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Theoretical Study of Charge-Transfer Processes at

Finite Temperature using a novel Thermal

Schrödinger Equation

Raffaele Borrellia

aUniversity of Torino, DISAFA, I-10095 Grugliasco, Italy.

Abstract

Quantum dynamics of electron transfer (ET) between redox pairs at finite
temperature is described using an approach based on Thermo-Field Dy-
namics theory. This formulation treats temperature effects in the Hilbert
space without introducing the Liouville space. The solution of Thermo-
Field Dynamics equations with a novel technique for the propagation of
Tensor Trains is implemented and discussed. The methodology is applied
to the study of the electron-transfer process between the cofactors in the
bacterial reaction center, and the results are compared with the second or-
der cumulant approach, showing that the latter can reproduce both short-
and long-time dynamics of the electron-transfer process.

1. Introduction

Unravelling the complex dynamics that results from the interplay of
electronic and nuclear motion in charge-transfer processes is a fundamen-
tal task of modern chemical physics,[1] not only for improving the basic
knowledge of these reactions, but also for guiding technological advances.
Amongst others, the dynamics of charge-transfer reactions controls the effi-
ciency of solar energy conversion, which is a cornerstone of modern scientific
research.[2] However, the impossibility to properly simulate the evolution of
quantum systems with many degrees of freedom at finite temperature often
hampers a proper understanding of these processes.
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In the actual scenario two different classes of methodologies for the study
of quantum dynamics of complex systems are prominent, namely direct
density matrix propagation in the Liouville space, and wave-function prop-
agation in the Hilbert space of the system. While both have their own
advantages and disadvantages, their main difference lies in the capability
to deal with finite temperature effects, which is fundamental for realistic
simulations of chemico-physical processes.

Hierarchical equations of motion (HEOM)[3, 4, 5], together with the
quasi-adiabatic path integral (QUAPI) [6], are powerful numerical method-
ologies for studying quantum dynamics of large molecular assemblies, both
implementing a direct propagation of the reduced density matrix. However,
they become numerically demanding for low temperature simulations[7],
and when the Hilbert space of the system is very large.[8, 9, 7, 10, 11, 12, 4]
Several approximate methods based on density matrix formalism are also
available, but often with a limited range of validity.[13, 14, 15, 16, 17, 18, 19]
Numerically accurate evolution of the large systems has also been described
by the density matrix renormalization group (DMRG) methodology, and
the associated time-evolution algorithms.[20, 21] Wave function propaga-
tion methods employing a basis set representation, such as the multicon-
figuration time-dependent Hartree (MCTDH) method and its multilayer
extension (ML-MCTDH),[22, 23, 24] Gaussian based MCTDH and other
basis set methods,[25, 26, 27, 28, 29] are powerful tools at very low temper-
ature, but become unhandy in high temperature cases, as their application
requires a statistical sampling of the initial conditions.[30, 31? ] On the
other hand, basis set methods are very versatile, and capable of handling a
large variety of Hamiltonian operators.[32, 33]

Very recently Borrelli and Gelin [34, 35, 36] have developed a theoretical
methodology based on Thermo Field Dynamics (TFD) theory[37, 38] that
combines an accurate description of quantum dynamics at finite temper-
ature with the flexibility of a basis set representation.[34] The theoretical
framework of TFD is combined with a special representation of the wave
function based on Tensor Trains (TT), henceforth the methodology will be
refered to as TFD-TT. This technique has already been successfully ap-
plied to describe population dynamics in several spin-boson model systems,
and energy transfer in the Fenna-Mathews-Olsen complex.[35] The same

approach has been implemented within the Davydov ansatz the-

ory and successful applications to polaron problems have been re-

ported.[39] Here we apply the technique to the study of electron-transfer
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(ET) processes. We will first present a brief review of the TFD formal-
ism and of the computational approach used to solve the time-dependent
Schrödinger equation, and then show how it is possible to describe ET dy-
namics in a two-state model system that includes all the intra-molecular
vibrational degrees of freedom including temperature effects. Finally we
will use exact TFD-TT results to assess the validity of a recently developed
approach to describe ET dynamics based on the second-order cumulant
expansions.[40, 15]

2. Theoretical Methodology

2.1. Thermo-Field Dynamics approach

The methodology has already been presented in detail elsewhere,[34, 36]
and here we will only outline its formal structure and properties. Quantum
dynamical studies of chemico-physical processes consist in the evaluation of
the average of a properly chosen observable, A

〈A(t)〉 = Tr{A(t)ρ(0)}

where ρ(0) is the initial density matrix of the system, and A(t) = eiHtAe−iHt

is the Heisenberg representation of the operator A, H being the system
Hamiltonian. Here, the trace operation implies a weighted sum over all
the thermally accessible states. In molecular systems the effect of a finite
temperature is almost always to create a thermal population of excited
vibrational states, while only one electronic state of the entire system,

∣

∣e
〉

,
is tangibly populated. Within the validity of this condition we can safely
employ the approximation

ρ(0) = Z−1e−βH ≈ |e〉〈e|ρvib. (1)

Here Z is the proper partition function and ρvib is the equilibrium Boltz-
mann distribution of the vibrational degrees of freedom, which, in the
present work, is described using harmonic approximation, and β = 1/kBT ,
where T is the temperature of system and kB the Boltzmann constant.
Consequently, the trace operation involves only a summation over a ther-
mal distribution of vibrational states,

∣

∣n1n2...
〉

〈A(t)〉 = Z−1
〈

e
∣

∣

∑

n1n2...

〈

n1n2...
∣

∣A(t)e−β
∑

k
ωkaka

†
k

∣

∣n1n2...
〉
∣

∣e
〉

(2)
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where a†k, (ak) are the creation (destruction) operators of the k-th bosonic
degree of freedom with frequency ωk, and the cyclic invariance of the trace
operation has been used for the symmetrization. Following the Thermo
Field Dynamics approach[37] the above trace can be evaluated by intro-
ducing a set of auxiliary boson operators ã†k, ãk and their corresponding
occupation number states

∣

∣ñ1ñ2...
〉

, and rewriting the summation as

〈A(t)〉 = Z−1
〈

e
∣

∣

∑

n

〈

ñ1ñ2...
∣

∣

〈

n1n2...
∣

∣A(t)e−β
∑

k
ωkaka

†
k

∣

∣n1n2...
〉
∣

∣ñ1ñ2...
〉
∣

∣e
〉

.

(3)
The introduction of the dummy tilde variables does not modify the expec-
tation value since A(t) is independent of them, and the states

∣

∣ñ
〉

form a
complete orthonormal set. We notice that in the above summation the nu-
merical values of {nk} and {ñk} are identical. After a series of mathematical
manipulations it is possible to rewrite the expectation value 3 as[41]

〈A(t)〉 =
〈

e
∣

∣

〈

0(β)
∣

∣A(t)
∣

∣0(β)
〉
∣

∣e
〉

= 〈e|〈0|eiGA(t)e−iG|0〉|e〉. (4)

where we have defined the so-called thermal vacuum state as

∣

∣0(β)
〉

= Z−1/2 exp(
∑

k

e−βωk/2a†kã
†
k)
∣

∣0
〉

= e−iG
∣

∣0
〉

(5)

and
G = −i

∑

k

θk(akãk − a†kã
†
k), θk = arctanh(e−βωk/2). (6)

The above equations represent an extension of the fundamental results
of Thermo Field dynamics[37, 42, 43] and the transformation e−iG is often
referred to as Bogoliubov thermal transformation.[44] It is immediate to
verify that equation 4 can be equivalently written in the Schrödinegr picture
as (see ref. 34)

〈A(t)〉 =
〈

ϕ(t)
∣

∣Aθ

∣

∣ϕ(t)
〉

(7)

where the wavefunction
∣

∣ϕ(t)
〉

satisfies the Schrödinger equation

i
∂

∂t

∣

∣ϕ(t)
〉

= H̄θ

∣

∣ϕ(t)
〉

,
∣

∣ϕ(0)
〉

=
∣

∣e
〉
∣

∣0
〉

(8)

with the thermal operators

H̄θ = eiGH̄e−iG Aθ = eiGAe−iG. (9)
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The modified Hamiltonian operator H̄ is defined as

H̄ = H − H̃vib (10)

where H̃vib is any operator acting in the vibrational tilde space. Equa-
tions 7,8, 9 and 10 represent the theoretical framework to evaluate finite
temperature effects in quantum molecular dynamics. The evaluation of the
thermal average 〈A(t)〉 can thus be reduced to the solution of the thermal
Schrödinger equation 8 with the Hamiltonian H̄θ specified by eq. 9, followed
by the computation of the desired expectation value.

A thermal environment can be realistically mimicked only using hun-
dreds or thousands degrees of freedom, and the introduction of the tilde
space doubles the number of nuclear degrees of freedom. For this reason
the solution of the time-dependent Schrödinger equation 8 requires effi-
cient numerical methods, suitable to treat a large number of dynamical
variables.[32] Here we follow our recently proposed methodology[34] and rep-
resent the full vibronic wavefunction using the so-called Tensor-Train (TT)
format (Matrix Product States, MPS, in the physics literature).[45, 46, 47]
Eq. 8 is then solved using a numerical scheme based on the time-dependent
variational principle (TDVP) recently developed by Lubich, Oseledets and
Vandereycken.[47] The reader is referred to the original papers[48, 46] for a
detailed analysis of the TT decomposition (see also ref. 34). Here we will
only briefly review the TT approach for sake of clarity.

2.2. Tensor-Train Represention of Wave Function and its use

The state of a d dimensional quantum system is usually represented as
a linear superposition of a basis set, in the form

∣

∣Ψ
〉

=
∑

i1,i2,...,id

C(i1, ..., id)
∣

∣i1
〉

⊗
∣

∣i2
〉

· · ·
∣

∣id
〉

. (11)

where
∣

∣ik
〉

labels the basis states of the k-th dynamical variable, and the
elements C(i1, ..., id) are complex numbers labeled by d indices. Upon trun-
cation of the summation of each index ik to a maximum value nk the el-
ements C(i1, ..., id) represent a tensor of rank d. The evaluation of the
summation 11 requires the computation (and storage) of nd terms, where
n is the average size of the one-dimensional basis set, which becomes pro-
hibitive for large d. Tensor methods are a compact (compressed) way to
store the information contained in the set of coefficients C up to a certain
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a priori defined approximation threshold.[46] In the so-called tensor train
approximation the coefficients C are written as

C(i1, ..., id) ≈ G1(i1)G2(i2) · · ·Gd(id) (12)

where the {Gk(ik), k = 1, d} are two-dimensional complex matrices. The
above expression can be rewritten in the explicit index notation as

C(i1, ..., id) =
∑

α0α1···αd

G1(α0, i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id, αd). (13)

The matrices Gk are three dimensional arrays, called cores of the TT de-
composition. The ranks rk of the cores are called compression ranks. The
TT format 12 allows to approximate the wave function by using d arrays
of dimensions rk−1 × nk × rk thus the required storage dimension is of the
order dnr2. The quality of the approximation depends on the ranks rk,
larger values providing better results. It is worth noting that the TT

representation can be considered a very special and simple form

of the tensor tree network used in the ML-MCTDH descirption

of the wave-function.[24]
For a time-dependent wave function the cores Gk(ik) are time-dependent

complex matrices whose equations of motion can be found by applying the
time-dependent variational principle (TDVP) to the parametrized form of
the wave function

∣

∣Ψ(G(t))
〉

=
∑

i1···id

G1(i1, t)G2(i2, t) · · ·Gd(id, t)
∣

∣i1
〉

⊗
∣

∣i2
〉

· · ·
∣

∣id
〉

. (14)

We refer the reader to references [49, 47], where the explicit differential
equation for the wavefunction is derived and analyzed, and to reference
[50] for a discussion of time-dependent TT/MPS approximations in the
theoretical physics literature.

Several techiques exist to compute the time evolution of TT/MPS.[51,
52, 47] Here we adopt a methodology recently developed by Lubich, Os-
eledets and Vandereycken, which combines an explicit expression for the
projector P̂T (G(t)) and an extremely efficient second order split projector
integrator specifically tailored to the TT format.[47] The computations pre-
sented in this paper have been performed using a code based on the software
library developed by Oseledets and coworkers.
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3. Electron-Transfer Hamiltonian at finite temperature

The above methodology is absolutely general and independent of the
form of the Hamiltonian. In the remainder of the paper, we focus on a spe-
cial type of Hamiltonian operator describing two coupled electronic states
∣

∣A
〉

and
∣

∣F
〉

, interacting with a phonon bath

H =
∣

∣A
〉

HA

〈

A
∣

∣+
∣

∣F
〉

HF

〈

F
∣

∣ + VAF

∣

∣A
〉〈

F
∣

∣+H.c. (15)

where HA,F are the vibrational Hamiltonian of the electronic states
∣

∣A
〉

and
∣

∣F
〉

, respectively.
For HA and HF we assume that harmonic approximation holds, retaining

two different sets of normal coordinates for each electronic state

HA =

N
∑

i

ωAi/2(p
2
Ai + q2Ai) + E◦

A (16)

HF =
N
∑

i

ωF i/2(p
2
F i + q2F i) + E◦

F (17)

The two sets of dimensionless normal coordinates are related by the affine
transformation

qF = d+ JqA (18)

where J is the normal mode transformation matrix and d the displacement
vector.[53, 54, 55] Dimensionless coordinates are defined, as usual, in terms
of mass-weighted normal coordinates, Q as

qX = γ
1/2
X QX γX = 2πcωX/~ X = A, F.

In order to simplify the analysis of the ET process we will neglect the
variation of the vibrational frequencies and Duschinsky rotations. The gen-
eral case that includes second order effects will be presented elsewhere.
Nowadays, the parameters necessary to model HA and HF can be reliably
obtained from electronic structure calculations, at least for medium sized
and non floppy molecules[56, 57, 58].

The coupling operator VAF is in general a function of the vibrational
coordinates of the system, although it is quite common to assume its value
constant, since electronic transitions take place in a restricted region of the
nuclear coordinates.[59]
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Using the transformation 18 and its conjugate for the momenta the
Hamiltonian 10 can be rewritten in the form

H = HS +
∣

∣F
〉〈

F
∣

∣

∑

k

gkqk +
∑

k

ωk/2(p
2
k + q2k) (19)

where

HS =
∣

∣A
〉

E◦
A

〈

A
∣

∣+
∣

∣F
〉

(E◦
F + Er)

〈

F
∣

∣+ VAF (
∣

∣A
〉〈

F
∣

∣+
∣

∣F
〉〈

A
∣

∣),

the gk’s and the reorganization energy Er are defined as

gk = ωkdk Er =
∑

k

ωkd
2
k/2 (20)

and we have dropped the subscripts A, F from vibrational coordinates and
frequencies.

The modified Hamiltonian operator H̄ used in eq. 10 is defined as

H̄ = H − H̃vib, (21)

where H is the physical Hamiltonian operator given by Eq. 19, and H̃vib

is any operator acting in the tilde vibrational space. The choice of H̃vib is
dictated exclusively by computational convenience and does not affect the
expectation value 〈A(t)〉.

In what follows we choose

H̃vib =
∑

k

ωk/2(p̃
2
k + q̃2k). (22)

Applying the Bogoliubov transformation to the Schrödinger eq. 19, we
obtain the Hamiltonian

H̄θ = eiGH̄e−iG = HS +
∑

k

ωk/2
(

p2k + q2k − p̃2k − q̃2k
)

+
∣

∣F
〉〈

F
∣

∣

∑

k

gk [qk cosh(θk) + q̃k sinh(θk)] (23)

In deriving the above expression we used the invariance property[37]

eiG(p2k + q2k − p̃2k − q̃2k)e
−iG = p2k + q2k − p̃2k − q̃2k. (24)

8



The operator H̄θ of eq. 23 consists of two parts: a modified physical
Hamiltonian in which the linear coupling terms are multiplied by cosh(θk)
factors, and the vibrational tilde Hamiltonian. Excitation of the tilde vi-
brations are caused by linear terms ∼ gk sinh(θk). It is worth noting that
for high frequency vibrations this terms can be neglected allowing to reduce
the computational cost (see infra).

Since H̃vib enters eq. 23 with a negative sign, vibrational excitations
in the tilde space correspond to a flow of energy from the physical system
to the fictitious tilde system. It is this type of coupling that accounts for
thermal effects.

4. Electron-transfer in photosynthetic reactions centers

We will now consider the application of the methodology described above
to the analysis of the dynamics of the electron-transfer (ET) between the
accessory bacteriochlorophyll (BA) and the bacteriopheophytin (HA) in bac-
terial reactions centers.

Previous numerical studies have shown that this process can be modeled
as a radiationless transition which involves mainly intramolecular vibrations
which carry most of the reorganization energy.[60, 40] However, quantum
dynamical results were obtained only for models including a reduced space of
nuclear vibrational coordinates, and the effect of finite temperature was not
take into account.[60] Here we will describe the ET process by including the
entire set of the vibrational degrees of freedom of the two separate moieties
and taking into account finite temperature effects.

Following a common approach,[61, 62, 63] the basis electronic states are
represented as the direct product of the neutral and anionic states of the two
single molecules, i.e.

∣

∣A
〉

=
∣

∣B−
A

〉
∣

∣HA

〉

and
∣

∣F
〉

=
∣

∣BA

〉
∣

∣H−
A

〉

. Equilibrium
geometries, normal modes, and vibrational frequencies of bacteriochloro-
phyll and bacteriopheophytin in their neutral and anionic forms were taken
from our previous work.[40] Our model comprises 267 vibrational modes.
Here we neglect Duschinky rotations and variation of frequencies upon ET
which have been shown to introduce only minor changes in the overall dy-
namics of the system.[40] The displacements d of the transformation 18
have been computed using the internal coordinate representation of normal
modes.[64, 65, 57] This is fundamental to avoid the appearance of fictious
vibrational progressions in the computed density of states.[64, 66, 67] The
overall computed reorganization energy for the ET process is 1882 cm−1.
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The other parameters necessary for defining the Hamiltonian of Eq. 23,
VAF = 90 cm−1, ∆EAF = 1200 cm−1, have been taken from Ref. 40 .

Figure 1 shows the temperature-dependent spectral densities defined
as[35]

Jp(ω) =
∑

k

g2k cosh
2(θk)δ(ω − ωk) Jt(ω) =

∑

k

g2k sinh
2(θk)δ(ω − ωk).

These two functions represent the strength of the interaction between the
electronic subsystem and the physical and tilde space respectively. The
coupling with the tilde space is negligible for high frequency modes and
not reported. It is immediate to see that as temperature increases the cou-
pling with the low frequency part of the spectrum increases, while the high
frequency region is left almost unaffected, as expected. This observation
enables to analyse the relevance of temperature effects for each single de-
gree of freedom and to reduce the computational costs by a priori removing
some of the tilde degrees of freedom from the Hamiltonian.

In the present case the physical number of degrees of freedom in 267,
which should be doubled to 534 upon inclusion o the tilde space. However,
a large fraction of high frequency modes has a negligible vibronic coupling,
gk sinh(θk), thus it is possible to reduce the overall number of nuclear dofs
to 400 without any loss in the accuracy of the model.

Figure 2 shows the convergence behaviour of the TT methodology for
different ranks of the cores. For sake of simplicity all cores have the same
ranks, although different values are, in principles, allowed. As can be seen
from figure 2a, the small rank approximation provide a good description
of the dynamics only for short times. More specifically for r = 10 the
dynamics is accurate up to 60 fs, while for r = 20 the dynamics is in
almost quantitative agreement with the exact result up to 250 fs. Figure 2b
shows that semiquantitative results are obtained with r = 40, while r = 50
is needed to achieve numerical convergence. Increasing r to 60 provides
only slight modifications in the long-time tail of the decay. Indeed, after
800 fs the discrepancies between the population decay curves with r = 60
and r = 50 have an average relative deviation of about 5%. In all the
calculations a basis set of harmonic oscillator eigenfunctions has been used
with maximum quantum number 20 for all the degrees of freedom. As shown
in figure 3 using 10 states per mode already provides excellent results, and
increasing the basis set first to 20 and then to 30 states for all vibrations
does not produce any significant change in the population dynamics. Here
we have adopted the vale n = 20 for all vibrations.
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Figure 4 shows the electronic population of the initial state
∣

∣B−
AHA

〉

as a function of time at different temperatures. Temperature effects are
not dramatic, as expected, since most of the vibronic activity is associated
with high frequency vibrations. Increasing the temperature from 10 K to
77 K result in a very small decrease of the decay rate. This effect cannot
be described in the framework of the classical ET theory and is very likely
due to the highly quantized nature of the vibrational density of states at
very low temperatures. A modest increase in the population decay rate upon
increasing T from 77 K to 298 K is observed. This effect can be attributed to
the increased number of accessible vibronic states. The overall behaviour is
similar to what is found in other ET processes where large vibronic couplings
are associated to highly quantized modes.[68, 69, 61]

Comparison with approximate theories

The exact results at finite temperature obtained from TFD-TT theory
can be used for the assessment of approximate theories of electron-transfer.
Very recently a second order cumulant approximation (SOC) has been devel-
oped to describe the dynamics of radiationless transition in large molecular
assemblies.[40, 70, 15, 16] The SOC approach represent an improvement
over standard rate theories, and is at the same time computationally feasi-
ble for large systems, it is thus of interest to better understand and define
its range of validity.

In the SOC approach the time evolution of the electronic population of
the electronic state

∣

∣A
〉

is described by the differential equation[40]

dPA(t)

dt
= K2(t)PA(t) (25)

where

K2(t) = −2|VAF |
2
~
−2Z−1

A Re

∫ t

0

Tr(eiHA(τ+iβ)e−iHF τ )dτ (26)

and the trace is taken over all the vibrational degrees of freedom. It is worth
noticing that the kernel of the SOC approximation can be considered as a
time-convolutionless representation of the Non-Interacting Blip Approxima-
tion (NIBA) introduced in the framework of spin-boson theory.[71, 72]

Figure 5 shows the exact TFD-TT electronic population dynamics and
the SOC results. At T = 10 K, the SOC dynamics and the exact result
match almost perfectly in the entire time interval reported. Moving to a
higher temperature the agreement between the exact result and the SOC
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dynamics worsen and is exact only for short times. A better analysis of
the SOC methodology can be obtained by comparing the kernel K2(t) of
equation 25 with the generator, K(t), of the exact time-convolutionless dif-
ferential equation[73, 74, 75]

K(t) =

∞
∑

n

Kn(t) =

∞
∑

n=1

1

n!

(

−i

~

)n ∫ t

0

dτ1 · · ·

∫ t

0

dτn−1

〈

T V ×
I (t)...V ×

I (τn−1)
〉

c
.

where, T is the time ordering operator, I labels the interaction representa-
tion, and the operator V ×

I (τ) is defined by its action on a generic operator
O as V ×

I (τ)O = [VI(τ), O].[76, 77] This generator can be easily computed
from the population PA(t) obtained from the TFD-TT calculation, as

K(t) = ṖA(t)/PA(t). (27)

Figure 6 shows a comparison of K(t) and K2(t) for the electron transfer
process under examination. It can be clearly seen that at low temperature
T = 10 K, the two functions matches almost exactly. K2(t) can provide a
good description of the short time oscillatory behaviour of the cumulant ex-
pansion and converges to a limiting value that is very close to the exact one.
At high temperature, the agreement becomes less satisfactory and the long
time behaviour of the exact cumulant function is not correctly reproduced
by the second order approximation. Clearly this means that higher order
terms in the cumulant expansion cannot be neglected for accurate results.
Yet, the SOC approximation is capable of grasping the qualitative behaviour
of both the sub-picosecond and the long-time population dynamics in both
hight and low temperature regimes.

5. Discussion and conclusion

We have discussed the application of the recently developed TFD-TT
technique for the study of quantum dynamics of complex molecular sys-
tems at finite temperature to the electron transfer process between bacteri-
ochlorophyll and bacteriopheophytine in bacterial PRCs. The theory allows
to include temperature effects through the introduction of a set of auxiliary
operators belonging to the so-called tilde Hilbert space. This procedure
avoids the statistical sampling required in other wave-function techniques.
The increased computational cost of the technique, due to the doubling of
the vibrational degrees of freedom, can be partly overcome by the use of

12



Figure 1: Effective site spectral densities Jp(ω) and Jt(ω) describing the coupling of the
physical and tilde bosonic degrees of freedom with the electronic subsystem at different
temperatures. (a,b) 77 K, (c,d) 300 K.
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new numerical techniques for the representation of the wave-function by
tensor trains.

The results of the simulation confirm that the ET between the two co-
factors in the reaction center is very fast, occurring on a sub-picosecond
timescale. Temperature effects, while certainly present, are not dramatic
since most of the vibronic activity during the process is associated with high
frequency vibrations. Benchmark TFD-TT calculations have been used to
test the range of validity of the approximate SOC expansion of the electronic
population. The comparison has highlighted how the SOC theory provide a
satisfactory description of the electronic dynamics in a wide range of tem-
peratures, and is thus a valuable tool for obtaining approximate results for
very large systems.

The TFD-TT methodology represent an important step toward the sim-
ulation of large molecular assemblies at finite temperature. A drawback in
the use of tensor trains is represented by the necessity to increase the rank
of the TT cores to obtain convergence for long time propagation. A pos-
sible approach to tackle this problem is to make use of reduced dynamical
maps to obtain information for long time propagation from the short time
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Figure 2: a) Electronic population of the initially populated state
∣

∣B
−

AHA

〉

for different
values of the TT compression ranks; b) enlargement of a) in the region between 0 and
100 fs.
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Figure 3: a) Electronic population of the initially populated state
∣

∣B
−

AHA

〉

for three
different values of the basis set size, n = 10, n = 20 and n = 30. In all cases the TT
ranks are set to 50.

0 200 400 600 800 1000
t (fs)

0.0

0.2

0.4

0.6

0.8

1.0

P
(t
)

n = 10

n = 20

n = 30

Figure 4: Electronic population of the initially populated state
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for different
values of the temperature. In all calculations the compression rank is set to 50.
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Figure 5: Electronic population of the initially populated state
∣

∣B
−

AHA

〉

at T = 10 K,
and T = 298 K (full lines) obtaind from TFD-TT calculations; second order cumulant
approximation at T = 10 K and T = 298 K (dashed line).
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Figure 6: Second order cumulant K2(t) obtained from SOC theory compared with the
exact cumulant function K(t) obtained from TFD-TT calculations.
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behaviour of the system.[78, 79, 80] Work is in progress along this direction.
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