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Abstract 

It is becoming well established that the gut microbiome has a profound impact on 

human health and disease.  In this review, we explore how steroids can influence the 

gut microbiota, and in turn how the gut microbiota can influence hormone levels.  Within 

the context of the gut microbiome-brain axis, we discuss how perturbations in the gut 

microbiota can alter the stress axis and behavior.  In addition, human studies on the 

possible role of gut microbiota in depression and anxiety are examined.  Finally, we 

present some of the challenges and important questions that need to be addressed by 

future research in this exciting new area at the intersection of steroids, stress, gut-brain 

axis and human health.     

 

Introduction  

Within each human gastrointestinal tract there is an exclusive combination of 

different communities of organisms, including bacteria, viruses, archaea, protozoa and 

fungi, which are collectively referred to as the gut microbiota and outnumber the total 

amount of human cells in the human body (1). The collection of these microorganisms, 

their genomes and the factors they produce are all part of the gut microbiome (2).  

Increasing evidence suggests that these microorganisms actively participate in shaping 

and maintaining our physiology almost as an extra organ (3).  

Gut microbiota composition is associated with many health benefits, including 

maintenance of intestinal homoeostasis, protection against pathogens, and appropriate 

immune responses (4, 5). Conversely, many gastrointestinal disorders such as irritable 

bowel syndrome and inflammatory bowel disease (6) are associated with an imbalance 
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in this microbial population. Furthermore, differences in diversity and composition of the 

microbiota have been linked to extra-intestinal diseases ranging from obesity (7) and 

asthma (8) to a variety of brain disorders (3, 9-14).  The gut microbiota helps break 

down food, and in doing so produces metabolites that can directly influence the 

physiology of host cells, including brain cells. Moreover, immune responses to 

pathogenic bacteria produce cytokines and lymphokines that can affect brain physiology 

(15). As the nervous system is a master regulator of host function, this allows microbes 

to influence a broad range of complex physiological processes. An improved 

mechanistic understanding of how bacterial molecules act on the nervous system could 

yield improved therapeutics for treating behavioral and neurological disorders (16).   

The human gut microbiota is usually stable and resilient to transient perturbations 

(17). However, microbial composition or activity of the gut can be modified by variety of 

factors, including internal factors such as hormonal changes, or external factors such as 

diet, antibiotics, and stress (3, 18).  In this review, the influence of steroids and stress 

on the gut microbiome-brain axis will be discussed, as well as the challenges that face 

future research in this area.     

 

Steroid hormones influence the gut microbiota 

There is mounting evidence that steroid hormones can affect the gut microbiota.  

In support of steroids influencing the gut bacterial communities, sex differences have 

been noted in the composition of the gut microbiota with specific phyla, family and 

genera variances occurring with clear effects of gonadectomy and hormone 

replacement on gut bacteria in rodents (19-21).  In mice, sex differences in the gut 
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microbiota observed between males and females are decreased after castration, 

indicating a role for gonadal steroids in modulating the gut microbiota (22).  

Administering testosterone propionate (1250 μg) to female rats on the day of birth 

decreased the diversity of the gut microbiota in adulthood by increasing the Firmicutes-

to-Bacteroidetes ratio (23).  In adult rats, ovariectomy caused shifts in the relative 

abundances of two major phyla, Bacteroidetes and Firmicutes (23).  In this study (23), 

the authors found that hormonal changes (either early androgenization or ovariectomy) 

were more impactful on the gut microbiota than the nutritional changes of switching to a 

high fat diet. Another study using female ERβ knock out mice found that ERβ influences 

the gut microbiota in a diet-specific manner (24).  When mice were switched from a diet 

containing estrogenic isoflavones to one lacking isoflavones, the major phyla including 

Proteobacteria, Bacteroidetes and Firmicutes differed dependent on ERβ status (24).  

However, it is important to note that ERβ knock-out mice have reduced ovarian function 

(25, 26), which could have contributed to some of the alterations in the gut microbiota 

that were detected.  Finally, in rats bred based on their running capacity, ovariectomy 

alters gut microbes compared to sham controls more in rats with low running capacity 

that in those with high running capacity, which the authors link to a potential role for gut 

microbiota in protecting individuals with increased aerobic capacity to the 

cardiometabolic risks associated with menopause (27).      

Sex differences in the gut microbiota have been reported in humans as well.  For 

example, men have higher levels of Bacteroidetes and Prevotella than women (28, 29), 

suggesting a role for sex factors such as differential sex chromosomal gene expression 

or differences in gonadal hormone levels in the modulation of the gut microbiota.  
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However, it should be noted that more recent metagenomic studies have found mixed 

results with respect to sex differences in microbiota in humans.  Some studies report 

modest to no effects of sex on the human gut microbiota (30, 31), while other findings 

reveal substantial sex differences (32).  Other studies suggest that steroids influence 

the gut microbial communities.  For example, the gut microbiota undergoes profound 

changes during pregnancy in women (33).  The authors found a large shift in the gut 

microbiota from the first to third trimester, with an increase in overall diversity and a 

proliferation of Proteobacteria and Actinobacteria, resulting in changes in metabolism 

(33).  While the dramatic shift in steroid hormones (e.g. estrogens and progestins) could 

very well contribute directly to these changes in the gut microbiota, the authors also 

suggest that changes in the immune system at the mucosal surfaces could alter the 

microbiota (33).   

While gonadal steroids can alter the gut microbiota, it appears that, in turn, the 

gut microbiome can influence hormone levels (34).  In postmenopausal women, gut 

microbiota diversity was positively associated with the ratio of estrogen metabolites in 

urine (35, 36).  In mice, transferring the gut microbiota of adult males to immature 

females caused an elevation in testosterone levels and metabolomic changes in 

recipient females (37).  In addition, transfer of gut microbiota from male non-obese 

diabetic (NOD) mouse model of type 1 diabetes (T1D) to the female NOD T1D mice led 

to increased testosterone, metabolic changes, and protection against type 1 diabetes, 

which usually shows a strong female-to-male sex bias (37). These studies highlight the 

reciprocal connections between sex hormones and gut microbiota.  Taken together, 
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these studies provide strong evidence that the gut microbiota is influenced by gonadal 

steroid hormones and steroid levels can be altered by the gut microbiome.   

In addition to gonadal steroid hormones influencing the gut microbiota, there is 

evidence that some endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) 

or ethinyl-estradiol (EE), may alter the gut bacterial composition. BPA, which binds to 

estrogen receptors, is classified both as an EDC and as a metabolism-disrupting 

compound (MDC) that can cause obesity (38). EE, which is present in birth control pills, 

is secreted in urine and can accumulate in regenerated drinkable water. EDCs and 

MDCs exert their effects on peripheral organs and the central nervous system 

throughout life, but can be particularly dangerous during the critical period when they 

can have permanent deleterious effects that may drive a variety of diseases in 

adulthood (38).  In a recent study (39), California mice, which are biparental, were fed 

diets containing BPA, EE, or a control diet around conception through weening to study 

their effects on the gut microbiota in parents and their offspring. The gut microbiota 

differed in both males and females of the parental generation exposed to BPA or EE 

compared to non-exposed controls. Similar effects were observed in the offspring that 

were exposed indirectly to EDCs through the placental exchanges and milk of their 

mothers (39).  Presumably, EDCs may affect the gut microbiota partly by disrupting the 

endocrine equilibrium of animals and perhaps also by directly acting on the gut 

microbiota. 
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The Gut Microbiome-Brain Axis 

The communication between the gut microbiome and the central nervous system 

(CNS) occurs in a bidirectional fashion and is referred to as the gut microbiome-brain 

axis (Figure 1) (9, 11, 40, 41). This axis includes immune, neural, endocrine and 

metabolic pathways (42-45), which work together to permit each end organ to 

communicate and influence the functioning of the other. The enteric nervous system 

(ENS), and the sympathetic and parasympathetic divisions of the autonomic nervous 

system, play major roles in the communication within this axis (44, 46, 47). Changes to 

the microbial environment, due to different stressors, are associated with changes to gut 

barrier, motility, and immune system activation. Conversely, perturbation of this axis 

results in alterations in the stress-response and behavior, which have been proposed to 

be involved in several CNS diseases such as anxiety (48, 49), depression (50, 51), 

autism (52, 53), Parkinson’s disease (54, 55), Alzheimer’s disease (56), and 

stroke/brain injury (57).  

In the case of autism, there are several independent lines of evidence indicating 

that the gut microbiota is a factor. Compared with neurotypical controls, children with 

autism show an increase in Clostridium, Bacteroidetes, and Lactobacillus species, 

whereas Firmicutes species are higher in neurotypical controls (58-60). Moreover, 

treatment with the antibiotic vancomycin, which is poorly absorbed and therefore 

preferentially affects the gut microbiota, improves autism symptoms (61). Autism has 

been associated with reduced levels of short chain fatty acids, including acetate, 

propionate, and valerate, which indicates poorer fermentation of carbohydrates, 

presumably due to a relative absence of beneficial bacteria (60).  In addition, there is a 
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correlation between the severity of autism and gastrointestinal symptoms (62). Studies 

using a variety of mouse models of autism support the concept that the gut microbiota is 

involved in autism (63, 64).  However, in the clinical studies above, it should be noted 

that causality is difficult to prove given that children with autism often have different 

eating habits than neurotypical children.  

 As reported in clinical studies, Parkinson's Disease (PD) is accompanied by 

dysbiosis of the gut microbiome, resulting in altered levels of microbes (e.g. 

Bifidobacteriaceae, Christensenellaceae, Lachnospiraceae, Lactobacillaceae, 

Pasteurellaceae and Verrucomicrobiaceae families) (65) and concentrations of short 

chain fatty acids (66). Animal models of PD support these findings and have enabled 

functional manipulation of the gut microbiota.  For example, mice that overexpress α-

synuclein reveal that bacteria within the gut regulate motor deficits and 

neuroinflammation (67).  Indeed, antibiotic treatment ameliorates, while microbial 

colonization with microbiota from PD patients promotes, the neurological phenotype in 

these mice (67).  These clinical and basic studies suggest that the gut microbiota has 

an important role in the physical impairments associated with PD.   

In regard to Alzheimer's Disease (AD), a clinical study investigating the role of 

gut microbiota in AD pathogenesis reveals that cognitively impaired patients with brain 

amyloidosis, compared to controls, have lower levels of the anti-inflammatory 

Eubacterium rectale and an increase in the pro-inflammatory Escherichia/Shigella (68). 

In support of these clinical findings, altered gut microbiota have been observed in a 

variety of mouse models of AD (69-71).  Furthermore, in an APPSWE/PS1∆E9 mouse 

model of AD, changes in the gut microbiota by long-term antibiotic treatment decreases 
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amyloid-beta plaque formation (69).  Germ-free APP transgenic mice have decreased 

amyloid-beta pathology compared to control mice (70).  Moreover, colonization of these 

germ-free APP mice with the microbiota of conventionally-raised APP mice increased 

amyloid-beta levels (70).  These findings suggest that dysbiosis of the gut microbiota 

can contribute to AD pathology and manipulation of the gut microbial community may 

offer therapeutic opportunities for AD treatment.      

There are several mechanisms by which the gut microbiome influences brain 

function and these work in concert with reciprocal signaling from the brain (72). For 

example, gut bacteria may influence central neurotransmitters by altering systemic 

levels of precursors of neurotransmitters (73). Moreover, neurotransmitters such as 

serotonin, which is involved in pain transmission and affect, can be produced by 

Candida, Streptococcus and Enterococcus spp. (74-77). Lactobacillus and 

Bifidobacterium species have been shown to synthesize and release gamma-

aminobutyric acid (GABA) while Bacillus and Saccharomyces species can produce 

norepinephrine (54). These microbially synthesized neurotransmitters can act locally 

and also cross the mucosal layer of the gut to influence systems in the periphery and 

potentially the CNS. It has been proposed that serotonergic enterochromaffin cells in 

the gut epithelium act as chemosensors and transduce chemosensory information to 

the nervous system (78). In future studies, it will be important to determine if these 

serotonergic cells function in disorders, such as depression, within the gut microbiome-

brain axis.   

The gut microbiota also produce active mediators including short chain fatty 

acids (79, 80), which can inhibit histone deacetylases and lead to epigenetic changes 
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(81, 82). These substances also use the vagal nerve to signal the brain and influence 

behavior and other centrally mediated functions, such as the stress response (83). 

Indeed, studies show that modulation of the gut microbiome can impact on the 

development of the stress system (84) as well as reducing stress levels (85).   

Similar conditions that alter the composition and diversity of the gut microbiota 

can result in changes in metabolites that influence signaling systems.  The chemical 

signals generated by these bacteria, may also alter the accessibility of these signals to 

the periphery and the brain, e.g. by altering the lining of the gut. In close association 

with the gut microbiota is the intestinal epithelium, which acts as a physical barrier that 

protects against luminal contents as well as being involved with the development and 

maintenance of the mucosal immune system (86). Dysregulation within the epithelial 

layer can increase its permeability, thereby disrupting intestinal immune homeostasis 

(87). A disruption of the gut barrier, sometimes referred to as “leaky gut”, allows 

microbial products and viable bacteria to translocate from the intestinal lumen (88). A 

compromised gut barrier is associated with consequences beyond the gastrointestinal 

tract including an altered blood brain barrier (89) and alcohol dependence (90).  

 

The Gut Microbiota and Depression & Anxiety 

Disorders of the CNS, such as depression and anxiety, are highly debilitating and 

can profoundly impact quality of life (91).  Over-activity of the main stress axis, the 

hypothalamic-pituitary-adrenal (HPA) axis, is characterized by elevated levels of cortisol 

and disruption of negative feedback and is commonly associated with depression (92). 

Interestingly, activity of the HPA axis can be impacted by the gut microbiota. Germ-free 
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raised BALB/c mice show an exaggerated HPA axis stress response compared to mice 

raised under specific pathogen-free (SPF) conditions, which have a microbiota that 

lacks specific pathogenic microbes. The HPA axis stress response can be normalized in 

adulthood by colonizing the gut with Bifidobacterium infantis (78), while reconstitution 

with the enteropathogenic Escherichia coli heightened the stress response even further 

(84).  

In addition to these acute effects of the gut microbiota on brain function, 

microbiota also seem to have programming effects. If BALB/c mice are exposed to 

feces from SPF mice early in life (6 weeks of age), the previously germ-free mice show 

a normal stress response, whereas those reconstituted as adults (≥8 weeks) do not 

(84). Germ-free mice of the NMRI strain also show reduced anxiety-related behavior, 

and conventionalizing them (i.e., exposing them to feces of conventionally colonized or 

SPF mice) at birth, but not in adulthood, normalizes this behavior (93).  These findings 

suggest that microbiota influence brain development as well.  Indeed, a recent study 

found that Germ-free Swiss Webster mice were less sociable and did not show the 

typical preference for investigating novel mice found in conventionally colonized mice 

(3). Conventionally colonizing these mice at day 21 only partially normalized their 

behavior (3), suggesting that gut microbiota must be present even earlier for normal 

social behavior. 

Reduced anxiety and depressive-like behaviors, as well as changes in the 

GABAergic system, were seen following treatment of mice with Lactobacillus 

rhamnosus (JB-1) (83). Interestingly, these behavioral and neurochemical changes do 

not occur following vagotomy, indicating that the vagus nerve is a key route of 
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communication between probiotic bacteria and the brain (83). A recent study has shown 

that fecal microbiota transplantation from depressed patients (characterised by 

decreased microbial richness and diversity) to antibiotics-treated recipient animals 

induces a depressive-like phenotype in the recipient animals compared to the control 

recipient group (51).  

The maternally separated rat model is a model of depression that has been used 

to demonstrate the role of the gut microbiota in stress-related disorders (94). Maternally 

separated rats present with behaviours indicative of depression and anxiety, had 

increased systemic immune response and dysbiosis of the fecal microbiota when 

compared with non-separated controls (94). Furthermore, maternal separation reduced 

swimming and increased time spent immobile in the forced swim test, induced changes 

in central neurotransmitters and enhanced peripheral IL-6 release (73). However, 

treatment with the probiotic Bifidobacterium infantis reverses these behavioral changes 

and restores the immune system response and the basal noradrenaline concentrations 

in the brainstem of rats undergoing maternal separation (73). Lactobacillus plantarum 

treatment of mice exposed to early life stress ameliorated anxiety- and depression-like 

behaviors, balanced the immune response, and modulated neurotransmitters related to 

affective disorders (95).  Altered HPA axis activity and gut physiology are retained in 

germ-free mice that are subjected to maternal separation, while both anxiety- and 

depression-like behaviors are not (96). Interestingly, the behavioral phenotype is re-

established when germ-free mice are colonised in adulthood with the gut microbiota 

from non-maternally separated control mice, but not the gut microbiota of maternally 
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separated animals.  These findings suggest a convergence of microbial and host factors 

(96).  

Bilateral olfactory bulbectomy in mice induces depression- and anxiety-like 

behaviors in mice, which are associated with increased immediate early gene 

expression, serotonin levels, gut motility and alterations in intestinal microbiota profiles 

(97). Given that similar changes in behaviors, motility and microbiota composition were 

also induced via central corticotropin-releasing hormone administration, the authors 

suggest that the altered HPA axis activity functions in this model (97). Both 

manipulations show the impact of the brain on microbiota composition and indicate that 

the gut microbiome-brain axis is a two-way street. 

While much of the evidence on the role of gut microbiota in stress-related 

disorders is from animal models and other basic research studies, findings from recent 

human studies are coming to the forefront. The analysis of fecal samples from patients 

with depression reveals differences in alpha diversity and levels of specific gut bacterial 

taxa compared to controls (98). In particular, levels of Bacteroidetes, Proteobacteria, 

and Actinobacteria were increased, whereas Firmicutes were reduced, in samples from 

depressed patients compared to controls (98). Another study indicates that depression 

is associated with increased levels of Enterobacteriaceae and Alistipes, but a reduction 

of Faecalibacterium. In contrast, Naseribafrouei and colleagues (99) reported no 

differences in species richness or diversity between depressed patients and controls. 

However, this same study did find a general underrepresentation of Bacteroidetes in 

depressed patients and a significant interaction between the genus Alistipes and 

Oscillibacter with depression (99).  
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Steenbergen and colleagues (100) showed that a multispecies probiotic reduced 

negative thoughts associated with sad mood, which the authors suggest supports the 

concept of probiotics intervention as a preventive approach for depression (100). 

Patients affected by chronic fatigue syndrome often suffer from anxiety and depression 

(101). Rao and colleagues (102) found that treating these patients with Lactobacillus 

casei strain Shirota caused an increase in Lactobacillus and Bifidobacteria spp. and a 

decrease in anxiety symptoms. The authors suggest that the improvement seen in the 

stress-related symptoms is a result of improved gut physiology by the Lactobacillus 

casei strain Shirota (102).  

Future Directions 

Given the mounting evidence of the effects of the gut microbiome on brain 

function, future research may be targeted to finding efficient ways of promoting a 

healthy microbiota, e.g., by identifying pre- and probiotics that produce relatively stable 

changes in the microbiota. Conversely, identifying dietary habits and food additives that 

negatively impact the brain will be just as important. Diet has profound effects on the 

structure and activity of gut microorganisms (103-107).  For example, a diet rich in fats 

promotes the growth of the proinflammatory gram-negative microorganisms, which in 

turn can alter immune homeostasis (108, 109). In addition, the gut microbiota of obese 

individuals has higher percentages of energy-efficient bacteria than that of lean 

individuals (110-113).  As changes in diet affect the gut microbiota, these changes may 

also influence brain and behavior. For example, a recent study focused on the negative 

effects of emulsifiers (common additives in foods such as peanut butter, mayonnaise, 

salad dressings, bread, ice cream, and many other processed foods) on gut microbiota.  
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Addition of emulsifiers to the diet of mice induced systemic inflammation, metabolic 

syndrome, and obesity (114). These emulsifier-induced effects appear to occur by 

compromising the mucus lining of the gut, allowing gut microbiota to encroach on the 

epithelium, and altering the species composition of the gut microbiota, thereby 

increasing its pro-inflammatory potential. Physiological effects were absent in germ-free 

mice fed emulsifiers, suggesting that the microbiota probably mediates these effects 

(114). Preliminary results suggest that the same emulsifiers also increase anxiety-

related behaviors and brain neuropeptide systems involved in these behaviors (M.K. 

Holder, B. Chassaing, N.V. Peters, J. Whylings, A. Gewirtz, and G.J. deVries, 

preliminary observations.).  

 Adding factors to the diet that promote a healthy microbiota, and avoiding factors 

that do the opposite, appear to be the most direct way to promote brain health.  

However, as indicated in this review, the gut microbiota is influenced by a variety of 

factors, including hormones and the activity of the gut microbiome-brain axis.  

Identifying the links between the gut microbiome and brain is clinically important and 

may provide insight into the etiology of behavioral disorders discussed above that have 

an important social component (62).  

Understanding the role of the gut microbiome in human health presents a 

number of challenges.  While germ-free mice have been very effective in studying the 

gut microbiome, they have their limitations and caveats as discussed above, including 

alterations in blood-brain barrier, neuroanatomy, stress response, and behavior (84, 93, 

96).  Good animal models are essential to study causal links and identify potential 

targets for therapeutic interventions.  However, it is critical to move beyond strictly 
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correlational studies in animal studies that reveal changes in the gut microbiota under 

different conditions.  In the future, more functional studies that manipulate the gut 

microbiota in specific and directed ways will serve to move the field forward.  To achieve 

this more specific manipulation of the gut microbiota, the use of bacteriophage therapy 

has been proposed (115).  Bioengineered phages may be able to provide targeted 

infection and lysis of bacteria in the gut, and thus offer therapeutic options and a much 

more complete understanding of the gut microbiome-brain axis.  In addition, the 

isolation and growing in culture of specific anaerobic microbes will enable essential add-

back experiments in animal models and provide important tools for treating human 

disease in the future.  Given the profound effects of the endocrine system on human 

health, it will be critical to gain a better understanding of how hormones influence the 

gut microbiome-brain axis.  For example, it will be essential to determine how age-

related changes in estrogen and androgen levels affect the gut microbiota and the 

impact on vulnerability to disease.  In addition, due to the interesting sexually dimorphic 

relationship between the gut microbiome and steroid hormones coming from peripheral 

glands (e.g., testis, ovary and adrenal glands), it will be important in the future to study 

the role of neuroactive steroids (i.e. steroids directly synthesized and/or metabolized in 

the nervous system) in the gut-brain axis. Indeed, in this context it is important to 

highlight that neuroactive steroids represent important physiological regulators of the 

nervous system and that their levels are differentially affected in the two sexes by 

nervous pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington’s 

disease, multiple sclerosis, traumatic brain injury, spinal cord injury, stroke, diabetic 

encephalopathy, autism, anxiety and depression (116, 117). Moreover, neuroactive 
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steroids play an important role in neuroinflammatory processes in the brain, which in 

turn modulate behavioral states (118-120). As these neuroinflammatory processes are 

responsive to peripheral immune activation, e.g., by gut dysbiosis, these molecules may 

play an important integrative role in the gut microbiome-brain axis.  

 

Figure Legends 

Figure 1. The gut microbiome-brain axis.  

The gut microbiome (which consists of the microbiota, their genomes and their 

products) can influence brain function through a variety of mechanisms, including the 

production of neurotransmitters and short chain fatty acids (SCFAs), the modulation of 

the release of cytokines by immune cells and the vagus nerve.  Conversely, the brain 

can influence the gut microbiota via regulation of endocrine systems (e.g. HPA and 

HPG axes).  
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