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Abstract The vibrational spectrum of the neutral vacancy in diamond is in-
vestigated by using a periodic approach (supercells including 32, 64, 128 and
256 atoms have been considered), a ”hybrid” functional (B3LYP), and a local
basis set as implemented in the CRYSTAL14 code. The Raman spectrum, that
shows a single peak in the perfect bulk (at 1333 cm−1 from our simulation,
in excellent agreement with the experimental result at 1332 cm−1), presents
a complex structure at lower frequencies (from 200 cm−1 to the bulk peak)
when the defect is present. The details of this structure are changing with
the concentration of the defects. The IR spectrum (that is completely flat in
perfect diamond) shows a fine structure with intensities that are however very
low, not easily detectable in the experiment. The ADP (Atomic Displacement
Parameters), representing the mean displacement of the atoms as a conse-
quence of their vibration, show how the first neighbors are elongated along
the defect direction (the principal axis is nearly twice the two others along
the orthogonal directions), and how the nearly spherical shape of the ”unper-
turbed” bulk atoms is recovered at the third-fourth neighbors. The difference
in the vibrational DOS between the perfect and defective system completes
the analysis.

Keywords Vacancy in diamond · Raman Spectrum · IR Spectrum · Atomic
Displacement Parameters · Quantum Mechanical Calculation · CRYSTAL
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1 Introduction

Since many years, the investigation of native and radiation-induced point de-
fects in semiconductors has attracted an ever-increasing interest in both the-
oretical and experimental studies. This is particularly true in the case of dia-
mond, a wide-bandgap material characterized by extreme physical properties
(high Young’s modulus and thermal conductivity, broad transparency range,
high carriers mobility, etc.) with attractive applications in different fields, rang-
ing from microelectromechanical systems to heatsinks, laser windows, particle
detectors, etc. [1,2]. Indeed, the presence of defects in the crystal structure
of diamond has a dramatic effect on its physical properties, from a structural
[3], optical [4] and electronic [5] point of view. A deep understanding of the
physical effects of different typologies of defects is therefore of paramount im-
portance in modern diamond science. Despite a large number of studies on
the subject [6–11], the defect formation in diamond is still far from having
been exhaustively explored. This is particularly due to the peculiar meta-
stability of its crystalline structure, in which the both sp3 and graphitic-like
sp2 chemical bonds give rise to an unusual variety of different point defects
and related complexes. Raman spectroscopy is the ideal technique to study
different carbon allotropes due to their characteristic vibrational features [12,
13], and in this context it emerged as a prominent technique to investigate
defect formation in irradiated diamond [14–16,6,7,17,11,18–21]. The Raman
spectrum of pristine diamond only displays a single sharp Raman feature at
1332 cm−1, corresponding to the first-order scattering with triply-degenerated
TO(X) phonons of F2g symmetry, while the damaged crystal is characterized
by several additional features which have been more or less unequivocably at-
tributed to different types of sp2 and sp3 defects. The most prominent features
observed at higher Raman frequencies with respect to the first-order line are
located at ∼ 1450 cm−1, ∼ 1490 cm−1, ∼ 1630 cm−1 and ∼ 1680 cm−1. They
are generally attributed to sp2 defects [22], although tenative attributions of
the ∼ 1450 cm−1 and ∼ 1490 cm−1 peaks to sp3 defects have also been formu-
lated [16,20]. At lower Raman frequencies, a broad band of peaks are usually
measured between ∼ 1100 cm−1 and ∼ 1300 cm−1 shifts, whose attribution
is more unclear [22]. Moreover, the first-order Raman peak itself is subjected
to both broadening and red-shifting when damage is introduced in the crystal
[14].

2 Computational Methods and Details

2.1 Spectroscopic Features

Harmonic phonon frequencies, ωp, at the Γ point (i.e. at the center of the first
Brillouin zone, FBZ, in reciprocal space) are obtained from the diagonalization
of the mass-weighted Hessian matrix of the second energy derivatives with
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respect to atomic displacements u [23–25]:

WΓ
ai,bj =

H0
ai,bj√
MaMb

with H0
ai,bj =

(
∂2E

∂u0ai∂u
0
bj

)
, (1)

where atoms a and b (with atomic masses Ma and Mb) in the reference cell, 0,
are displaced along the i-th and j-th Cartesian directions, respectively. First
order derivatives are computed analytically, whereas second order derivatives
are obtained numerically, using a two-point formula.

The Raman intensity of the Stokes line of a phonon mode Qp, active due
to the αii′ component of the polarizability tensor α, is given by:

Ipii′ ∝
(
∂αii′

∂Qp

)2

, (2)

where the pre-factor dependent on the laser frequency ωL and temperature
T [26] is neglected. The relative Raman intensities of the peaks are computed
analytically by exploiting a scheme, recently implemented in the Crystal14
program [27,28], which constitutes an extension of the analytical calculation
of IR intensities [29,30]. Both schemes are based on the solutions of first-
and second-order Coupled-Perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS)
equations [31,32].

The Raman spectrum is computed by considering the transverse optical
(TO) modes and by adopting a pseudo-Voigt functional form: a linear com-
bination of a Lorentzian and a Gaussian curve with full width at half maxi-
mum of 8 cm−1. Raman intensities are normalized so that the largest value
is conventionally set to 1000 a.u. Integrated intensities for IR absorption are
computed for each mode by means of the mass-weighted effective mode Born
charge vector, evaluated through a Berry phase approach [33–35].

2.2 Phonon Dispersion and Thermodynamic Properties

The calculation of other vibrational properties of solids (such as thermody-
namic quantities or thermal nuclear motion indices) is a more demanding task
as it implies knowledge of the phonon dispersion inside the full FBZ [36]. Be-
side WΓ , in this case, a set of dynamical matrices, Wk, need to be formed for
a set of wavevectors k =

∑
i
κi

Li
bi expressed as linear combinations of recip-

rocal lattice basis vectors bi with fractional coefficients referred to shrinking
factors Li, κi being an integer ranging from 0 to Li − 1, thus including Γ and
points within the FBZ. Phonons at k points other than Γ can be obtained by
the direct method [37–39], which requires the construction of supercells (SC)
of the original unit cell:

Wk
ai,bj =

∑
g∈SC

Hg
ai,bj√
MaMb

eık·g . (3)
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Indeed, equation (3) shows that each dynamical matrix in the FBZ is obtained
by Fourier transforming the Hessian matrices, Hg, for an adequate set of
real space lattice vectors g. Lattice vectors g =

∑
i l
g
i ai, expressed in terms

of the real lattice basis vectors {ai} through the integer coefficients lgi , are
all contained in the SC in real space whose size and shape are determined
by parameters Li. At variance with equation (1), matrix element Hg

ai,bj =

∂2E/(∂u0ai∂u
g
bj) refers to a displacement of atom b in cell g inside the SC along

the Cartesian direction j, along with all its images throughout the superlattice
generated by the SC. Li are the same both in the real and the reciprocal space
so as to maintain a one-to-one matching between g vectors in the SC and
sampled k points. From diagonalization of the dynamical matrices the normal
modes and corresponding vibration frequencies are sampled over the entire
FBZ:

(Uk)†Wk Uk = Λk with (Uk)†Uk = I . (4)

The elements of the diagonal Λk matrix provide the vibrational frequencies,
νkp =

√
λkp (atomic units are adopted), while the columns of the Uk matrix

contain the corresponding normal coordinates uk
p (whose elements are ukia,p,

being ia a combined index running from 1 to 3M , where M is the number of
atoms per cell). To each k-point in the first Brillouin zone, 3M harmonic oscil-
lators (i.e. phonons) are associated, which are labeled by a phonon band index
p (p = 1, . . . ,3M) and whose energy levels are given by the usual harmonic
expression:

εp,km =

(
m+

1

2

)
ωkp , (5)

where m is an integer and ωkp = 2πνkp. According to standard statistical
mechanics, thermodynamic properties of crystalline materials such as entropy,
S(T ), and constant-volume specific heat, CV (T ), can be expressed as [40]:

S(T ) = kB
∑
kp

 h̄ωkp

kBT

(
e

h̄ωkp
kBT − 1

) − log(1− e−
h̄ωkp
kBT )

 , (6)

CV (T ) =
∑
kp

(h̄ωkp)
2

kBT 2

e
h̄ωkp
kBT(

e
h̄ωkp
kBT − 1

)2 , (7)

where kB is Boltzmann’s constant.

2.3 Atomic Thermal Motion

Atomic anisotropic displacement parameters (ADPs) are commonly adopted
to discuss mean square atomic displacements due to thermal nuclear motion,
particularly so in the field of X-ray diffraction. Due to zero-point and thermal
motion, indeed, each atom has a finite probability of being displaced with
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respect to its crystallographic equilibrium position. ADPs offer a convenient
way to rationalize such atomic motions; to each atom and for any temperature,
an ellipsoid is associated, which provides information on the probability of
finding that atom displaced from the equilibrium position. Atomic ADPs can
be given a 3×3 Cartesian matrix representation according to [39,41]:

Baij(T ) =
1

nkMa

∑
pk

Epk(T )

ω2
pk

ekia,p × (ekja,p)
∗ (8)

where the sum runs over phonons in the FBZ and Epk(T ) is the mean vibra-
tional energy of a phonon (i.e. harmonic oscillator) with angular frequency
ωpk, in thermal equilibrium at temperature T [42]:

Epk(T ) = h̄ωpk

[
1

2
+

1

e
h̄ωpk
kBT − 1

]
. (9)

If Ba(T ) is positive definite then the surfaces of constant probability defined
by

uTaBa(T )−1ua = constant , (10)

are ellipsoids enclosing some finite probability for atomic displacement [43].
The length of the principal semi-axes of the ellipsoid and their orientation are
given by the eigenvalues and eigenvectors of Ba(T ), respectively. The eigenval-
ues λi are usually expressed in units of 10−4 Å2. Present calculations refer to
harmonic ADPs, which correspond to a constant-volume case. In order to ac-
count for thermal changes in the cell volume, a quasi-harmonic approximation
could be used instead [42,40,44–46].

2.4 Computational Setup

All calculations have been performed within unrestricted density functional
theory (DFT) using the B3LYP hybrid functional [47], as implemented in the
Crystal14 program [48,49]. A Pople’s 6-21G Gaussian basis set [50] has been
adopted, the exponent of the most diffuse sp shell having been re-optimized
in bulk diamond (0.2279 Å−2). The same basis set is centered at the vacancy
position to increase the variational freedom around the defect. The truncation
of the Coulomb and exchange infinite series is controlled by five parameters,
which have been set to 8, 8, 8, 8, 16. The convergence threshold on energy for
the self-consistent-field (SCF) calculations is 10−8 Ha for structural optimiza-
tion and 10−9 for vibration frequency calculations. Reciprocal space has been
sampled using a regular sublattice with shrinking factor of 16 (or 8, 4) for
supercells containing 2 (or 8, ≥ 64) atoms, respectively. The number of corre-
sponding k-points in the irreducible part of the Brillouin zone is 145 (or 29,
10), respectively when the full symmetry of the diamond lattice is preserved.

A supercell approach is used to simulate the neutral vacancy, where a large
periodic cell is created, which is a multiple of the unit cell of the perfect system,
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and an atom is removed at its center to create the defect. This scheme allows
to effectively investigate the variation of any property with increasing defect
concentration. Supercells containing a number of carbon atoms ranging from
32 to 216 (before the vacancy creation) have been considered.

3 Results

Experimentally, different allotropic forms of carbon are widely investigated
by Raman spectroscopy [51]. The non defective diamond Raman spectrum is
widely known and displays a single prominent peak at ν=1332 cm−1. The peak
frequency in the Raman spectrum depends principally on the bond length and
strength: as the inter-atomic distance increases the Raman shift frequency
lowers. The vacancy distorts the cell and then its nearest and next nearest
neighbors undergo relaxation. This affects the bond lenghts and as a conse-
quence the Raman spectrum. As different symmetries around the defect are
provided by different spin states, we investigate the effect of this feature on
the Raman spectrum. In particular the Sz=0,1 spin states will be considered.
We neglect the Sz=2 spin state since we want to consider only the ground
state of the system and the first excited state.

The B3LYP Hamiltonian is adopted, that provides good results in the cal-
culation of chemical properties such as vibrational frequencies [52–54]. The
non-defective diamond peak is at ν=1333 cm−1 (ν=1332 cm−1 is the experi-
mental value). Vibrational frequencies at k 6= Γ are Raman inactive.
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Fig. 1 Raman spectra of non-defective and damaged diamond. The Raman spectrum of
the Sz=0 spin state in the S32 supercell is used for comparison. The dashed peak is the one
of the non-defective system. The wave number range varies from 200 cm−1 to 1500 cm−1.

As mentioned above, the presence of the defect breaks the traslational sym-
metry of non-defective diamond and reduces the point symmetry, so that more
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peaks emerge as can be seen in the figure 1 where we report a comparison be-
tween the Raman spectra of the non-defective diamond and of the defective
diamond in the Sz=0 spin solution. Some vibrational frequencies are similar
to k6= Γ of non-defective diamond (not shown here because they are Raman
inactive), others are entirely new features. Let us consider, for example, the
low-energy part of the spectrum: in the non-defective system the lowest mode
is at ν=661 cm−1 (not shown in figure 1 because it is Raman inactive) whereas
a large acoustic band between ν=485 cm−1 and ν=647 cm−1 appears in the
spectrum of the defective system. Our model predicts 90 Raman active fre-
quencies for the Raman spectrum of the Sz=0 state for neutral vacancy in the
S32 supercell. Most of them have low intensities so we refer only to the most
relevant ones.

Figure 2 shows the Raman spectra of the S32 supercell in the Sz=0 and
Sz=1 spin states. The vibrational frequencies of the two systems are quite
similar whereas the Raman intensities of each peak are slighly different. The
most intense peak of the Sz=1 state is at ν=1306 cm−1 and a similar vi-
brational frequency (ν=1304 cm−1 occurs for the Sz=0). The Sz=0 principal
mode at ν=1291 cm−1 appears also as a Sz=1 mode at ν=1293 cm−1 but
it turns out to be Raman inactive (note: the two states have different point
group symmetries, i.e. C2v for the Sz=0 and C3v for the Sz=1).
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Fig. 2 Comparison between the Raman spectra relevant to the Sz=1 and Sz=0 spin states
of the vacancy. The S32 supercell is used as a reference. The wave number range varies from
200 cm−1 to 1500 cm−1 .

We also considered the evolution of the Raman spectra with the concen-
tration of defects. The S32 - S128 supercell range in the Sz=0 spin state has
been analyzed (figure 3). The main Raman line at ν=1291 cm−1 of the S32

supercell shifts to ν=1314 cm−1 in the S64 supercell, and to ν=1324 cm−1 in
the S128 one approaching the non-defective system at ν=1333 cm−1. This dif-
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ference (1324 - 1333) can be considered as a measure of the residual interaction
among defects in the S128 supercell.
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Fig. 3 The Raman spectra of the vacancy in the Sz=0 spin state in the S32 and S64

supercells. The wave number range varies from 200 cm−1 to 1500 cm−1 .

The fact that the most intense Raman peak descreases in frequency with
increasing the density of defect is experimentally verified [55]. The authors
report in [55] a linear depedence of the Raman peak position in a damaged
diamond as function of the ion irradiation fluence. We convert the fluence
into the defects density by using the TRIM [56] code to make a comparison
between our calculated data and the experimental results.

R
am

an
 P

ea
k 

P
o

si
ti

o
n 

(c
m

-1
)

1,290

1,300

1,310

1,320

1,330

1,340

ρv (1021 cm-3) 
0 1 2 3 4 5 6

B3LYP calculation
Experimental data

S128

S64

S32

Fig. 4 First order Raman peak position as a function of the density of defects .
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Figure 4 shows the linear fits of experimental and calculated data. Slopes
are reasonably similar, although not compatible from a strictly statistical point
of view:

∆pth = (-7.64±0.30) 1021cm−2

∆pexp = (-8.99±0.11) 1021cm−2

The experimental Raman peak position decreases more rapidly than the
calculated one. This is probably due to the presence of other types of defects
(i.e. aggregation of vacancies-interstitials) in the defective material.

We try now to identify the vibrational modes which principally involve
the four n.n. of the vacancy. To do this, we perform an isotopic substitution
of these atoms. This practice is very common in the study of molecular vi-
brational properties and provides good information about atoms involved in
specific normal modes. It consists in replacing atoms with one of their isotopes
and compare the resulting spectra.
In the simulation we can change atomic masses by any amount with no nec-
essary reference to any existing nuclear isotopes. This makes it possible to
identify which vibrational frequencies are mainly affected by this modifica-
tion, i.e. which atoms are mainly involved in the vibration mode.

We remind that the dynamic matrix W is defined in terms of the hessian
matrix Hai,bj as follows

Wai,bj =
Hai,bj√
MaMb

(11)

Equation 11 shows that when increasing a mass, the corresponding element
in the W matrix is expected to decrease and with it the frequency of the
vibrational modes involving such an atom.

In order to find which modes are directly related to the vacancy, we increase
the atomic masses of the four n.n. of the vacancy. From the resulting frequency
shifts we can identify which frequencies are mainly related to these atoms.

Let us consider figure 5 where we report the Raman spectra of the Sz=0
spin state with 2 different isotopic substitutions. In the former one the mass
of the n.n. is increased by 25% (graph in the middle in figure 5) while in the
other case by the 100% (graph at the bottom in fig.5). The legend in each
graph displays the isotopic mass used.

The Raman spectra can be divided into 4 principal zones labeled as 1-4.
Zone “1” is associated with the vacancy n.n. motion. The main peak in this

zone, at ν=1191 cm−1, decreases by δν= 25 cm−1 and its intensity decreases
from I= 85 a.u. to I= 4 a.u when an isotopic variation of 25% is made.

On the contrary, modes in the region “2” of the Raman spectrum are
essentially unaffected by the isotopic substitution. The main peak at ν= 821
cm−1 shifts by δν= 3 cm−1 when the substituting isotopes are the heaviest
used (graph at the bottom in the fig.5).

The most intense vibrational mode (labeled as “3” in the Raman spectrum)
has an intermediate shift from ν=1291 cm−1 to ν=1270 cm−1 when an atomic
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Fig. 5 Raman spectra of the vacancy in the Sz=0 spin state. From the top to the bottom
we report the spectra with no isotopic sostitution and with an increasing atomic mass on the
first neighbors of the vacancy, as indicated in the legend of each graph. The wave number
range varies from 200 cm−1 to 1500 cm−1 .

mass of 50 a.m.u. is set to the n.n. while its intensity remains the highest
one within the Raman spectrum. This confirms that it is a vibrational mode
associated with a collective motion of all atoms in the crystal.

Group “4” of Raman features is associated to the acoustic phonons created
by the vacancy. These modes are directly related to the n.n. as demonstrated
by the frequencies shift (about 245 cm−1 for the original peak at ν=534 cm−1).

Let us consider now thermodinamic properties such as the zero point en-
ergy, heat capacity and entropy. We focus in particular on the difference be-
tween the non-defective system and the Sz=0 configuration as a measure of
the thermodinamic perturbation due to the defect. This analysis provides im-
portant information about relative internal stability of these systems.

We now report the evolution of the entropy (S) and the heat capacity (Cv)
when increasing the temperature from 0 K up to 2000 K in the defective and
non-defective systems. For the defective system, we consider the Sz=0 spin
state in the S32 supercell.

Graphs 6 and 7 show that the heat capacity and entropy variation at
increasing the temperature in the defective diamond is very similar to the non-
defective one. At room temperature and pressure conditions (T= 298.15 K and
p= 0.101 MPa) the difference in entropy between non-defective and defective
system is 11.0 J mol−1 K−1. This difference is mainly due to the numerous
low frequency modes which emerge in the defective system. Entropy is indeed
proportional to the natural logarithm of the number of possible vibrational
configurations of the system.

At room pressure and temperature conditions also the heat capacity in the
defective system is higher than that in the non-defective one: a difference of
18.3 J mol−1 K−1 occurs.
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Fig. 6 Heat capacity (Cv) evolution in non-defective and defective diamond as a function
of the temperature. The S32 supercell in the Sz=0 spin state is considered. Calculations are
performed with the B3LYP Hamiltonian .
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Fig. 7 Entropy (S) evolution in non-defective and defective diamond as a function of the
temperature. The S32 supercell in the Sz=0 spin state is considered. Calculations are per-
formed with the B3LYP Hamiltonian .

We expect that in the more rigid system the zero point energy is the higher.
The non-defective and defective systems differ by 45.2 KJ mol−1, where the
non-defective one gives the higher value.

3.1 Anisotropic Displacement Parameters

As anticipated in Section 2.3, an effective way to interpret thermal nuclear mo-
tions is that of computing and analyzing atomic ADPs, which quantify mean
square atomic displacements in an intuitive way. Indeed, at variance with
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vibration normal coordinates, which are collective modes, ADPs allow for an
atomic partition of the thermal nuclear motion, providing with a simple graphi-
cal tool to discuss such effects, even in complex structures. Furthermore, ADPs
can be experimentally derived from X-ray or synchrotron radiation diffraction
measurements, thus allowing for validation of the theoretical predictions. The
atomic thermal ellipsoids of pure diamond are perfectly spherical and the cor-
responding ADP has a value which is commonly reported in the range 16.1 -
22.3 10−4Å2, with a recent accurate determination of 18.1 10−4Å2 [57]. The
ab initio evaluation of ADPs requires lattice dynamical calculations to be per-
formed by accounting for phonon dispersion. Within the direct space approach
here adopted, increasing the size of the SC in the lattice dynamical calcula-
tion corresponds to increasing the sampling of the phonon dispersion within
the first Brillouin zone in reciprocal space.

Table 1 Computed ADP (in units of 10−4Å2) of pure crystalline diamond as a function
of the size of the supercell, SC, used for the lattice dynamical calculations, Nat being the
number of atoms in the SC. The corresponding number nk of k-points over which the FBZ
is sampled is also given. A recent experimental determination is reported as a reference [57].

Nat nk ADP

Exp. 18.1

Interp. 65536 17.7
256 128 16.5
216 108 16.4
128 64 15.9
64 32 15.3
32 16 14.5
16 8 14.2
8 4 11.7
2 1 4.1

The computed ADP of pure diamond at 298.15 K, as obtained by use of
equation (8), is reported in Table 1 as a function of the size of the adopted
SC. The effect of the inclusion of phonon dispersion is seen to be rather large:
a Γ -only calculation (performed on the primitive unit cell containing just Nat
= 2 atoms) indeed provides an ADP of 4.1 10−4Å2, which is then system-
atically increased as the size of the SC increases. Convergence is reached for
a SC containing Nat = 256 atoms (corresponding to a sampling of the FBZ
over 128 k-points), as it provides a value of 16.5 10−4Å2 compared to 16.4
10−4Å2 that is obtained with a SC with Nat = 216 atoms. Without further
increasing the size of the SC, a denser sampling of phonon dispersion can then
be achieved by Fourier interpolation of the dynamical matrices. Indeed, if in
principle, equation (3) could be used to compute and then diagonalize the
dynamical matrices of just the L =

∏
i Li k-points defined in Section 2.2, this

restriction disappears when long-range electrostatic contributions to the force
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constants vanish within the SC (as in the case of diamond). In this case, such
an expression can be used to construct the dynamical matrices of a denser
set of k-points through Fourier interpolation. The ADP obtained by Fourier
interpolation (with a corresponding sampling of phonon dispersion over 65536
k-points), starting from the largest SC, is 17.7 10−4Å2, which compares nicely
with the accurate experimental reference of 18.1 10−4Å2 [57], thus confirming
the accuracy of the convergence of the lattice dynamical description of the
system.

Fig. 8 (color online) Graphical representation of the ADPs (i.e. thermal ellipsoids) proper
of the 63 carbon atoms surrounding the vacancy (in red) in the 64 centers SC, as computed
at 298.15 K. Nearest neighbors of the vacancy are highlighted in yellow.

We shall now analyze the atomic ADPs in defective diamond, that is size,
shape and orientation of the thermal ellipsoids of carbon atoms surrounding
the vacancy in the lattice. As the vacancy constitutes a local perturbation to
the lattice, the features of the ADPs in the vicinity of the defect are found to
be almost independent of defect concentration (at least if very high concen-
trations are not considered). For this reason, we restrict our analysis to the
SC containing 64 centers. In Figure 8, a graphical representation is given of
all thermal ellipsoids associated with the 63 carbon atoms of the SC. ADPs
of atoms sufficiently far apart from the vacancy (represented as a red sphere
at the body center of the cell) are seen to be almost perfectly isotropic (i.e.
spherical), as in the ideal non-perturbed diamond lattice. When carbon atoms
close to the vacancy are considered (particularly so for the four nearest neigh-
bors, highlighted in yellow in the figure), the picture is rather different, as the
ellipsoids are seen to be quite elongated along the axis connecting each atom
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Fig. 9 (color online) The three semi-axes (λmax, λmin and λ3) of the ADP ellipsoids
of carbon atoms as a function of their distance from the vacancy at 298.15 K in the SC
containing 64 centers (63 carbons and a vacancy). The horizontal black line marks the value
of the isotropic ADP of pure diamond, as obtained from lattice dynamical calculations
performed on a SC of the same size.

to the center of the vacancy. In other words, atoms close to the vacancy do
exhibit a larger thermal mobility towards the vacancy, as expected.

In order to quantify the perturbation induced by the vacancy on the atomic
thermal mobility of the atoms and to analyze up to which distance from the
vacancy atoms are actually affected by the vacancy in their thermal motions,
we introduce Figure 9. The lengths of the three semi-axes of the thermal
ellipsoids (λmax, red circles, λmin, blue triangles, and λ3, green squares) are
reported as a function of the distance of each carbon atom from the vacancy.
It is seen that atoms close to the vacancy show a highly anisotropic thermal
ellipsoid, with the longest ADP, λmax, almost 56% larger than the shortest
one, λmin. Second nearest neighbors (at a distance of about 2.5 Å) are still
affected by the vacancy while atoms at distances larger than 3 Åare practically
not affected by the vacancy showing a recovered isotropic character of the ADP.
The black horizontal line, indeed, marks the isotropic reference value of the
ADP of pure diamond with the same SC.
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