (well represented) classes but,
it exhibits better performances on all the land cover classes,
independently if they are well represented or not. From a closer
look at the results, RF emerges as being more influenced by
class imbalance, giving more chance to the highly represented
classes in its decisions. For instance, this phenomena happens
between Greenhouse crops (low represented) and Urbanized
areas (high represented) as well as Orchards (low represented)
and Forest (high represented) land cover classes (Figure 7).
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G. Map Comparison

In addition to the evaluations reported in the previous
sections, we also propose a first visual qualitative evaluation of
the produced maps. The maps obtained by M3Fusion (resp.
Random Forest) is shown in Figure 8b (resp. Figure 8a) for a
qualitative overview. When we visually analyze the map issued
by M3Fusion, we observe that the detection of the majority
classes, i.e., the areas cultivated with sugar cane on the coast,
as well as the various natural areas (grasslands, savannas and
forests) and the urban areas are well recognized with less salt
and pepper error than the map produced by the Random Forest
classifier (Figure 8a).

Some comparisons between the two maps are provided
at the scale of some remarkable details in Figure 9: in the
first column, a fragment of urban areas is displayed, where
the presence of noise is particularly marked for the RF ’s
map (in the middle). This phenomenon is highlighted by the
transition zones between buildings, which are often interpreted
as crops. This effect is less present on the M3Fusion’s map
(bottom). A particular interesting effect concerns the artifacts
of the RF map due to the presence of clouds or shadows
(detail on second column) on the VHSR image, which are
definitely mitigated in the map produced by M3Fusion for
this example. This effect is also visible on larger cloudy areas
(last column), where some errors persist in M3Fusion’s map
but most of the affected area is correctly retrieved. A possible
explanation for these aberrations could be a biased prediction
behavior of RF in favor of information coming from VHSR
data. Notice that this situation does not occur when the same
data are processed by M3Fusion. This behavior can be
explained by the way the Random Forest works and the feature
cardinality of each data source. Due to the random nature of
Random Forest, each time it samples a random set of features
to build the trees belonging to the forest. Since the number
of features available from the VHSR source (3 125) is bigger
than the number of features coming from the time series
data (544); Random Forest tends to exploit more frequently
features coming from the former source than from the latter
one. This fact probably bias the Random Forest to overuse
VHSR information.

A last example showing map improvements is on the third
column of Fig. 9, where the dense urban area has reduced noise
in M3Fusion’s map with respect to RF ’s one, and some
clear errors are corrected on vegetated areas (e.g. grass among
airport lanes is erroneously classified as sugar cane using RF ,
while M3Fusionmostly detects the meadows class).

H. Discussion

The experimental results, both quantitative and qualita-
tive, have demonstrated the ability of the proposed deep
learning architecture to cope with the issue of land cover
mapping from multiple remote sensing data sources acquired
at different spatial/spectral/temporal resolution. M3Fusion
has shown improvements all over the considered land cover
classes involved in the Reunion dataset compared to the
performances of the Random Forest classifier. The biggest
gain in performance is related to the Greenhouse crop class.

The competing approach has serious issue to recognize this
class and distinguish it from the Urbanized Areas. On the
other hand, M3Fusion demonstrates the ability to improve
the results on the Greenhouse crop class. Similar behavior
is exhibited considering the Bare rocks and Urbanized Areas
land cover classes. M3Fusion exploits the spatial context
information (supplied by the SPOT6 image) to differentiate
between the Greenhouse crop and Urbanized Areas classes.
Probably, the area surrounding a Greenhouse crop pixel is
quiet different from the area surrounding a general urban area.
The Deep Learning architecture we proposed, via the CNN
module, is able to leverage this (contextual) information while
Random Forest does not.

In addition, the Random Forest method seems to be biased
towards high represented classes (i.e. Forest, Urbanized Areas
due to the unbalanced nature of the dataset and towards
VHSR missing information (i.e. cloudy phenomena in the
SPOT6 image). This last point is probably related to the
fact that VHSR information constitutes around 85% of the
input information (3 125 over 3 669 features). Conversely,
M3Fusion exhibits a more stable behavior considering the
issue related to the high/low represented land cover classes
improving performances on such categories. In addition, pre-
liminary in-depth analysis of produced maps underlining that
M3Fusion is capable to alleviate issue related to one of the
data sources (i.e. missing data) leveraging information from
the other one. This behavior highlights the ability of the deep
learning architecture to exploit the complementarity between
data sources to deal with the task of land cover mapping from
VHSR SPOT6 image and a time series of Sentinel-2 satellite
images.

Considering a more close analysis of M3Fusion, we have
noted that the dimension of the VHSR patches used to feed
the convolution branch needs to be carefully chosen. Exper-
iments have shown that big patches negatively influence the
behavior of the neural approach since, probably, they introduce
too much contextual confusion in the learning process. Our
suggestion is to use some knowledge about the study area
to reasonably choose the patch size. However, possible ex-
tensions of M3Fusion can be related on how integrate data
sources at their native resolution. Currently, both SPOT6 and
Sentinel-2 information are exploited after a resample step. In
the case of SPOT6, PAN and MS information are combined via
pansharpening while 20 meters Sentinel-2 bands are resampled
at 10 to have coherent per source spatial information. A step
further towards complete, land cover oriented, data fusion of
SPOT6 and Sentinel 2 images will be the direct integration of
radiometric information at their native resolution.

V. CONCLUSIONS

In this article, we have proposed a new deep learning archi-
tecture for the fusion of satellite data at high temporal/spatial
resolution with an image at very high spatial resolution
(VHSR) to perform land cover mapping. Experiments carried
out on a study site have validated the quality and effectiveness
of our approach compared to a common machine learning
approach usually employed in the field of remote sensing. In
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Figure 8: Source VHRS scene (a) (see Fig. 9 for details in red boxes), maps produced by RF (a) and M3Fusion (b).

Figure 9: Classification results obtained with RF and M3Fusion. Top to bottom: excerpts from SPOT6/7 imagery (respectively
A,B,C,D from Fig. 8), classification by RF , classification by M3Fusion.

the future, we plan to investigate several extensions of our
architecture to integrate other complementary data sources.
Another possible future development will be the exploitation
of the data sources at their original resolution. Currently, both
VHSR and Time Series information are resampled at different
spatial resolutions introducing some possible bias. Use data
sources at their native resolution can avoid useless prepro-
cessing and, probably, increase classification performances.
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