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Mountain regions are globally important areas for biodiversity, but are subject to multiple human-induced 63 

threats, including climate change, which has been more severe at higher elevations. We reviewed evidence 64 

for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, 65 

trophic interactions, demography, and observed and projected distribution shifts, including effects of other 66 

factors that interact with climate change. We developed an objective classification of high-elevation, 67 

mountain specialist and generalist species, based on the proportion of their breeding range occurring in 68 

mountain regions. Our review found evidence of responses of mountain bird populations to climatic 69 

(extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we 70 

know little about either the underlying mechanisms or about the synergistic effects of climate and land use. 71 

Long-term studies assessing reproductive success or survival of mountain birds in relation to climate 72 

change were rare. Few studies have considered shifts in elevational distribution over time and a meta-73 

analysis did not find a consistent direction in elevational change. A meta-analysis carried out on future 74 

projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to 75 

mountains are likely to be more negatively impacted than other species. Adaptation responses to climate 76 

change rely mostly on managing and extending current protected areas for both species already present, 77 

and for expected colonising species that are losing habitat and climatic space at lower elevation. However, 78 

developing effective management actions requires an improvement in the current knowledge of mountain 79 

species ecology, in the quality of climatic data, and in understanding the role of interacting factors. 80 

Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. 81 

Scientists should provide valuable tools to assess the status of mountain birds, for example through the 82 

development of a mountain bird population index, while policy-makers should influence legislation to 83 

develop efficient agri-environment schemes and forestry practices for mountain birds, as well as to 84 

regulate leisure activities at higher elevations. 85 

  86 
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Climate change has been recognised, alongside modifications in land-use, as a key driver of global change in 87 

biological diversity (e.g. IPCC 2007, Ameztegui et al. 2016), and there is now a large body of evidence that 88 

animals and plants are responding to climate change through shifts in distribution (e.g. Chen et al. 2011), 89 

changes in population size (e.g. Stephens et al. 2016), and changes in phenology leading to inter-linked 90 

effects at different trophic levels (e.g. Both et al. 2006, Thackeray et al. 2016). Such effects vary 91 

geographically, and biodiversity in temperate, boreal and arctic regions is considered particularly vulnerable, 92 

with greater warming at higher latitudes (e.g. Meehl et al. 2007). Furthermore, rates of warming and 93 

frequency of extreme cold events are more pronounced at higher elevations (Beniston & Rebetez 1996, Liu 94 

& Chen 2010, Pepin et al. 2015). As a result, high-elevation areas are particularly threatened as they are 95 

more susceptible to changes in climate (Diaz et al. 2003, Böhning-Gaese & Lemoine 2004, La Sorte & Jetz 96 

2010).  97 

Mountain and high latitude upland regions (henceforth ‘mountains’) cover around 25% of the Earth’s 98 

surface (Kapos et al. 2000). They support one quarter of terrestrial biodiversity (Körner & Ohsawa 2006) and 99 

contain nearly half the world’s biodiversity hotspots (Myers et al. 2000). These are complex ecosystems of 100 

high conservation value as they encapsulate a high diversity of small-scale habitats dictated by different 101 

topoclimates within narrow elevational gradients (Körner & Ohsawa 2006). As a result, mountains 102 

accommodate high levels of species diversity with heterogeneous communities adapted to specific 103 

environmental conditions that change along the elevational gradient, including climate and other abiotic 104 

factors such as slope, exposure, solar radiation, wind direction and substrate (Körner & Spehn 2002, Nagy & 105 

Grabherr 2009, Viterbi et al. 2013, Boyle & Martin 2015). For example, marked changes occur over short 106 

distances, with temperature varying in temperate regions on average by 0.6°C every 100m in elevation 107 

(Dillon et al. 2006). Aspect can also influence temperature, with greater solar radiation on southern than 108 

northern slopes in the Northern Hemisphere (Nagy & Grabherr 2009). Global warming is causing changes to 109 

these environments, with documented responses including the elevational advance of the tree-line and a 110 

general increase in dominance of woody deciduous shrubs at high elevations (Gehrig-Fasel et al. 2007, 111 

Myers-Smith et al. 2011).  112 
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Many unique ecological features of temperate mountain systems also arise from the strong 113 

seasonality in temperatures which result in a very short growing and reproductive season, typically less than 114 

three months in alpine-arctic and boreal habitats (Nagy & Grabherr 2009). Strong inter-annual variations in 115 

temperature, precipitation, and snow cover regimes are also observed in these systems (IPCC 2013, Klien et 116 

al. 2016) with changes in the timing, quantity and duration of precipitation likely to influence mountain 117 

habitats and biodiversity (Beniston et al. 2003, IPCC 2013, Martin et al. 2017). Snow cover has been shown 118 

to have insulating properties, protecting plants and invertebrates from frost during the coldest months of 119 

the year and thereby influencing survival rates of many slow-growing high-elevation plants, insects and 120 

mammals (Hågvar 2010, Wipf & Rixen 2010, Berteaux et al. 2016). Snow cover in the Northern Hemisphere 121 

has declined since the 1920s, particularly in spring and summer (IPCC 2007).  122 

Although often perceived as true wildlands, mountain ecosystems typically have a long history of 123 

human activity, especially in Europe and Asia (FAO 2015). Twenty percent of the global human population 124 

inhabits mountain regions, with about 8% living above 2500m (Körner & Ohsawa 2006). However, mountains 125 

provide essential ecosystem services, including nearly half of the human population’s water supply, carbon 126 

storage and sequestration (forests and peatlands), and natural resources (timber, productive soils and 127 

medicinal plants; Körner & Ohsawa 2006). Mountains are also very important in terms of leisure and tourism 128 

activities (skiing, snowboarding, hiking, biking, wildlife watching and hunting). Mountain systems are thus 129 

continuously subject to landscape changes due to human activities, which might have more severe 130 

consequences than climate change itself (Jetz et al. 2007), or which could potentially exacerbate climatic 131 

effects (Mantyka-Pringle & Rhodes 2012). 132 

Amongst birds, changes in climate have been reported to influence migration timing (Hüppop & 133 

Hüppop 2003, Knudsen et al. 2011), breeding output (Crick et al. 1997, Laaksonen et al. 2006), population 134 

size (Sæther et al. 2000, Townsen et al. 2016), and changes in elevational (Reif & Flousek 2012) and 135 

latitudinal (Hickling et al. 2006, Zuckerberg et al. 2009) distributions. Because the severity of climatic change 136 

varies over the Earth’s surface (e.g. Meehl et al. 2007), avian responses may also vary in intensity depending 137 

on their geographic distribution. Birds may exhibit rapid distributional responses to climatic fluctuations, for 138 
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example tracking changes in surface temperature latitudinally (Hickling et al. 2006, Zuckerberg et al. 2009). 139 

However, there is also evidence that range shifts in birds are lagging behind climate change (Devictor et al. 140 

2008, Ralston et al. 2017), potentially due to asynchronous phenology of birds and their prey (e.g. Mayor et 141 

al. 2017). Species inhabiting high-elevation mountain systems often exhibit a high degree of habitat 142 

specialisation and unique ecological traits within narrow thermal ranges (Reif & Flousek 2012, Reif et al. 143 

2015, Mahon et al. 2016, Pacifici et al. 2017, Scridel et al. 2017a). Adapting to rapid climate change may be 144 

particularly challenging along the elevational gradients of many mountains where temperatures and area 145 

decrease monotonically with elevation (Elsen & Tingley 2015). As a result, species tracking rising 146 

temperatures in these systems are predicted to decline according to the species-area relationship (Preston 147 

1962) as populations become isolated, and thus increasingly vulnerable to stochastic events (Lande 1993, 148 

Bech et al. 2009, Fjeldså et al. 2012). A successful shift into a new area by a species is possible only when 149 

abiotic as well biotic requirements are fulfilled (Martin 2001a, Heikkinen et al. 2007, Wilson & Martin 2012). 150 

Given the fast rate of warming, species might have to track temperatures in areas where their associated 151 

habitat and resources require longer to establish (e.g. mature trees, alpine and sub-nival plants; Engler et al. 152 

2011, Reif & Flousek 2012, Brambilla & Gobbi 2014), or where suitable habitat formation cannot occur due 153 

to constraints of other factors such as soil processes or rock substrate (Freppaz et al. 2010), or by direct 154 

human activities (e.g. deforestation; Nogués-Bravo et al. 2008, Patthey et al. 2008, Kohler et al. 2014; 155 

disturbance via outdoor recreation; Arlettaz et al. 2007, 2015). Finally, climatic effects coupled with negative 156 

synergistic changes in land use might pose even more severe constraints on adaptation of mountain birds to 157 

future climatic conditions. 158 

Due to the documented general responses of birds, and the more extreme climatic changes 159 

observed in mountains, it seems reasonable to expect that mountain birds may be particularly threatened by 160 

climate change. In this review, we assess the existing evidence for direct and indirect effects of climate 161 

change on mountain birds in the Holarctic region (Heilprin 1887), and we evaluate their future conservation 162 

prospects. We address six specific objectives: (i) to define mountain generalist and high-elevation specialist 163 

birds for the Holarctic region; (ii) to review the impacts of climate change on mountain birds through a 164 
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summary of the literature, and a quantification of general responses throughout the Holarctic, including a 165 

meta-analysis; (iii) to review and quantify projected impacts from future climate change scenarios using a 166 

meta-analysis; (iv) to assess stressors that are likely to interact with climate change in affecting birds living at 167 

high elevations; (v) to review proposed conservation actions; and (vi) to identify current gaps and future 168 

priorities for research. 169 

 170 

METHODS 171 

 172 

Defining mountain birds 173 

Mountain systems and species inhabiting them are difficult to describe geographically and ecologically, and 174 

definitions may not apply consistently across the globe (Strahler 1946, Gerrard 1990, Körner 2012, Scridel 175 

2014). In order to assess the status of mountain birds, it was first necessary to define mountain areas and 176 

habitats. Using elevational thresholds to define these regions would immediately exclude older and lower 177 

mountain systems such as the Urals, Scottish Highlands and Appalachians, and include areas with little 178 

topographic relief and few environmental gradients (e.g. large, high-elevation plateaux). Using slope as a 179 

criterion on its own or in combination with elevation may resolve the latter problem, but not the former. For 180 

these reasons, we adopted the definition of Kapos et al. (2000), who classified mountain systems in seven 181 

classes on the basis of elevation, slope and local elevation range (Fig. 1). The latter criterion is particularly 182 

useful as it identifies lower elevation mountain ranges (300-999m) by defining a radius of interest (5km) 183 

around each grid cell (30 arc-second) and measuring the maximum and minimum elevation within a 184 

particular neighborhood, and their difference, allowing the identification of areas that occur in regions with 185 

significant relief, even though elevations may not be especially high (Kapos et al. 2000). This is a broad 186 

definition which includes high latitude ‘upland’ habitats at relatively lower elevations, as well as mountain 187 

forest, the alpine belt (the treeless region between the natural climatic forest limit and the snow line) and 188 

the nival belt (the terrain above the snowline, which is defined as the lowest elevation where snow is 189 
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commonly present all year round; Kapos et al. 2000, Körner & Ohsawa 2006). Hereafter, we refer to 190 

‘mountain regions’ as those as defined by Kapos et al. (2000). 191 

We developed a broad definition of Holarctic mountain birds based on the proportion of their 192 

Holarctic breeding range that was within the defined mountain regions in order to assess the evidence base 193 

for impacts of climate change on birds largely restricted to mountains as a breeding habitat. We stress that 194 

we are interested in all bird species occurring in Holarctic mountain regions, including species that also occur 195 

in a range of habitats, rather than only focusing on high-elevation specialist species. We used a geographic 196 

information system (GIS) software (QGIS, Quantum GIS Development Team 2016; GRASS, GRASS 197 

Development Team 2015) to restrict the map of Kapos et al. (2000) to the Holarctic realm, and imposed over 198 

it the breeding range of global bird species (n = 10280 species; BirdLife International & NatureServe 2015).  199 

We defined as ‘high-elevation mountain specialist’ a species for which at least 50% of its range was in the 200 

higher elevation classes 1-4 of Kapos et al. (2000). We further defined a ‘mountain generalist’ as a species 201 

for which at least 50% of its entire breeding range was within the defined Holarctic mountain region (i.e. 202 

classes 1-7 of Kapos et al. 2000) and which was not classed as a high-elevation mountain specialist. These 203 

definitions therefore identify broadly which species are particularly associated with mountains over the 204 

whole Holarctic region. There are many species (e.g. Capercaillie Tetrao urogallus, Pygmy Owl Glaucidium 205 

passerinum, Rock Ptarmigan Lagopus muta), termed boreo-alpine taxa, that occur in mountains at low 206 

latitudes (e.g. European Alps) which are also present at higher latitudes, but at lower elevations (e.g. 207 

northern Europe). The definition adopted here seeks to identify species that are linked more closely with 208 

mountains per se (for example due to topography or particular habitat types) across a broad region. We use 209 

the terms ‘high-elevation mountain specialist’ and ‘mountain generalist’ when specifically referring to our 210 

classification. We use the term ‘mountain bird’ to refer to any species occurring in our defined Holarctic 211 

mountain region, which also includes species which potentially breed in a range of habitats and at a range of 212 

elevations across their geographic range. 213 

 214 

Literature survey 215 
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The literature search was generated through ISI Web of Knowledge (www.webofknowledge.com). In order to 216 

obtain relevant studies we used the following keywords: (bird* OR avian*) AND (mountain* OR montane* 217 

OR upland* OR alpine* OR moorland* OR arctic* OR polar* OR altitude* OR elevation*) AND (climate 218 

change* OR global warming*) NOT tropic*. The search period was from 1950 until the 31st December 2016. 219 

Papers identified from this search were subsequently included if they concerned research wholly or partly 220 

carried out within the defined mountain regions, or if the study species was/were defined as a high-elevation 221 

mountain specialist or mountain generalist (see Supporting Information, Table S1 & S4). The latter group of 222 

studies included some broad-scale analyses that were not specifically focused on mountains, but which 223 

considered some high-elevation mountain specialists (typically analyses covering large regions, for example 224 

based on national atlases). A total of 764 studies was initially identified. The abstract of each of these papers 225 

was read to determine whether they were relevant for the purposes of this review, and 591 studies were 226 

eliminated at this stage. The remaining 173 papers were also checked for other relevant references missed 227 

in the previous search. This resulted in a further 61 relevant papers, giving a total of 234 which were 228 

subsequently assigned to eight broad topics: i) climate change, physiological constraints and life history 229 

strategies; ii) links between climate and population dynamics; iii) changes in phenology; iv) trophic linkages; 230 

v) observed evidence of elevational shift; vi) projected elevational shifts; vii) interactions between climate 231 

change and other drivers (agriculture, grazing and forestry, leisure and other threats, interspecific 232 

interactions); and, viii) conservation and policy papers. We used the standardized literature search to 233 

summarise the main trends in the resulting database in terms of location and topic, and also in terms of 234 

analysing elevational shifts and future projections of species’ geographic range and population size. In detail, 235 

we conducted two meta-analyses: one testing whether mountain birds have shifted in elevation to track 236 

suitable climate, and a second one to test whether mountain birds will be more negatively impacted by 237 

climate change than non-mountain species according to projected distribution range and population size. 238 

We also used the selected papers, in conjunction with the wider literature, as the basis of a qualitative 239 

review to highlight the key issues and findings. 240 

  241 
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Current and future elevational shifts in bird populations 242 

Papers that presented estimates for shifts in species distributions over time in relation to elevation were 243 

considered for meta-analyses if they focussed, either wholly or mostly, on the defined mountain regions. 244 

Given that conditions may change rapidly over small distances in mountains due to the steep topography, 245 

smaller-scale studies are more appropriate than larger-scale atlas studies in tracking species distributions 246 

(Chamberlain et al. 2012), and thus we focused on studies with a maximum sampling unit area of  1-km2. 247 

Additional data were collected for each study on the period considered (in years), the elevational range (in 248 

metres), and the estimated mean annual rate of temperature change (°C/year) over the period considered. 249 

Similarly, papers that predicted future effects of climate change on mountain birds were considered if they 250 

were largely restricted to mountain areas, if they estimated a proportional change in geographic distribution 251 

or population size over time, and if the sample size of the underlying data set on which models were based 252 

was presented. Additional variables recorded were the period over which projections were made, and the 253 

climate change scenarios considered, which were classed as either ‘severe’ (scenarios A2 and A1F1 or 254 

RCP8.5) or ‘moderate’ (all other scenarios and RCPs; IPCC 2007, 2013). 255 

 256 

Statistical analysis 257 

For elevational shifts, papers were included in the meta-analysis only if sample sizes and test statistics were 258 

presented, or if parameter estimates (including mean shift) and standard errors, standard deviations or 259 

confidence limits, were reported. In cases where only estimates of change in elevation and errors were 260 

presented (i.e. without any test statistics), z-scores were derived, testing against a hypothesis of zero 261 

change.  In common with standard meta-analytical approaches (e.g. Koricheva et al. 2013), the goal was to 262 

estimate standardized responses of elevational shifts in bird distributions over time from studies that used a 263 

diversity of methods for quantifying a potential shift, which in most cases was calculated as the change, in 264 

meters, of the distribution of a given species (sometimes a group of species) between two time periods. 265 

However, some papers also tested the effect of the interaction between elevation and time period on the 266 
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probability of species presence, a significant interaction indicating a significant shift over time (e.g. Reif & 267 

Flousek 2012, Mizel et al. 2016).  268 

Shifts in species distributions were tested using a variety of methods in the above papers. Different 269 

test statistics (e.g. F, t, χ2) presented in these papers were converted to Pearson’s r using standard 270 

conversion formulas (Lajeunesse 2013) so that effect sizes (i.e. change in elevational distribution over time) 271 

could be compared across studies (further details are given in the Supplementary material, S2. Meta-analysis 272 

methods). Pearson’s r varied between 1 and -1, a positive value indicating an upslope shift in elevation over 273 

time. Pearson’s r values were not normally distributed, so prior to analysis, standardized Pearson’s r values 274 

from each study were transformed using Fisher’s Z transformation to derive both normalized estimates and 275 

their variance (as per Musitelli et al. 2016). 276 

Parameter estimates of standardized elevational shifts were derived by analysing Z-transformed 277 

Pearson’s r values (henceforth ‘standardized effects’) and 95% confidence intervals based on linear mixed 278 

effects models using the nlme package in R (Pinheiro et al. 2017). The analytical unit was the estimate for a 279 

given species or group of species (some papers estimated shifts for the whole community), hence ‘study’ 280 

was included as a random effect to account for multiple estimates derived from the same paper, and ‘family’ 281 

was included as a random effect to account for the potential phylogenetic dependence of closely related 282 

species (or multiple observations from the same species). Models were weighted according to the inverse of 283 

the variance of standardized effects. An effect was considered as significant if confidence intervals on the 284 

parameter estimate did not overlap zero. To derive a single overall estimate of shift, no fixed effect was 285 

included (i.e. an intercept-only model). A significant effect of the intercept in this case would indicate a 286 

consistent standardized effect in terms of elevational shift across studies and species. Study duration and 287 

rate of temperature change were then tested by including each as a fixed effect in the model. 288 

Papers that made future projections of species distributions or abundances did not typically present 289 

significance tests, therefore standardized effect sizes could not be estimated. Instead, the mean percentage 290 

change in the response variable (either range size or a measure of population size) was analysed. The 291 

response variable was approximately normally distributed. The model structure was similar to that for 292 
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observed elevation shifts in that initially an intercept-only model was specified which included ‘study’ and 293 

‘family’ as random effects, and then further fixed effects (high-elevation specialist or generalist species, 294 

period over which projections were made, climate change scenario) were tested. The sample size of the 295 

initial input data was specified as a weight in the model statement, the assumption being that models based 296 

on a larger sample size are likely to be more reliable than those based on small sample sizes. Confidence 297 

intervals of estimates which did not overlap zero were taken as evidence of consistent effects of future 298 

projections of elevational shifts. 299 

 300 

RESULTS 301 

 302 

The literature review considered a total of 234 articles relevant to climate change across various mountain 303 

regions of the Holarctic (Table 1). In Europe, most studies occurred in the Alps and Pyrenees (n = 45), 304 

followed by Fennoscandia (n = 25) and the uplands of Britain and Ireland (n = 24). Many studies were also 305 

carried out in North America (n = 75), particularly in the Rocky (n = 14), and Appalachian (n = 10) Mountains, 306 

while only seven studies were carried out in Holarctic Asia. There were 26 papers included that investigated 307 

climate change impacts on bird communities at a global scale. The number of published studies according to 308 

our research criteria increased considerably over time from one study in 1991 to 48 studies published in 309 

2016 (Fig. 2).   310 

 The most commonly investigated climate change-related topic was the general ecology/physiology 311 

and ecology of mountain bird species (n = 61; Fig. 3), followed by papers that tested for effects of climate 312 

change on changes in population trends, elevational/latitudinal shifts or changes in community composition 313 

(n = 57). Papers investigating future prospects of species according to various climatic scenarios were also 314 

frequent (n = 47). The least studied category involved studies that investigated interspecific and/or 315 

synergistic interactions between climatic changes and other environmental or ecological factors (n = 4). 316 

 317 
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Mountain birds of the Holarctic region 318 

We identified 2316 bird species breeding in the Holarctic realm, 818 (35.3 %) of which were defined as either 319 

high-elevation mountain specialists (n = 324 species) or mountain generalists (n = 494 species).The most 320 

frequent Order of birds in both groups was Passeriformes (generalist n = 333 species; high-elevation 321 

specialist n = 256 species), followed by Piciformes for generalists (n = 29) and Galliformes for high-elevation 322 

specialists (n = 27; a complete list of the 2316 species is provided in the Supporting information, Table S4). A 323 

great proportion of the high-elevation specialists breed almost exclusively on the Tibetan plateaux (i.e. 324 

Tibetan Babax Garrulax koslowi, Tibetan Rosefinch Carpodacus roborowskii) or have a large proportion of 325 

their breeding range confined to this region (i.e. Bearded Vulture Gypaetus barbatus, Wallcreeper 326 

Tichodroma muraria, Twite Carduelis flavirostris). Examples of non-Tibetan high-elevation specialists were 327 

few and generally displayed a restricted breeding distribution confined to the lowest class that defines high-328 

elevation specialists (class 4; Fig.1) and at the southern-most range of the Holarctic realm (i.e. Maroon-329 

fronted Parrot Rhynchopsitta terrisi, White-naped Swift Streptoprocne semicollaris, Black Rose Finch 330 

Leucosticte atrata). Generalist mountain birds occur across various Holarctic mountains, ranging from the 331 

Tibetan Plateau and European Alps to the Pacific Mountain System in North America.  332 

Comparing the list of mountain birds across 232 relevant articles from the literature search (no 333 

information was available for two articles) revealed that almost all generalist (97%; n = 453/464) and high-334 

elevation specialist species (96%; n = 311/324) have been investigated in the literature, with the three most 335 

frequent generalist species studied being Black Restart Phoenicurus ochruros (n = 32 studies), Water Pipit 336 

Anthus spinoletta and Ring Ouzel Turdus torquatus (n = 31 each), whilst for high-elevation specialists, the 337 

most frequent species were White-winged Snowfinch Montifringilla nivalis (n = 22), Yellow-billed Chough 338 

Pyrrhocorax graculus (n = 20) and Wallcreeper Tichodroma muraria (n = 13). However, when excluding 339 

studies based on solely distributional data (e.g. species distribution models), meta-analysis and reviews, only 340 

2% (n = 7/324) of high-elevation mountain specialists and only 14% (n = 67/494) of mountain generalist 341 
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species were investigated. This suggests that fine-scale studies on species ecology are scarce for these 342 

species. 343 

 344 

Climate change, physiological constraints and life history strategies  345 

Birds breeding in mountain systems have evolved complex physiological, behavioural and morphological 346 

adaptations (Dragon et al. 1999, Cheviron & Brumfield 2012). Adaptations to prevent heat loss rely 347 

particularly on insulation, for example by producing a denser coat of feathers (Broggi et al. 2011) and by 348 

exhibiting a greater body mass than lower-elevation conspecifics (Bergmann’s rule; Ashton 2002). 349 

Physiological constraints are likely to be major determinants of how species respond to climate change. For 350 

example, Root et al. (2003) found that more than 80% of the species from various taxa and habitats that 351 

showed changes linked to global warming shifted geographically in the direction expected on the basis of 352 

known physiological constraints. Birds with physiological responses that are tightly coupled to specific 353 

environmental conditions (such as mountain species) are believed to be particularly sensitive to changes in 354 

climate, but little has been done to test whether these adaptations (especially morphological) are 355 

counterproductive in a warming climate. Anecdotal evidence and the limited literature available suggest 356 

there may be costs to higher temperatures for species like Rock Ptarmigan, Ring Ouzel and White-winged 357 

Snowfinch which have been observed panting and bathing in water or snow during hot sunny days in the 358 

Swiss Alps and Scottish Highlands (Glutz von Blotzheim et al. 1973; DS pers. obs.), whilst Johnson (1986) 359 

found that White-tailed Ptarmigan Lagopus leucurus started panting at 21° C. The above studies did not 360 

establish whether these behavioural changes were sufficient to prevent reduced survival or reproduction in 361 

warming conditions.  362 

A species’ life history strategy may be crucial in responding to climatic alterations. Patterns along 363 

elevational gradients have highlighted that populations of the same species confined to higher elevations 364 

have slower life-history strategies (fewer nesting attempts, lower clutch size) compared to populations at 365 

lower elevation (Boyle et al. 2016). Higher nest survival has been found for higher elevation populations that 366 
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may partially compensate for the reduction in potential fecundity. Boyle et al. (2016) did not record a 367 

pattern of significant differences in body mass, egg or nestling size, or survival between paired populations 368 

of bird species breeding at high and low elevation. Tingley et al. (2012), however, found that species were 369 

more likely to shift their elevational range in the Sierra Nevada (USA) if they had smaller clutches, defended 370 

all-purpose territories and were residents or short-distance migrants, although these involved both upslope 371 

and downslope shifts. It is therefore possible that higher-elevation species may indeed be more threatened 372 

by climate change than lower-elevation species due both to their morphological adaptations to cooler 373 

systems (e.g. insulation), and their life history strategies. However, future work is required to elucidate these 374 

ideas.  375 

 376 

Links between climate and population dynamics 377 

Although not addressing climate change per se, several studies have indicated that fluctuations in climate do 378 

influence demographic rates in mountain birds, and hence that potential climate change effects can be 379 

inferred. In several cases, increasing temperatures may increase reproductive output. Sæther et al. (2000) 380 

demonstrated that increases in winter temperature (together with population density) positively affected 381 

White-throated Dipper Cinclus cinclus dynamics in the upland regions of southern Norway. Cold winters 382 

caused low recruitment and a decrease in population size associated with the amount of ice cover, which 383 

impaired foraging opportunities. Novoa et al. (2008) demonstrated that weather variables during both pre-384 

laying and post-laying influenced reproductive success in Rock Ptarmigan in the French Pyrenees. 385 

Reproductive success was positively associated with early snow free patches, but rainfall had negative 386 

effects, particularly after hatching. Positive effects of snowmelt on Rock Ptarmigan were also confirmed in a 387 

later study by Novoa et al. (2016), but the intensity of the effect varied with respect to the geographical 388 

region considered (i.e. Alps vs Pyrenees). In Mountain Plover Charadrius montanus, nest survival was 389 

favoured by drier and cooler weather over a seven-year period (Dreitz et al. 2012). 390 

There is also evidence for negative effects of climate on demographic parameters. Barnagaud et al. 391 

(2011) showed that winter and summer NAO (North Atlantic Oscillation) affects several indicators of 392 
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breeding success of Black Grouse Tetrao tetrix in the French Alps, particularly during years of extreme 393 

weather. Interestingly, birds showed some acclimatisation, being able to optimise their reproductive output 394 

in relation to the NAO index, but they performed particularly badly when extreme weather events occurred. 395 

Twenty-five years of prolonged spring warming caused low breeding success in a Scottish population of 396 

Capercaillie (Moss et al. 2001).  397 

In mountain systems, bird response to temperature may vary at both small and large scales. For 398 

example, nest-site characteristics of Water Pipits are selected based on their accessibility to predators, 399 

snowfall and microclimate, with the latter two influencing nestling rearing periods and survival (Rauter et al. 400 

2002). Because snowfall and predation pressure vary over time and space, it is possible that large-scale 401 

factors also influence species choices. The relative importance of small and large scale weather effects is still 402 

unclear as these seem to vary depending between species, populations, seasons and time periods 403 

considered. Ptarmigan exemplify such complex responses: even though they have been considered as 404 

indicators of temperature-induced effects on mountain biodiversity (Novoa et al. 2008, Wilson & Martin 405 

2010, Imperio et al. 2013), some studies have shown little effect of climate change on their demography 406 

(Sandercock et al. 2005, Novoa et al. 2016). In one study by Wang et al. (2002), local minimum winter 407 

temperatures had a stronger effect on White-tailed Ptarmigan population dynamics than large-scale indices 408 

like NAO. On the other hand, Wann et al. (2014) found that the same species in the same study area 409 

responded to climatic effects over a longer period when a two-year lag time was considered. This nuanced 410 

evidence highlights the importance of testing both small and large-scale weather predictors, and in particular 411 

in focussing more studies on lagged effects of NAO on demographic parameters of mountain species.  412 

 413 

Changes in phenology 414 

Amongst birds, climate change has affected the phenology of many species, leading to changed timing of 415 

breeding and migration (e.g. Crick et al. 1997, Rubolini et al. 2007), which in some cases has led to 416 

population declines when phenological trends are mismatched with those of their key food resources (e.g. 417 

Both et al. 2006).  Such phenological mismatches are hypothesised to underpin the declines in many long-418 
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distance migrant species in the western Palearctic (e.g. Møller et al. 2008). However, in the Fennoscandian 419 

mountains, Lehikoinen et al. (2014) found that long-distance migrants declined less on average than 420 

residents and short-distance migrants, suggesting the latter were more sensitive to climate change impacts.  421 

 There are few studies that have shown changes in mountain bird phenology explicitly linked to 422 

climate change. Timing of breeding in Mexican Jays Aphelocoma wollweberi has advanced in line with 423 

climate changes in the Chiricahua Mountains of Arizona (Brown et al. 1999). Inouye et al. (2000) found that 424 

American Robins Turdus migratorius in the Colorado Rocky Mountains arrived 14 days earlier over a 19 year 425 

period.  However, local conditions (e.g. the average date of snowmelt) did not change on the study site 426 

resulting in a 65 day gap between date of the first robin sighting and date of snowmelt, suggesting that 427 

American Robins may have to cope with an extended pre-breeding period at higher elevation. Indeed, the 428 

extent, duration and timing of snow cover is likely to be an important factor acting on the phenology of 429 

mountain birds in general. For birds in the European Alps and North American mountains, patterns in 430 

breeding season phenology are typically tied to the snow melt (e.g. Novoa et al. 2008, Imperio et al. 2013, 431 

García-González et al. 2016). There is evidence that responses to changes in snowmelt phenology vary 432 

between species and populations. Martin & Wiebe (2004) compared White-tailed Ptarmigan and Willow 433 

Ptarmigan Lagopus lagopus breeding in alpine and arctic environments respectively, and found that extreme 434 

weather events greatly reduced breeding success in both species. In average years, breeding parameters of 435 

White-tailed Ptarmigan were not correlated with snowmelt phenology, therefore suggesting a constraint in 436 

adjusting their reproductive phenology to a changing environment. Willow Ptarmigan, however, tracked 437 

local conditions, breeding earlier in years of early snowmelt (Hannon et al. 1988, Martin & Wiebe 2004). 438 

Similarly Novoa et al. (2016) found that the median hatching date for Rock Ptarmigan was significantly 439 

correlated with the date of snowmelt in the French Alps, but not in the Pyrenees. None of the above studies 440 

found trends over time linked to climate change, but it can be inferred that climate change acting on snow 441 

melt phenology could affect these species in the future, especially given that snow melt has become 442 

progressively earlier, and snow cover has declined in extent in the northern hemisphere (IPCC 2007).  443 

 444 
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Trophic linkages 445 

Global warming may influence the distribution and abundance of invertebrate communities directly 446 

(Grigaltchik et al. 2012) or indirectly via the modification of suitable habitat conditions (i.e. soil desiccation, 447 

changes in vegetation communities; Carroll et al. 2011). However, the links between such changes and bird 448 

populations have received little investigation. Most of the evidence comes from the British uplands. Pearce-449 

Higgins et al. (2010) demonstrated how abundance of adult craneflies (Diptera: Tipulidae), a keystone group 450 

in many mountain systems, was negatively correlated with August temperatures in the previous year, and in 451 

turn how changes in the Golden Plover Pluvialis apricaria populations were negatively correlated with August 452 

temperatures two years earlier. Furthermore, Fletcher et al. (2013) also concluded that low temperatures in 453 

May (a surrogate for late cranefly emergence; Pearce-Higgins et al. 2005) positively influenced Red Grouse 454 

Lagopus lagopus scoticus chick survival. These findings suggest that continued warming would have negative 455 

effects on these species. 456 

We found only one study considering the role of climate change on plant food sources for mountain 457 

birds . Santisteban et al. (2012) correlated declines in adult survival of Cassia Crossbill Loxia sinesciuris with 458 

increasing temperatures in South Hills and Albion Mountains (USA). The most supported explanation was 459 

that Lodgepole Pine Pinus contorta seed availability varied with temperature, where with increasing 460 

temperatures, trees prematurely shed their seeds, reducing the carrying capacity for Cassia Crossbill 461 

breeding later in the year. The warmer springs and increased precipitation in Europe will also influence food 462 

availability and the future geographical distribution for European Crossbills (Common Crossbill L. curvirostra, 463 

Parrot Crossbill L. pytyopsittacus, Scottish Crossbill L. scotica) (Mezquida et al. 2017) 464 

Snow patches can represent an important foraging habitat, providing both arthropod fallout and 465 

suitable sites at their margins for the collection of soil invertebrates, particularly during the nesting and 466 

rearing period of many mountain birds such as White-winged Snowfinch, Snow Bunting Plectrophenax 467 

nivalis, Horned Lark Eremophila alpestris and Alpine Accentor Prunella collaris (Antor 1995, Camfield et al. 468 

2010, Brambilla et al. 2016a,b, Rosvold 2016). In some extreme cases, birds may even choose to nest directly 469 
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in glaciers (White-winged Diuca Finch Diuca speculifera; Hardy & Hardy 2008) or in very close proximity 470 

(Grey-crowned Rosy Finch Leucosticte tephrocotis, Johnson 1965, Rosvold 2016; Brandt’s Rosefinch 471 

Leucosticte brandt, Potatov 2004) to capitalize on abundant supplies of insects. Changes in amount and 472 

duration of snow may therefore affect these species via food resources. 473 

Where trees and shrubs have expanded their distribution upslope in response to increasing 474 

temperatures (Harsch et al. 2009, Myers-Smith et al. 2011), changes in invertebrate communities are 475 

expected. Ground and canopy-dwelling arthropod communities have been assessed in the arctic foothills of 476 

Alaska in relation to the presence of two passerine predators, Gambel’s White-Crowned Sparrow Zonotrichia 477 

leucophrys gambelii and Lapland Longspur Calcarius lapponicus. Predicted changes in shrub dominance are 478 

likely to favour White-crowned Sparrow nesting habitat and food (canopy-dwelling arthropods), whilst 479 

declines of Lapland Longspurs have been projected as a consequence of shrub encroachment and 480 

consequent reduced availability of ground-dwelling arthropods (Boelman et al. 2015).  481 

Climate change may also have effects by affecting more complex linkages across different trophic 482 

levels. Martin & Maron (2012) conducted an experiment showing that climate change in the form of reduced 483 

snowfall in mountains, and leading to increased ungulate herbivory in winter, can negatively affect diverse 484 

species interactions.  They experimentally tested the hypothesis that declining snowfall, which enables 485 

greater over-winter herbivory by Elk Cervus canadensis, indirectly influences plants and associated bird 486 

populations in montane forests. When they excluded Elk from one of two paired snowmelt drainages, and 487 

replicated this paired experiment across three distant canyons over a six year period, there was a reversal in 488 

the multi-decadal declines in plant and bird populations. These experimental results suggest that climate 489 

impacts can interact with other drivers of habitat change and strongly influence plant–animal and other 490 

ecological interactions.   491 

 492 

Observed evidence of elevational shifts 493 

Evidence exists, typically from broad-scale atlases of species distributions, that some species are shifting 494 

their geographic distributions to higher elevations in response to climate change, the distributions 495 



20 
 
 

presumably tracking more suitable climatic conditions (e.g. Auer & King 2014, Roth et al. 2014), although 496 

such effects are not universal (e.g. Zuckerberg et al. 2009, Tingley et al. 2012, Massimino et al. 2015). 497 

Furthermore, apparent elevational shifts may occur due to habitat deterioration or destruction at lower 498 

elevations (Archaux 2004, Bodin et al. 2013). 499 

Few studies have considered elevational shifts in the distributions of Holarctic mountain birds. We 500 

found 10 relevant studies in our literature search that considered specifically elevational shifts in bird species 501 

distributions along elevational gradients, partly or wholly in mountains, over time (Table 2). Including papers 502 

that considered more than one study site (n = 13 sites from 10 papers), the mean period considered was 38 503 

± 2.5 SE years (range 9 – 102) and the mean length of elevation gradients was 1970 ± 76 SE m (range = 500 – 504 

3400m). There was little evidence of consistent patterns in elevational shifts across the studies, and there 505 

was a wide variation among species. In some cases, there were fairly consistent upward shifts in most 506 

species (e.g. Reif & Flousek 2012, Rocchia 2016), but other studies found that different species exhibited 507 

upward and downward shifts (Tingley et al. 2012, DeLuca & King 2017), or found shifts in only a small 508 

proportion of the species considered (Archaux 2004). Additionally, there was sometimes marked variation in 509 

species’ responses between geographic locations within the same study (Tingley et al. 2012, Pernollet et al. 510 

2015).  511 

The lack of consistent trends apparent in Table 2 was supported by the meta-analysis. There were 512 

203 estimates of elevational shift from seven published studies analysed, five from Europe and two from 513 

North America. Pooling all estimates across the studies, there was no strong support for a general shift 514 

towards higher elevations (parameter estimate ± SE = 0.083 ± 0.052, 95% CLs = -0.018, 0.184). Shifts towards 515 

higher elevations were more positive when rates of temperature change were higher (estimate ± se = 0.543± 516 

0.152, 95% CLs = 0.245, 0.841). Duration of study had an unexpected negative effect on shifts, studies over 517 

longer time spans resulting in more downward shifts (estimate ± se = -0.026± 0.004, 95% CLs = -0.034, -518 

0.018). The above findings were robust to different model structures and different subgroups of species 519 

(Supplementary Material, Table S3).  520 
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Most studies in Table 2 also considered temperature variations over the same period, either 521 

modelling them in relation to bird distributions (Archaux 2004, Popy et al. 2010, Reif & Flousek 2012, Tingley 522 

et al. 2012, Pernollet et al. 2015, Rocchia 2016), or considering climate trends over the same periods 523 

(Maggini et al. 2011, Mizel et al. 2016). In most cases, trends in elevational shifts were temporally matched 524 

with temperature trends over the same period, with a few exceptions (Pernollet et al. 2015, Mizel et al. 525 

2016). Tingley et al. (2012) found a broad range of responses of bird species along elevation gradients in the 526 

Sierra Nevada, due in part to differential responses to increasing temperature (exerting a general positive 527 

upwards shift) and increasing precipitation (exerting a general downslope shift), although few other studies 528 

considered potential effects of precipitation (only Archaux 2004, Popy et al. 2010 and Pernollet et al. 2015).  529 

Changes in bird population trends along elevation gradients over time are similarly inconsistent 530 

across studies.  Some find positive changes in lower-elevation species and negative changes in higher- 531 

elevation species that are consistent with elevational shifts as lower-elevation species colonise mountains 532 

and higher- elevation species lose suitable habitat (Flousek et al. 2015).  However, others have reported 533 

opposite (Archaux 2007) or inconsistent (Zamora & Barea-Azcón 2015, Furrer et al. 2016) patterns. Tingley 534 

and Beissinger (2013) found a decrease in total species richness, and in species richness of high elevation 535 

species, over time in the Sierra Nevada, despite heterogeneous shifts in individual species in the same area 536 

(Tingley et al. 2012). At wider scales, there is evidence that bird communities are shifting towards warm-537 

dwelling species (Switzerland; Roth et al. 2014), but also that communities at higher elevations have lower 538 

‘climate debt’ (the spatio-temporal divergence between temperature changes and community changes) as 539 

elevation increases (France; Gaüzère et al. 2016).   540 

 541 

Projected elevational shifts 542 

Extinction risks are expected to increase as a result of climate-induced elevational range shifts in the future 543 

(Sekercioglu et al. 2008, La Sorte & Jetz 2010). Shifting vegetation zones in mountains, and in particular an 544 

advance of the tree-line towards higher elevations, has been observed in many studies (e.g. Lenoir et al. 545 
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2008, Harsch et al. 2009). As a consequence, high-elevation specialists, and in particular those of open, 546 

treeless habitats, are expected to be most threatened due to habitat loss or fragmentation (e.g. Chamberlain 547 

et al. 2013, Goodenough & Hart 2013, Siegel et al. 2014, Brambilla et al. 2016a). Nevertheless, some studies 548 

have also projected overall range loss in higher-elevation forest specialists (Braunisch et al. 2014, Brambilla 549 

et al. 2015). There were 95 estimates derived from 12 studies that satisfied the criteria to be included in the 550 

analysis (see Supporting Information; Table S2). There was a net prediction of negative impacts on species 551 

populations or distributions, although there was a degree of variability and confidence limits overlapped zero 552 

(estimate ± se = -28.9± 17.0%, 95% CLs = -62.4, 4.6). High-elevation mountain specialists and generalists 553 

were projected to be more negatively impacted than other species (mountain specialists and generalists = -554 

76.1 ± 27.1%, 95% CLs = -129.2, -23.0; other = 29.8 ± 25.7%, 95% CLs = -20.6, 80.2). There was a tendency 555 

for greater negative impacts in severe than moderate scenarios (moderate= -26.6 ± 17.1%, 95% CLs = -60.1, 556 

6.9; severe = -33.6 ± 17.5%, 95% confidence limits = -67.9, 0.7). There was no evidence of an effect of the 557 

number of years over which projections were made (0.01 ± 0.79, 95% CLs = -1.53, 1.55). Re-running the 558 

models without weighting for sample size showed the same patterns, although results were less 559 

conservative (i.e. it was less likely that confidence intervals overlapped zero).   560 

 561 

Interactions of climate change effects with other drivers of change 562 

Land use 563 

Disentangling the relative importance of climatic effects and other drivers of environmental change that 564 

influence the persistence and maintenance of biodiversity has been a key issue across mountain regions 565 

(Mantyka-Pringle & Rhodes 2012, Cumming et al. 2014, Maggini et al. 2014, Elmhagen et al. 2015), and is 566 

central to produce efficient, adaptive conservation frameworks for threatened species (Gehrig‐Fasel et al. 567 

2007, Gienapp et al. 2007, Eglington & Pearce-Higgins 2012, Titeux et al. 2016). For example, climate change 568 

and land-use often interact in ways that influence biodiversity (Parmesan & Yohe 2003), and these 569 

interactions may amplify or reduce the magnitude of potential effects (Clavero & Brotons 2010, Dreitz et al. 570 
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2012, Chamberlain et al. 2013, Oliver et al. 2017). Lehikoinen & Virkkala (2016) acknowledged a land-use and 571 

species trait effect due to the high level of unexplained variation in models predicting the change in density 572 

of birds in relation to temperature change. Jetz et al. (2007) attempted to assess the relative importance of 573 

climate and land use changes using future scenarios. We identified 617 birds defined as either high-elevation 574 

mountain specialists or mountain generalists present in the study of Jetz et al. (2007). For these species, the 575 

average percentage loss in geographic range due to land use change was estimated at 24.8% and 28.6% by 576 

the years 2050 and 2100 respectively. In comparison, loss due to climate change alone was predicted to be 577 

7.3% and 11.5% respectively. 578 

The interaction between climate and land use is particularly relevant to mountain habitats that are 579 

experiencing a faster rate of climate change than the global average (Diaz et al. 2003, Nogués-Bravo et al. 580 

2007) and are subjected to various anthropogenic changes at a landscape level (Arlettaz et al. 2007, 2015, 581 

Gellrich & Zimmermann 2007, Nogués-Bravo et al. 2008, Patthey et al. 2008, Braunisch et al. 2011, 2013, 582 

2016, Douglas et al. 2015). However, land use change has only been rarely incorporated into analyses of 583 

distribution shifts: Reif & Flousek (2012) and Rocchia (2016) found that elevation shifts more closely 584 

matched temperature than habitat changes, Tryjanowski et al. (2005) found significant effects of both, 585 

whereas Popy et al. (2010) could not separate the effects of the two.  586 

Agro-forestry and pastoral practices have shaped the landscape of Holarctic mountains in Europe 587 

and Asia, influencing the species composition and abundance of mountain birds (e.g. Gehrig‐Fasel et al. 588 

2007, Caprio et al. 2011, Douglas et al. 2014, Wilson et al. 2014, Mollet et al. in press). Over time, forest 589 

management has changed in intensity (e.g. clear-felling vs single-tree selection), composition (planting of 590 

exotic conifers) and age dynamics (establishment of even-aged monocultures; Kirby & Watkins 2015). At the 591 

same time, climate change may be affecting forest bird assemblages either directly or indirectly by 592 

influencing cover, productivity, and composition of forest systems. However, it is generally unclear which of 593 

these two pressures (climate change or forestry practices) is the most important driver in changes in bird 594 

distribution. Changes in forest composition could cause opposite shifts (i.e. downhill) to those forecast due 595 

to effects of climate warming (uphill). For example, Archaux (2004) suggested that changes in forest 596 
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management that favoured coniferous at the expense of broadleaved trees might have caused forest birds 597 

to have shifted their mean elevation downwards. In other cases, there is evidence from boreal forests 598 

(including some mountain areas) that climate, in addition to vegetation type and management, is a crucial 599 

driver for determining passerine species distribution (Cumming et al. 2014, Frey et al. 2016). Virkkala (2016) 600 

found that forest management favoured passerine species benefitting from climate change, so that direct 601 

habitat alteration was connected to the indirect effects of climate change.  602 

Climatic variables can also be important factors for non-passerine species. Brambilla et al. (2015) 603 

found in the Italian Alps an important effect of climate in addition to habitat composition at the landscape 604 

scale in dictating the distribution of the cold-adapted Pygmy Owl and Boreal Owl Aegolius funereus. Both of 605 

these forest species were predicted to undergo range contraction in the Alps as a consequence of climate 606 

change. Braunisch et al. (2014) evaluated the importance of climate, landscape and vegetation variables on 607 

the occurrence of indicator species (i.e. Capercaillie, Hazel Grouse Tetrastes bonasia, Three-toed 608 

Woodpecker Picoides tridactylus and Pygmy Owl) in central European mountain forests, and assessed future 609 

changes in habitat suitability of these species according to future climatic projections. Although climate 610 

variables were the most important factors for most species, the models predicted that in situ management 611 

actions, such as increasing the number of forest gaps (for Capercaillie), increasing bilberry Vaccinium spp. 612 

cover (for Hazel Grouse) and increasing the number of snags and/or the proportion of high (>15m) canopy 613 

forest (for Three-toed Woodpecker), could to some extent mitigate the detrimental impact of climatic events 614 

and sustain bird populations. However, such interventions may have to work against the natural forest 615 

dynamics and could be expensive.  616 

 Historically, agricultural expansion and changes in livestock management have had major impacts on 617 

mountain birds (Lundmark 2007, Elmhagen et al. 2015). In many mountain areas, traditional grazing 618 

practices are characterised by low stocking densities or transhumant pastoralism, i.e. the seasonal 619 

movement of livestock between high-elevation summer pastures and lowland winter pastures (Arnold & 620 

Greenfield 2006). These traditional grazing practices have been largely abandoned in some areas due to 621 

social and economic factors, especially in the European Alps. For example, in Italy, the number of farms has 622 
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decreased drastically and many have changed to indoor production systems (Battaglini et al. 2014), which 623 

has led to substantial changes within mountain vegetation zones through encroachment of formerly open 624 

grasslands by trees and shrubs and a loss of structural heterogeneity (Braunisch et al. 2016). Elevational 625 

shifts in vegetation may be therefore due both to climate change and land abandonment (Gehrig-Fasel et al. 626 

2007).   627 

The reintroduction of grazing is an often recommended management solution to counteract tree 628 

and shrub encroachment in open areas (Gehrig-Fasel et al. 2007), and it has the potential to increase plant 629 

structural diversity and composition (Hoiss et al. 2013, Peringer et al. 2013) which is key to preserve 630 

emblematic birds of semi-open habitat (Patthey et al. 2012). However, the effects of grazing on mountain 631 

bird populations are still not well understood.  Long-term grazing at high stocking densities is known to have 632 

negative impacts on soil fertility and consequently on the productivity of the whole system (McVean & 633 

Lockie 1969), although effects on mountain birds are not consistent and vary substantially among 634 

geographical regions, livestock types and stocking levels. Several studies have reported that grazing increases 635 

richness or densities of mountain grassland birds (Laiolo et al. 2004, Evans et al. 2006, Bazzi et al. 2015). 636 

Evans et al. (2006) found that mixed sheep and cattle grazing, at low intensity, improved the breeding 637 

abundance of Meadow Pipit Anthus pratensis compared to sites stocked with sheep only (at high or low 638 

density) or unstocked sites in the Scottish uplands, while Loe et al. (2007) reported the highest bird density 639 

on pastures with high sheep density in Norway. Other studies have shown no differences in bird abundance 640 

or species richness between grazed and ungrazed sites (Moser & Witmer 2000) or a negative influence of 641 

grazing animals on nesting success (Pavel 2004, Warren et al. 2008).  642 

Climate change can also have direct impacts on grazing management, although this seems to be less 643 

well studied. In Nepal, where transhumance is a common practice, herders perceived the impact of climate 644 

change through personal experience. In several studies, where herders have been interviewed, they 645 

described a rise in temperature, a decline of rain- and snowfall, a scarcity of water resources (Aryal et al. 646 

2014, Wu et al. 2015) and the presence of invasive weeds, which are replacing the valuable grasses on 647 

farmlands (Gentle & Thwaites 2016). These perceptions were also in line with temperature and rainfall 648 
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trends in the studied region. As a result, herders tried to adjust their transhumance patterns to the changed 649 

conditions by altering the timing of seasonal livestock movements. The consequences of such management 650 

responses for mountain bird populations, however, remain unknown. Given the varieties of different effects 651 

of grazing on mountain birds, and the lack of research on likely responses of grazing management practices 652 

to future climate change, further investigations are needed to examine potential effects of grazing regimes 653 

on mountain bird populations before we can apply them as potential conservation tools.  654 

 655 

Leisure and other potential threats 656 

Mountains are important ecosystems for biodiversity, but are also multi-functional sites for various human 657 

activities, including leisure. People seek mountain landscapes to practice a range of different sports and 658 

hobbies such as skiing, snowboarding, hiking, biking, birdwatching, rock-climbing, paragliding and hunting. 659 

Local communities benefit economically from tourism. The leisure industry in mountain areas is growing 660 

(Debarbieux et al. 2014), and the potential effects of these activities on avian communities have received 661 

increasing attention from conservationists (e.g. Patthey et al. 2008, Arlettaz et al. 2013, DeLuca & King 662 

2014). The impact of snowsports on biodiversity is a major topic studied in the European Alps, where there 663 

are c. 40,000 kilometres of ski-runs served by c. 14,000 ski-lifts that are capable of transporting c. 1.5 million 664 

skiers per hour (Weed & Bull 2004). As a consequence of this and other activities, the Alps receive nearly 100 665 

million visitors per year, spending $60 billion annually (Giuliano 1994). In contrast, snowsport activities, 666 

including skiing operations in North America and the Eastern Holarctic remain at relatively low density, with 667 

most likely local effects on biodiversity (Martin 2001b). 668 

There are several lines of evidence showing that ski-pistes have deleterious effects on both grassland 669 

and forest birds via loss and degradation of habitat, and a decrease in food availability (Laiolo & Rolando 670 

2005, Rolando et al. 2007, Caprio et al. 2011, Rixen & Rolando 2013). In addition, there is evidence that 671 

hormonal stress in birds generated by intensive human activities can negatively impact already vulnerable 672 

populations of Capercaillie (Thiel et al. 2011) and Black Grouse (Arlettaz et al. 2007, 2013). Anthropogenic 673 

disturbance has furthermore been shown to entail extra energetic costs that may negatively affect 674 
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population dynamics (Arlettaz et al. 2015). Effects may also operate through infrastructure associated with 675 

skiing, for example increased mortality due to collision with ski cables (Baines & Andrew 2003, Watson & 676 

Moss 2004), and reduced reproductive success of ground nesting birds associated with development of 677 

tourist resorts (Watson & Moss 2004, Patthey et al. 2008, Tolvanen & Kangas 2016), although negative 678 

effects are not universal (Rimmer et al. 2004). 679 

Interactive effects of climate change and outdoor sports could increase the above negative impacts 680 

on bird populations in the future. Global warming is having important economic consequences for the skiing 681 

industry due to reduced snow cover and persistence. Compensatory mechanisms are targeted at prolonging 682 

the ski season by direct spraying of artificial snow, or by creating new ski pistes at higher elevations where 683 

snow conditions are more reliable. Brambilla et al. (2016a) modelled ski-pistes and mountain bird presence 684 

according to future climatic scenarios. Strong overlaps between areas climatically and topographically 685 

suitable for the development of ski-pistes and areas suitable for breeding alpine birds were predicted to 686 

occur, suggesting that the conservation of mountain bird communities will require careful planning in order 687 

to reduce potential increased future conflicts between outdoor winter sports and birds. Global warming is 688 

also causing the abandonment of ski-runs at lower elevations. Natural grassland revegetation at some 689 

abandoned sites resulted in a partial recovery of important alpine birds, but never back to the state of the 690 

‘original’ alpine grasslands (Caprio et al. 2016).  691 

 692 

Novel interspecific interactions 693 

Species may respond to climate change by shifting their distribution to track local climates (Tingley et al. 694 

2009, Jackson et al. 2015), which may result in novel interactions as species colonize new areas. 695 

Including such interactions has improved model predictions at different scales (Araújo & Luoto 2007). 696 

Heikkinen et al. (2007) and Brambilla et al. (2013) suggested that including the presence of woodpeckers 697 

that produce the cavities used by secondary cavity nesting raptors improved model performance in 698 

predicting cavity-nesting forest owl distributions. We found only one relevant example that tested the 699 

importance of biotic interactions among birds along elevational gradients. Freeman & Montgomery (2015) 700 
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assessed potential competition between Swainson’s Thrush Catharus ustulatus, which generally inhabits 701 

lower elevations but which has shifted its distributions towards higher elevations, and the conspecific 702 

Bicknell’s Thrush Catharus ustulatus, which is largely confined to mountaintops. Using playback techniques, 703 

the authors found that, where the species co-occurred, Swainson’s Thrush responded aggressively to 704 

Bicknell’s Thrush, but not vice-versa.  705 

 706 

Conservation and policy  707 

Our literature review has clearly highlighted the need for more detailed studies of mountain birds, with 708 

several papers stating that a valuable conservation framework can be achieved only if such knowledge gaps 709 

are bridged (see Research gaps and Conclusion; Fig. 4). Despite this, we found that most studies on this topic 710 

identified adaptation strategies for mountain and upland species threatened by climate change. Most of 711 

these studies (n = 21; Fig. 4) focussed on the quality, quantity and geographical location of protected areas. 712 

Existing protected areas may have already functioned as important compensatory systems, increasing 713 

species resilience to climate change (Virkkala et al. 2014, Gaüzère et al. 2016, Santangeli et al. 2016), and in 714 

future scenarios of greenhouse gas emission, greater biodiversity losses have been predicted in unprotected 715 

than in protected areas (Virkkala et al. 2013). In Europe, nationally designed protected areas are likely to 716 

retain climatic suitability better than unprotected areas in the future, as they tend to occur at high elevations 717 

and hence act as climatic refugia for species, although this was not found to be the case for the European 718 

Union-wide Natura 2000 network (Araújo et al. 2011). The same authors also highlighted that nearly all (i.e. 719 

97.2%) alpine species and sub-species of vertebrates and plants of European concern are projected to lose 720 

suitable habitat due to their small ranges. However, it must be highlighted that the study did not consider 721 

species dispersal. 722 

Some habitats may also be more prone to climate change than others. Montane forest species are 723 

predicted to be less impacted by climate change due to the stronger self-regulation of the forest 724 

microclimate compared to open habitats (Reif & Flousek 2012), and to native forest expansion that has 725 
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already occurred, and which is predicted to continue in many areas (European Alps; British uplands; 726 

Chamberlain et al. 2013, Scridel et al. 2017b), but they could be prone to other climate change related 727 

threats such as pests, disease and wild fires (Dale et al. 2001, Sturrock et al. 2011, Lesk et al. 2017). 728 

Furthermore, natural grasslands in the Alpine region may face serious challenges to shift their distributions, 729 

as they are being progressively colonised due to both forest encroachment following land abandonment or 730 

release of grazing pressure and advancing treelines at lower elevations, while facing constraints on 731 

colonizing higher elevations, for example due to slow rates of soil formation (Freppaz et al. 2010, 732 

Chamberlain et al. 2013, Jackson et al. 2015).  733 

Targeted habitat management should be considered as an adaptive conservation tool for various 734 

species threatened by climate change (Fig. 4). Improving habitat structure and offering greater prey 735 

availability has been reported to increase mountain species’ resilience and resistance for forest, semi-open 736 

and open-habitat species (Caroll et al. 2011, Braunisch et al. 2014, Scridel et al. 2017b).  This might be 737 

achieved by targeted grazing to maintain open habitats and enhance invertebrate populations (Signorell et 738 

al. 2010, Patthey et al. 2012, Braunisch et al. 2016). Such intensive actions can be very costly and in conflict 739 

with many economic goals, hence management should be targeted in large areas projected to support viable 740 

wildlife populations. Increasing the quantity and quality of protected areas is not just important for mountain 741 

species per se, but also because these areas are likely to become stopover refugia for many migrant species 742 

tracking climate change (Loarie et al. 2009, Boyle & Martin 2015), and management action should also 743 

accommodate these species’ requirements. When intensive management in situ does not compensate for 744 

climatic effects, potential captive programs (n = 2; Fig. 4), translocation of species to new suitable areas (n = 745 

2; Bech et al. 2009), or the creation of corridors to favour dispersal and colonization of new areas (Huntley et 746 

al. 2008, Conroy et al. 2011, Lu et al. 2012, Virkkala et al. 2013) have been proposed.   747 

 All of these adaptation responses for mountain species threatened by climate change can work only 748 

if scientists and policy makers collaborate to influence current legislation. Our classification of high-elevation 749 

mountain specialists and mountain generalists indicates initial steps for a joint common Holarctic mountain 750 

bird index, which so far has been developed for some regions in the world (Fennoscandia; Lehikoinen et al. 751 
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2014; North America and British Columbia, Canada; Boyle & Martin 2015) and which could be essential for 752 

scientists and policy-makers to measure progress in the conservation of mountain birds, especially if this 753 

index includes full life cycle avian use of mountain habitats. While in the long-term, global measures to 754 

contain and reverse anthropogenic emissions are important (n = 3; Fig. 4), most authors admit that the 755 

persistence of mountain species also depends on immediate short-term national and local conservation 756 

actions and legislation (n = 9; Fig. 4).  757 

 758 

DISCUSSION 759 

 760 

Our literature review has shown that there is a growing body of evidence that climate change is impacting 761 

mountain birds in terms of distribution and population trends, reproduction and survival. These changes may 762 

have been mediated through direct effects of climate on physiology, indirect effects of changes in habitat, or 763 

via interactions with other biotic and abiotic changes. However, patterns were often highly variable (e.g. 764 

both increases and decreases in population size, range changes towards both higher and lower elevations), 765 

between species, and between different study areas for the same species.   766 

Defining a ‘mountain bird’ across a large region like the Holarctic is difficult because many species 767 

that are mountain birds in warmer climates are lowland species in colder climates. Our goal was to derive an 768 

objective definition that could be applicable over a large geographic area and which identified species 769 

associated with mountains per se, rather than occurring in mountains due to interactive effects of climate, 770 

elevation, latitude and land use. This is important when considering species distributions over large scales, 771 

and in particular when projecting future distributions. For example, the Water Pipit was identified as a 772 

generalist mountain breeding bird across various mountain slopes, even in the northern, colder, parts of its 773 

geographic range. Predictions based on climate alone may therefore be inaccurate for such species (e.g. 774 

Huntley et al. 2008). In general, the species identified as high-elevation specialists or mountain birds (see 775 

Supporting Information; Table S4) were in-line with the authors’ expectations, although there were some 776 

surprising results. For example, Rock Ptarmigan is considered an archetypal mountain bird in many parts of 777 
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its range (the European Alps, the Pyrenees, British Columbia and Alberta), but not according to our 778 

definition. This to some extent may have been due to the coarse scale of the defined breeding range used in 779 

the method, but it is also reflective of the widespread populations of this species inhabiting lowland arctic 780 

tundra. As conservation policy is typically applied at national or regional level, a regional-based definition of 781 

mountain birds would also be useful, which would be readily achievable under the current methodology. 782 

Although this first classification of Holarctic high-elevation mountain specialist and generalist birds was not 783 

the primary aim of this review, we regard this exercise of considerable value for future work on this group of 784 

poorly studied species (e.g. baseline monitoring, development of a joint mountain bird index, and ecological 785 

and conservation research). 786 

According to our meta-analysis, there was no evidence for consistent elevational shifts in mountain 787 

bird species. Although we failed to detect any direct and conclusive effects that climate change has caused 788 

widespread distribution shifts in Holarctic mountain birds, it is likely that we lack sufficient data to generate 789 

robust conclusions. The meta-analysis included a range of species encompassing a great variation in life 790 

history strategies, demographic parameters and geographical regions.  All of these factors are likely to 791 

influence potential responses to climate change and hence cause a wide variation in patterns of elevational 792 

shift among mountain birds across the mountain ecosystems and avian taxa considered (Martin & Wiebe 793 

2004, Wilson & Martin 2010, Tingley et al. 2012, Novoa et al. 2016).   794 

There was consistency in climate projections across studies that was somewhat at odds with the 795 

heterogeneity in responses of observed elevational shifts. This may in part have been due to more mountain 796 

high-elevation specialists being included in the projection papers. However, in many cases, there was a focus 797 

on climate (usually temperature and precipitation) as a driving factor, and only half of the studies considered 798 

alternative scenarios of climate change in tandem with land use change or other anthropogenic pressures. In 799 

general, species distribution models only rarely include scenarios of changes in land use and human 800 

disturbance alongside those of climate change (Sirami et al. 2016). It is clear that range shifts in mountains 801 

may be influenced by many factors, including temperature, but also precipitation, habitat and topography, 802 
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and that species may vary widely in their response. All of these factors should be considered when assessing 803 

elevational range shifts, and predicting future shifts, in mountain birds.  804 

Adaptation responses for mountain species threatened by climate change rely on enhancing the 805 

quality and quantity of suitable habitat in particular via protected areas, but also the conservation of suitable 806 

ecological conditions at regional and wider levels, including improving landscape connectivity. We have 807 

shown that human activities can be beneficial for climate-sensitive species (i.e. some pastoral activities), and 808 

yet mechanisation, leisure and urbanisation may impede potential benefits. Major changes can occur if 809 

scientists and legislators work closely together, for example through the development of efficient agri-810 

environmental schemes, forestry practices, regulation of leisure activities and sustainable urban planning in 811 

mountain areas, and explicit recognition of the general ecological requisites for wildlife persistence such as 812 

connectivity across their full life cycle.   813 

 814 

Research gaps and conclusions 815 

From our literature review, it was evident that mountain species are little studied relative to species in 816 

lowland habitats of the Holarctic, such as farmland, forest and wetlands. Many common species in 817 

mountains are lacking even basic biological and ecological knowledge (e.g. Alpine Accentor, White-winged 818 

Snowfinch, Twite, Wallcreeper, North American rosy finches Leucostiche spp). Whilst both high-elevation 819 

mountain specialists and mountain generalist are well-represented in the literature in terms of large-scale 820 

distribution studies (e.g. species distribution models based on atlas data), they are very poorly represented 821 

when considering finer-scale, usually more intensive, studies which address ecological mechanisms. In 822 

particular, there were very few studies that investigated the ecology of high-elevation mountain specialists, 823 

yet these are the species that may be most likely to be impacted by climate change. Aside from broad-scale 824 

species distribution, the evidence base therefore largely concerns species that occur across a range of 825 

habitats and elevations, rather than species whose geographical range, at least in the Holarctic, is largely 826 

restricted to mountain areas. 827 
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Our understanding of physiological mechanisms underpinning avian responses to climate change is 828 

still limited, even if recent studies have emphasized the importance of specifying ecological traits, notably 829 

physiological tolerance, when predicting responses to climate change (Kearney & Porter 2009, Reif & Flousek 830 

2012, Auer & King 2014, Pacifici et al. 2017). This is particularly important in terms of developing 831 

conservation strategies. If a species responds directly to climate through a physiological effect, then there 832 

might be limited conservation action that could implemented beyond the need to reduce our dependence 833 

on non-renewable fossil energy sources. There is more potential for developing conservation actions for 834 

species that are affected indirectly by climate change, although for mountain birds, we still lack information 835 

about species’ basic ecological requirements, such as key trophic resources for reproduction, that are 836 

required to develop management strategies. We therefore emphasize the need for more basic studies of 837 

both physiological tolerance and ecological requirements of mountain birds, and in particular high-elevation 838 

mountain specialists, as well as for all those lower-elevation species that are predicted to colonize mountain 839 

regions in the near future (Loarie et al. 2009).  840 

The importance of considering cross-ecosystem linkages such as trophic structure when identifying 841 

climate change effects has been shown to be crucial for a clear understanding of the underlying mechanisms 842 

affecting species and populations (Pearce-Higgins et al. 2010, Santisteban et al. 2012, Fletcher et al. 2013). 843 

Furthermore, a better understanding of energetic values in food sources (prey) and how these influence 844 

demographic rates in species is particularly important for future climate-related adaptation responses. There 845 

were relatively few studies that considered long-term trends over several years that could encompass a full 846 

range of climate variation, and hence assess climate trends (rather than year-to-year changes in weather 847 

over shorter periods). The low number of studies assessing elevational distribution shifts in particular 848 

suggests that monitoring in high mountains is inadequate, probably due to a combination of complex terrain 849 

and lack of field surveyors available in these sparsely populated areas. Targeted monitoring in mountain 850 

areas, with a focus on high-elevation mountain specialists, is therefore essential if we are to improve our 851 

assessments of current and future climatic effects on bird distributions.  852 
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Monitoring reproductive success and survival of mountain birds would be similarly useful. The 853 

demographic mechanisms that underpin species distributions and population changes are not well 854 

understood for mountain birds. There have been some short-term effects of climate demonstrated in several 855 

species, but longer-term studies are rare. More intensive long-term studies would enhance understanding of 856 

the key factors that determine population trends and distributions, and therefore would facilitate the 857 

predictions of future climate change impacts by elucidating more complex mechanisms, such as phenological 858 

effects. Many studies acknowledge that a valuable understanding of climatic impacts can only be achieved if 859 

key interacting factors are considered, such as land-use changes and biotic interactions, including 860 

interspecific competition. Given that projections of future mountain bird species distributions may be quite 861 

sensitive to assumptions about how land use will change in the future (e.g. Chamberlain et al. 2013), we urge 862 

a greater consideration of land use change in species distribution modelling in mountain environments. 863 

Finally, we invite scientists and policy-makers to further develop studies and related frameworks to 864 

efficiently develop habitat restoration plans in mountain areas, particularly where climate change and 865 

changes in land-use are likely to offer such opportunities in the near future (i.e. encroaching pastures after 866 

grazing/ski-pistes abandonment, afforestation of native woodland on moorlands). Indeed, conservation and 867 

restoration frameworks have already been developed for various birds species inhabiting mountain regions 868 

considered susceptible to changes in climate and land use (e.g. Caroll et al. 2011, Patthey et al. 2012, 869 

Signorell et al. 2010, Braunisch et al. 2016, Caprio et al. 2016, Scridel et al. 2017b).      870 
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Figure 1. Mountains systems classified by Kapos et al. (2000) and adapted to the Holarctic region (above the Tropic of 

Cancer – grey line). The upper three classes (‘CL ’) are delimited purely by elevation (≥ 2500m). Areas below 2500m 

were classified additionally in terms of slope, terrain roughness and local elevation range (LER).  
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Geographical region Frequency 

Eastern European countries (Poland, Czech Rep., Russia) 6 

Western European countries (France, Germany) 6 

Spain 8 

UK/Ireland uplands 24 

Nordic countries (Denmark, Finland, Iceland, Norway, Sweden & Iceland) 27 

Alps & Pyrenees (Switzerland, France, Italy, Spain, Germany, Austria, Slovenia) 44 

Pan-European 12 

Total European studies 127 

  
Greenland 4 

Pacific North West Coastal Mtns (Alaska, Yukon, British Columbia Coast Mtns, Hudson Bay Mnts, Cascades) 18 

South West Coastal ranges (California, Sierra Nevada, New Mexico) 7 

Continental Ranges (Rocky Mnts, Colorado, Arizona, Montana, Dakota, Wyoming)  23 

Appalachian Mtns (incl. NY State) 11 

N. America wide region (Canada, USA also in combination) 12 

Total N. America studies 75 

 
 

China 5 

Asia 2 

Total Asian studies 7 

 
  

Global or nearly global 26 

   

All studies 209 

Table 1. Frequency of studies of Holarctic mountain birds and climate change resulting from the systematic literature search across various 

regions and countries of the world. Reviews/commentaries and meta-analyses (n = 25) were excluded. 
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Figure 2. Frequency of relevant published papers and reviews over time resulting from the systematic 

literature search. 
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Figure 3. Frequency of climate-change related studies on Holarctic mountain birds (mutually inclusive) resulting from the 

systematic literature search, classified according to general subjects addressed. 
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Figure 4. Number of conservation (mutually inclusive) actions suggested across all papers classified as ‘conservation & 

policy’ (n = 26) in the systematic literature search. 
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Table 2.  A summary of papers considering shifts in the elevation of bird species distributions in mountains over time. Papers were included if they were based 
on data carried out at relatively small scales (maximum 1-km2) and which were wholly or partly in mountainous regions (as per Kapos et al. 2000). MA indicates 
whether a given study was included in the meta-analysis (Y) or not (N). 

1 Included as the majority of the area of Switzerland is classed as mountainous by Kapos et al. (2000) 
2 Annual temperature – others are spring temperatures 
3 Passerines and five other families (Odontrophoridae, Phasianidae, Columbidae, Trochilidae and Picidae) 

Author Location Species Sampling 
unit 

Period Temperature 
change 
(°c/year) 

Elevation 
range (m) 

MA Key findings 

Archaux 2004 French Alps All Point 
count 

1973-2002 0.05 350-3099 Y 41 site/species comparisons: 6 showed significant 
downwards shifts, 4 significant upwards shifts 
 

DeLuca & King 2017 Appalachian 
Mountains, USA 

All Point 

count 

1993-2009 0.01
2
 740-1470 Y 9 of 16 low-elevation species shifted upwards; 9 of 11 

high-elevation species shifted downwards 
 

Maggini et al. 2011 Switzerland
1
 All 1-km

2
 1999/2002 - 

2004/07 
0.09

2
 210-2710 N 95 species: 33 species shifted upwards, 28 shifted 

downwards 
 

Mizel et al. 2016 Denali National Park, 
Alaska 

Passerines Point 

count 

1995-2013 0.04 500-1200 Y Upwards shifts associated with shrub/tundra-nesting 
species; weaker evidence of upward shifts in forest 
species 
 

Pernollet et al. 2015 Swiss Alps Ptarmigan 1-km
2
 1984 - 2012 0.1 1700-3100 Y Mean elevation of Ptarmigan presence shifted 

upwards in 3 of 4 regions 
 

Popy et al. 2010 Italian Alps All 1-km
2
 1992/94 - 

2003/05 
0.08 550-2556 Y Weak overall upwards community shift; wide variation 

in the response of individual species 
 

Reif & Flousek 2012 Giant Mountains, 
Czech Republic 

All Point 

count 

1986/88 - 
1996/98 

0.12 400-1602 Y Significant overall mean shifts to higher elevations; 
open-habitat shifted more than forest species 
 

Rocchia 2016 Italian Alps All Point 

count 

1982 - 2012 NA 600-4000 N Woodland species tended to show range expansion, 
higher-elevation grassland species range retraction; 
regional variation 
 

Tingley et al. 2012 Sierra Nevada, USA All
3
 Point 

count 

1911/28 - 
2003/09 

NA 61-3356 N Shifts were heterogeneous within species and among 
regions; both temperature and precipitation likely to 
be important drivers 
 

Tryjanowski et al. 2005 Tatra Mountains, 
Poland 

White Stork Nest 
location 

1974 - 2003 0.08 400-900 Y White Storks nested at progressively higher elevations. 


