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Abstract

We introduce a class of multivariate factor-based processes with the dependence struc-

ture of Lévy ⇢↵-models and Sato marginal distributions. We focus on variance gamma

and normal inverse Gaussian marginal specifications for their analytical tractability and

fit properties. We explore if Sato models, whose margins incorporate more realistic mo-

ments term structures, preserve the correlation flexibility in fitting option data. Since

⇢↵-models incorporate nonlinear dependence, we also investigate the impact of Sato

margins on nonlinear dependence and its evolution over time. Further, the relevance of

nonlinear dependence in multivariate derivative pricing is examined.

Journal of Economic Literature Classification: G12, G13

Keywords: Finance, multivariate asset models, Lévy processes, Sato processes, nonlin-
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Introduction

A number of Lévy processes, which extend the classical Black-Scholes benchmark, has

been adopted to represent single-asset returns and have been extended in various ways

to represent returns on several assets. These processes are in law subordinated Brow-

nian motions, where the subordinator represents a stochastic change of time. The first

subordinated multivariate model was constructed by considering a common time change

to all assets represented by a univariate subordinator (see Madan and Seneta (1990) and

Luciano and Schoutens (2006)). Unfortunately, the resulting models exhibited several

shortcomings including the lack of independence between asset returns and a limited

span of linear correlations. Even though both empirical evidence existed and theoretical

tools were available, time changed Lévy processes with multivariate subordinators ap-

peared only recently. For instance, Eberlein and Madan (2010) considered independent

changes of time, while Semeraro (2008) and Luciano and Semeraro (2010) constructed a

multivariate subordinator composed of a common component and an idiosyncratic com-

ponent, named factor based subordinator. By so doing, they introduced the ⇢↵-Lévy

processes, which represent log-returns as the sum of an idiosyncratic and a system-

atic component. While the stock-specific factors are independent, the common factors,

reacting to the market general level of activity, are dependent. The model is econom-

ically intuitive, while preserving analytical tractability. Furthermore, under suitable

conditions, they retain marginal distributions to be variance gamma and normal inverse

Gaussian processes. The construction in Luciano and Semeraro (2010) extends the ↵-

variance gamma dependence structure in Semeraro (2008), improving the correlation

flexibility, by using correlated Brownian motions.

The correlation flexibility of these models has been studied in the historical setting

by Luciano et al. (2016) and in the risk neutral one by Marena et al. (2015). In both

cases they provide an overall good performance. Nevertheless, Lévy models have some

drawbacks in option pricing applications at the marginal level. It is well known that the

Lévy models are not capable of fitting both strike and time to maturity dimensions of the

volatility surface. To get around this shortcoming, Carr et al. (2007) proposed the use

of Sato processes, having a more realistic moment term structure, and Guillaume (2012)

has shown that the Sato extension of the ↵ variance gamma introduced by Semeraro

(2008) enhances marginal fit both for low-volatility and high-volatility regime periods,

while preserving the correlation structure. These features are confirmed by Boen and

Guillaume (2016) who introduce a multivariate extension of the di↵erence of Gamma

processes by Finlay and Seneta (2008), in both Lévy and Sato versions.

Within this backdrop, building on Guillaume (2012) approach, we propose a class

of models (called ⇢↵-Sato models) able to incorporate the dependence structure of the

⇢↵-models and the marginal properties of Sato processes. Indeed, the ⇢↵-models are

able to achieve higher correlations compared with ↵-models. Specifically, we build a

process with Sato margins on ⇢↵-models with self-decomposable time one marginal dis-
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tributions. We introduce the class of ⇢↵-Sato processes, although a complete analysis of

the properties of the general process is out of the aim of the present paper. We focus on

variance gamma and normal inverse Gaussian marginal distributions, for their analytical

tractability and fit properties in the risk neutral setting. We empirically analyse their

fit on option data. In particular, we explore if Sato models, whose margins are known

to improve the marginal fit, preserve the correlation flexibility. These classes of models

have two di↵erent sets of parameters: idiosyncratic parameters, i.e., stock-specific, and

common ones. Marginal distributions do not depend on common parameters, which are

usually used to fit the correlation structure, see, e.g., Luciano and Semeraro (2010),

Guillaume (2012) and Luciano et al. (2016). This structure allows us to perform a satis-

factory calibration of the marginal processes and, for given pairs of marginal parameters,

to compare the correlation range allowed by the ⇢↵-Sato process with the correlation

range allowed by their Lévy counterpart. We then employ a joint calibration proce-

dure, by setting a tollerance level for correlation errors, to assess the overall goodness

of fit of the class of models. Further, the ⇢↵-dependence structure incorporates nonlin-

ear dependence, as shown in Luciano and Semeraro (2010). While correlation is time

independent in both models, comoments are time independent in the ⇢↵-Sato models

and time-dependent in ⇢↵-models. We therefore evaluate the impact of Sato margins on

nonlinear dependence and its evolution over time. Since we consider couples of assets,

two common parameters drive the dependence structure. Thus, we can move nonlinear

dependence leaving the correlation level fixed. We conclude our analysis by measuring

the impact of nonlinear dependence on two-assets derivative pricing, under ⇢↵-Sato and

⇢↵-models.

The paper is organized as follows. Section 1 recalls the factor-based Lévy models,

whose specifications are described in the Appendix. Section 2 introduces the factor-

based model with Sato marginal processes, which we call factor-based Sato process.

Their variance gamma and normal inverse Gaussian specifications are introduced in

Section 3. Models calibrations and correlation flexibility analysis are performed in Sec-

tion 4. Section 5 examines the impact of linear and nonlinear dependence on multiasset

derivative prices. Finally, Section 6 concludes.

1 Factor-based subordinated Lévy processes

This section recalls the ⇢↵-models introduced in Luciano and Semeraro (2010). Their

main properties and their specifications with variance gamma (VG) and normal inverse

Gaussian (NIG) marginal processes are provided in Appendix A.

The ⇢↵-models are factor-based subordinated Brownian motions constructed as the

sum of two independent subordinated Brownian motions. The first has independent

components, while the second is a Brownian motion with correlated marginal processes

which are subordinated by a common subordinator.

2



Formally, let B be a n-dimensional Brownian motion with independent components

and Lévy triplet (µ,⌃, 0), where ⌃ = diag(�2
1, ..., �

2
n) and µ = (µ1, ..., µn). Let B⇢

be a correlated n-dimensional Brownian motion, with correlations ⇢ij, marginal drifts

µ⇢ = (µ1↵1, ..., µn↵n) and di↵usion matrix (⌃⇢)ij := (⇢ij�i�j
p
↵i
p
↵j)ij.

The Rn-valued subordinated process Y = {Y (t), t > 0} defined by

Y (t) =

0

@
B1(X1(t)) + B⇢

1(Z(t))

....

Bn(Xn(t)) + B⇢
n(Z(t))

1

A , (1.1)

where Xj and Z are independent subordinators, independent from B, and B⇢ is a

factor-based subordinated Brownian motion. Y is also indicated as ⇢↵-model.

Obviously, whenever all the parameters ⇢ij collapse to 0 across di↵erent components,

i.e. ⇢ij = 0, for i 6= j, ⇢ij = 1, for i = j, we have a version of the model in which Brownian

motions are independent. This version has been introduced in Semeraro (2008) and is

named ↵-model.

We write Y := Y (1) to indicate the random vector whose distribution is the time

one distribution of the process Y (t). We say that Y has a ⇢↵-distribution.

Luciano and Semeraro (2010) (Theorem 5.1) proved that the marginal return j is a

Brownian motion with parameters µj and �j subordinated by the j-th marginal process

Gj(t) of a factor based-subordinator G(t). A multidimensional factor-based subordina-

tor {G(t), t � 0} is defined as follows

G(t) = (X1(t) + ↵1Z(t), ..., Xn(t) + ↵nZ(t)), ↵j > 0, j = 1, ..., n, (1.2)

where X(t) = {(X1(t), ..., Xn(t)), t � 0} and {Z(t), t � 0} are independent subor-

dinators with zero drift, and X(t) has independent components. They represent the

idiosyncratic and the common factors of trading activity. Indeed, the following equality

in law holds

Yj(t)
L
= µjGj(t) + �jW (Gj(t),

where
L
= is equality in law. The marginal laws of Y (t) are therefore one-dimensional sub-

ordinated Brownian motions. We call factor-based distribution the time one distribution

of a factor based subordinator, thus in this paper a factor based distribution is infinitely

divisible. We call the factor-based distribution of the subordinator G the subordinat-

ing distribution of the corresponding ⇢↵-model and we say that the ⇢↵-distribution is

associated to the factor-based distribution of G.

2 Factor-based Sato processes

This section introduces a class of multivariate processes with Sato marginal processes

constructed from the ⇢↵-distributions. Sato processes are self-similar processes with
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independent increments, a.s. right-continuous with left limits. A stochastic process Xt is

a self-similar process if, for every c > 0, there is a positive number ac such that X(ct) =L

acX(t). A Sato process can be constructed from self-decomposable distributions, which

are a subclass of infinitely divisible distributions.

Definition 2.1 (Sato (1999), Definition 15.1). The distribution of a random variable X

on Rd
is self-decomposable (s.d.) or of class L if 8b > 1 9Xb on Rd

independent of X

such that:

 X(u) =  X(b�1
u) Xb

(u), u 2 Rd, (2.1)

where  X and  Xb
are the characteristc functions of X and Xb, respectively.

The probability law of a Sato process at time t is obtained by scaling the self-

decomposable law of X at unit time (see Carr et al. (2007)):

X(t)
L
= thX, (2.2)

where h is the self-similar exponent. Sato processes are processes with independent

but time inhomogeneous increments. Nevertheless the parameter h is common to all

components, thus inhomogeneity a↵ects the sample path of each component in the same

way.

Guillaume (2012) extended the ↵-VG model introduced by Semeraro (2008) intro-

ducing Sato one dimensional marginal processes to enhance marginal fit both for low-

volatility and high-volatility regime periods. By so doing marginal distributions have

di↵erent scale parameters and inhomogeneity of sample paths a↵ects di↵erently marginal

processes. Using Guillaume (2012) approach we now define a multivariate stochastic

process with Sato one dimensional processes, starting from ⇢↵-distributions.

Firstly, we provide conditions for the factor-based distribution of the multivariate

subordinator G to be self-decomposable, not only at the marginal level.

Proposition 2.1. If G has a factor-based distribution with self-decomposable compo-

nents Xj and Z, then G is self-decomposable.

Proof. G is self decomposable. Let  G the characteristic function of G. Since Xi and

Z are s.d. for any i = 1, ..., n and for any b > 1 it exists X(b)
i independent of Xi and Z(b)

independent of Xi and Z such that:

 G(u) =
nY

j=1

 j(uj) Z(
nX

j=1

↵juj)

=
nY

j=1

 j(b
�1uj) X

(b)
j
(uj) Z(b

�1
nX

j=1

↵juj) Z(b)(
nX

j=1

↵juj)

=  G(b
�1u)

nY

j=1

 
X

(b)
j
(uj) Z(b)(

nX

j=1

↵juj) =  G(b
�1u) G(b)(u).

(2.3)

Obviously G(b) is independent of G.
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In the following proposition we give conditions for the ⇢↵-distributions to have one

dimensional Sato marginal distributions.

Proposition 2.2. If G has a factor-based distribution with self-decomposable compo-

nents Xj and Z, then the associated ⇢↵-distribution has self-decomposable marginal dis-

tributions.

Proof. Theorem 5.1 in Luciano and Semeraro (2010) proved that Yj
L
= Bj(Gj(1)). Thus,

Yj is a Normal Mean Variance mixture, with mixing distribution the marginal distri-

bution of G. Proposition 2.1 states that G is self-decomposable, thus its marginal

distributions are self-decomposable. Then, the proof follows easily from Theorem 1.1 in

Sato (1999).

We now can define a Sato version of the ⇢↵-models.

Definition 2.2. Let Y (t) be a ⇢↵-model defined in 1.1 with self-decomposable marginal

laws. The Rn
-valued ⇢↵-Sato model Y S(t) is defined by:

Y S(t) :
L
= thY (1) :=

0

@
th1(B1(X1(1)) +B⇢

1(Z(1)))

....

thn(Bn(Xn(1)) +B⇢
n(Z(1)))

1

A , (2.4)

where h = (h1, . . . , hn) is the self-similar exponent and th = (th1 , . . . , thn).

By Proposition 2.2 for any choice of Xj and Z with self-decomposable laws, the

⇢↵-Sato model has Sato marginal processes. If ⇢ = I, then we have the subclass of ↵-

Sato models introduced by Guillaume (2012). Correlations in ⇢↵-Sato models are time

independent, and have the same expression as in the ⇢↵-models, reported in Appendix

A.

The characteristic function of Y S(t) is given by

 YS(t)(u) = E[eiu·Y
S(t)] = E[ei(u�t

h)·Y (1)] =  Y (1)(u � th), (2.5)

where u � th = (u1th1 , . . . , unthn) denotes the Hadamard product and  Y (u) is provided

in A.1. The marginal characteristic functions follow easily:

 YS
j (t)

(u) =  Yj(1)(ut
hj). (2.6)

Using the characteristic function, we can find moments and comoments of a ⇢↵-Sato

process, using the relation

E[(Y S
j (t))k] =

 (k)

Y S
j (t)

(u)

ik
|u=0, (2.7)
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where the superscript (k) indicates the k-th derivative. By substituting 2.6 in 2.7 we

have

E[(Y S
j (t))k] =

 (k)

Y S
j (t)

(u)

ik
|u=0 =

1

ik
dk

du
�Yj(1)(ut

hj)
��
u=0

= E[(Yj(1))
k] thjk.

Therefore

E[Y S
j (t)] = E[Yj(1)] t

hj ,

V ar[Y S
j (t)] = V ar [Yj(1)] t

2hj ,

Skew[Y S
j (t)] =

E
h�
Y S
j (t)� E[Y S

j (t)]
�3i

V ar[Y S
j (t)]3/2

= Skew[Yj(1)],

Kurt[Y S
j (t)] =

E
h�
Y S
j (t)� E[Y S

j (t)]
�4i

V ar[Y S
j (t)]2

= Kurt[Yj(1)].

It is clear that marginal skewness and marginal kurtosis of the ⇢↵-Sato process, unlike

⇢↵-Lévy process, are constant over time. This can be a reasonable assumption when

modeling asset returns, up to a certain time to maturity, as observed in Madan and

Schoutens (2013).

We do not analyse in this paper the joint dynamics of the ⇢↵-Sato processes, but

we empirically investigate its global fit on market data. Nevertheless, we conclude this

section with a complete picture of the multivariate Sato processes and their relationship

with the ⇢↵-Sato models.

The notion of self-decomposability has been extended to the notion of operator self-

decomposability by Urbanik (1978). Preliminarily we have to introduce the following

notions. For a set J ⇢ R, let MJ(n) be the set of real n⇥ n matrices whose eigenvalues

have real part in J ⇢ R. For a > 0 and an n⇥ n matrix Q let

aQ =
1X

n=0

1

n!
(log a)nQn. (2.8)

We can now give the following definition.

Definition 2.3. Let Q 2 M(0,1)(n). A random vector X has Q-self-decomposable

distribution µ is, for every b > 1, there is a Xb such that

X
L
= b�QX +Xb. (2.9)

If a distribution is Q-self-decomposable we can define a multivariate Sato process by

scaling the marginal distributions with di↵erent scale parameters. In fact Theorem 3.2.

in Sato (1991) asserts that given aQ-self-decomposable measure µ 2 Rn and a continuous

function b(t) on [0,1) such that b(1) = 0 there exists a stochastically continuous process
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X(t) with independent increments such that L(X(1)) = µ. The process is unique in

law and X(t)
L
= tQX(1) + b(t). Thus, if X has Q-self decomposable distribution, we

can introduce a Sato process with di↵erent scale parameters as follows:

X(t) :
L
=

0

@
th1X1

....

thnXn

1

A , hj > 0, j = 1, . . . , n. (2.10)

To introduce ⇢↵-Sato models we have proved that ⇢↵-distributions have self-decompos-

able marginal distributions. We now briefly address the question of the ⇢↵-distribution

self-decomposability at the multivariate level. Obviously, if we consider the independence

subcase, obtained if the common component of the subordinator degenerates, Y has

Q-self-decomposable distribution for Q = diag(q1, . . . , qn) (see Barndor↵-Nielsen et al.

(2001)). Also in the symmetric case if G is self-decomposable, the ⇢↵-distributions

are self-decomposable. In fact, if µ = 0, the multivariate Brownian motions B(t) and

B⇢(t) are strictly stable with ↵ = 1
2 . Thus, Y is self-decomposable and also Q-self-

decomposable, as shown in Barndor↵-Nielsen et al. (2001).

However, in general, the ⇢↵-distribution is not self-decomposable, although the sub-

ordinating distribution of G is self-decomposable. In fact, Takano (1989) proved that

a multivariate normal distribution subordinated by a generalized gamma distribution is

self-decomposable i↵ the multivariate normal distribution has zero drift. Therefore, if

Z belongs to the family of generalized gamma convolutions, the systematic component

Y ⇢ is self-decomposable i↵ µ = 0. Summing up, if the subordinator components are

self-decomposable, the ⇢↵-distributions have self-decomposable marginal distributions

and in some limit cases they are also Q-self decomposable. Therefore, the ⇢↵-Sato mod-

els have marginal processes in the Sato class, but they are Sato processes on Rn in two

subcases only: independent components and µ = 0.

3 Specifications

We now specify ⇢↵-Sato process Y to have Sato variance gamma (Sato-VG) and Sato

normal inverse Gaussian (Sato-NIG) marginal distributions, as in Luciano and Semeraro

(2010). The di↵erent specifications are obtained from the time one distribution of the

⇢↵-variance gamma (⇢↵-VG) and ⇢↵-normal inverse Gaussian (⇢↵-NIG) models, which

are recalled in Appendix B. The ⇢↵-VG has variance gamma (VG) marginal processes

and the ⇢↵-NIG has normal inverse Gaussian (NIG) marginal processes by construction,

and these marginal processes are self-decomposable. For each specification we introduce

the notation and parameter conditions used in the practical implementation.
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3.1 Variance Gamma

Let Y be a ⇢↵-VG as defined in Appendix B.1, then the process Y S(t) in Definition 2.2

(eqn. (2.4)) is a ⇢↵-Sato process with time one marginal distribution of VG type. We

call the process Y S ⇢↵-Sato-VG.

The ⇢↵-VG and the ⇢↵-Sato-VG have the same characteristic function at time one,

which is

 Y (u) =
nY

j=1

✓
1� ↵j(iµjuj �

1

2
�2
ju

2
j)

◆�
✓

1
↵j

�a

◆
✓
1�

✓
iuTµ⇢ � 1

2
uT

⌃
⇢u

◆◆�a

. (3.1)

Thus, the ⇢↵-Sato-VG characteristic function at any time t can be derived by applying

(2.5). The Y S ⇢↵-Sato-VG correlations are independent of time, thus they are the same

correlations of the ⇢↵-VG process, which are:

⇢Y (i, j) =

�
µi↵iµj↵j + ⇢ij�i

p
↵i�j

p
↵j

�
q
(�2

i + µ2
i↵i)(�2

j + µ2
j↵j)

a. (3.2)

They are increasing in a, which satisfies the constraint

0 < a < min
j

✓
1

↵j

◆
. (3.3)

By setting ⇢ij = 0 for i 6= j, we obtain as a subcase the ↵-VG process introduced in

Semeraro (2008).

The process Y has a total of 1+3n+ n(n+1)
2 parameters. It has one common

parameter a, three marginal parameters µi, �i,↵i for each marginal distribu-

tion, j = 1; . . . , n; and as many additional parameters as the distinct Brownian

motions correlations ⇢ij(i > j), i; j = 1, . . . , n.

3.2 Normal inverse Gaussian

Let Y be a ⇢↵-NIG process introduced in Appendix B.2, then the process Y S(t) in

Definition 2.2 (eqn. (2.4)) is a ⇢↵-Sato process with time one marginal distribution

of NIG type. We call the process Y S ⇢↵-Sato-NIG. The ⇢↵-NIG and ⇢↵-Sato-NIG

processes have the same characteristic function at time one, which is

 Y (u) = exp

(
�

nX

j=1

(1� a

⇣j
)

 r
�2(i�j�2juj �

1

2
�2ju

2
j) + ⇣2j � ⇣j

!

�a

 r
�2(iuTµ⇢ � 1

2
uT⌃

⇢u) + 1� 1

!)
,

(3.4)

where ⇣j = �j
q
�2j � �2

j . Thus, the ⇢↵-Sato-NIG characteristic function at any time t

derives straightforwardly from (3.4) and (2.5). The Y S ⇢↵-Sato-NIG correlations are
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independent of time, thus they are the same correlations of the ⇢↵-NIG process. Setting

⇣j = �j
q
�2j � �2

j , the linear correlations of the ⇢↵NIG process are

⇢Y (i, j) =
�i

�2i
⇣2i
�j

�2j
⇣2j

+ ⇢ij
�i
⇣i

�j
⇣jr⇣

�2i �i (�
2
i � �2

i )
� 3

2

⌘⇣
�2j �j

�
�2j � �2

j

�� 3
2

⌘a. (3.5)

They are increasing in a, and, under (B.1) and (B.2) , must satisfy the constraint

0 < a < min
j
⇣j. (3.6)

By setting ⇢ij = 0 for i 6= j, we obtain the ↵-NIG specification.

The process Y has a total of 1+3n+ n(n�1)
2 parameters, where a is a common

parameters; �i, �i, ⇣i are marginal parameters and ⇢ij(i > j), i, j = 1, . . . , n are

the correlation co�cients between the Brownian components. As in the VG

specification, the number of parameters increses as n2
, due to the presence

of the Brownian motion correlations. Notice that the presence of the ⇢ij
parameters allows to have negative correlations indipententely from the sign

of the drifts. For a theoretical discussion of the role of the Brownian motion

correlations in matching linear correlations see Luciano and Semeraro (2010)

and Luciano et al. (2016).

Remark 1. We choose to perform the analysis starting from multivariate Lévy processes

with popular one dimensional processes, such as VG and NIG processes. Among them

we focus on the ⇢↵-models for two main reasons: firstly, they generalize the Sato ↵-VG

process studied in Guillaume (2012), adding correlation flexibility. Secondly, this class of

model is easy to calibrate and admits a decoupled calibration. Thus, we can calibrate the

marginal parameters for both the Lévy and the corresponding Sato processes and compare

the correlation spanned. Other approaches to model dependence - as the one in Marfè

(2012) - could be considered, see, e.g., Boen and Guillaume (2016).

Remark 2. We remark that the restrictions enforcing the marginal processes to belong to

well-known classes allows ⇢↵-models to be parsimonious in terms of marginal parameters

and permits a two-step calibration procedure, providing suitable initial conditions to the

joint calibration approach, when required. Without this restriction, the joint procedure

becomes mandatory and the computional complexity increases in practice.

4 Model calibration and correlation flexibility

In the present section we calibrate the ⇢↵-models to market data, considering four dif-

ferent specifications of the marginal distributions: ⇢↵-VG, ⇢↵-Sato-VG, ⇢↵-Sato-NIG

and ⇢↵-Sato-NIG. We first calibrate the marginal distributions of top stocks of the S&P
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500 to option prices and then explore the linear and nonlinear dependence structure

of di↵erent model specifications on all possible baskets of given size. The dependence

structure of these models allows us to easily find the correlation flexibility of the cor-

responding ↵-models by simply setting ⇢ = 0, we therefore show the improvement of

correlation flexibility due to the additional parameter. Finally, we study how nonlinear

dependence impact prices of derivative contracts that are well-known to be sensitive to

the underlyings’ dependence, such as basket, best-of, worst-o↵ and spread options. We

do so by performing a regression analysis.

4.1 Data

We consider the first 14 constituents of the S&P 500 Index by market capitalization

at October 26, 2016: Apple, Microsoft, Exxon, Johnson&Johnson, Amazon, Facebook,

Berkshire Hathaway (Class B), General Electric, JP Morgan Chase & Co., Alphabet

(Class A), Alphabet (Class C), Procter&Gamble, AT&T, Wells Fargo. To make our

analysis more robust, we extend the analysis backward in time, considering also quotes

on October 31st, 2012 and November 5, 2008. We have 3 di↵erent quoting dates, each

about every four years, associated to di↵erent market volatility levels as measured by

the VIX index. According to Figure 1 that shows the performance of the VIX Index

from January 2007 to May 2017, we can associate to our quoting dates three di↵erent

scenarios of market volatility: high volatility (VIX level of 54.56% as of November 5,

2008), medium volatility (VIX level of 18.60% as of October 31st, 2012) and low volatility

scenario (VIX level of 14.24% as of October 26, 2016).

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: Time series plot of the VIX Index time from January 2007 to December 2016.

The grey bullets show our three reference dates: November 5, 2008, October 31st and

October 26, 2016.
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Option quotes for all underlyings are collected from Bloomberg, together with interest

rates and dividend yields. We recall that Facebook quotes start from May 2012 and

Berkshire Hathaway (Class B) quotes start from December 2008. Also, Google Inc.

splitted its stocks creating Alphabet (Class A) and Alphabet (Class C) shares in year

2014. Furthermore, dividend yields for Google Inc. were not available for November

5, 2008. Therefore, the dataset for November 5, 2008 consists of 10 stocks: Apple,

Microsoft, Exxon, Johnson&Johnson, Amazon, General Electric, JP Morgan Chase &

Co., Procter&Gamble, AT&T, Wells Fargo, while the dataset for October 31st, 2012

consists of 13 stocks: Apple, Microsoft, Exxon, Johnson&Johnson, Amazon, Facebook,

Berkshire Hathaway (Class B), General Electric, JP Morgan Chase & Co., Google Inc.,

Procter&Gamble, AT&T, Wells Fargo.

4.2 Marginal fit and dependence structure flexibility

Let S = {S(t), t � 0} be a 2�dimensional price process, S = {S(t), t � 0}, such that

Sj (t) = S (0)
e(r�qj)t+Yj(t)

E
�
eYj(t)

� , j = 1, 2,

where r is the risk-free rate, qj is the dividend yield of asset j, and Y is a ⇢↵-process.

Marginal calibrations are performed by minimizing the Root Mean Square Error

(RMSE) between model and market implied volatilities

RMSE =

vuut 1

N

NX

i=1

(IV mkt
i � IV model

i )2.

Our datasets consist of out-of-the-money option prices with time to maturity ranging

from 20 days to 2.5 years and log-moneyness from -0.4 to 0.4. Both time to maturity

and strike dimensions are considered simultaneously. Market implied volatilities are com-

puted by matching market prices with Black-Scholes American prices computed by the

FST pricing formula (Jackson et al. (2007)). We apply the Carr-Madan pricing formula

to obtain model prices, and then compute model implied volatilities by inverting the

Black-Scholes formula. The optimization is performed using the Di↵erential Evolution

algorithm (Storn and Price (1997)). For comparative purposes, we also report the aver-

age percentage error1 (APE), as additional goodness of fit measure. For completeness,

optimal marginal parameters are summarized in Figure 2.

Table 1 shows the average calibration error for our three datasets on di↵erent quoting

dates. In line with Guillaume (2012) and Eberlein and Madan (2009), Sato models, in

their VG and NIG specifications, provide a good comparable fit of plain vanilla markets

1APE = 1/ ¯IV
mktPN

i=1
|IV mkt

i �IV model
i |

N , where ¯IV
mkt

is the average market implied volatility on
the N options.
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(a) VG (b) Sato-VG

(c) NIG (d) Sato-NIG

Figure 2: Marginal parameters of Lévy and Sato models under the two-step calibration

procedure. Trading days are November 5, 2008 (date 1), October 31st, 2012 (date 2)

and October 26, 2016 (date 3).
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in both strike and time to maturity dimensions, overperforming Lévy models. This

is especially true in the high volatility scenario, when Lévy models show very high

root mean squared errors and average percentage errors higher than 11%. This evidence

confirms that moments dynamics implied by Sato processes are more in line with market

data than the ones implied by Lévy processes.

Date Model RMSE APE

1 VG 0.067 0.111
1 Sato-VG 0.016 0.024
1 NIG 0.067 0.111
1 Sato-NIG 0.019 0.028

2 VG 0.017 0.050
2 Sato-VG 0.013 0.040
2 NIG 0.016 0.046
2 Sato-NIG 0.010 0.032

3 VG 0.016 0.055
3 Sato-VG 0.012 0.040
3 NIG 0.015 0.051
3 Sato-NIG 0.009 0.031

Table 1: Average calibration error on the marginal fit of first 14 constituents of the S&P

500 Index by market capitalization on October 26, 2016 (date 3). Figures for November

5, 2008 (date 1) refer to 10 constituents and figures for October 31st, 2012 (date 2) refer

to 13 constituents.

Thereafter, we explore the correlation flexibility considering all possible bivariate

baskets: 45 baskets for November 5, 2008 (date 1), 78 baskets for October 31st, 2012

(date 2) and 91 baskets for October 26, 2016 (date 3). For each basket we compute

the maximum correlation level achievable within each model by setting the common

parameters to their maximum level, i.e., a equal to amax and ⇢ij equal to 1 in (3.2) and

(3.5). We have amax = min( 1
↵1
, 1
↵2
) in the VG specifications and amax = min(⇣1, ⇣2)

in the NIG specifications, according to (3.3) and (3.6) respectively. Table 2 presents

the proportions of all possible bivariate baskets of a given size for which the maximum

achievable correlation is lower under the Lévy model than under the corresponding Sato

model. All proportions are well above 0.5, ranging between 0.74 and 0.81. Not only at

the marginal level Sato specifications outperform the Lévy ones, but Sato models show

higher flexibility in the correlation fit. If we set correlation to levels 0.25, 0.5, 0.75 and

0.9, and compute the percentage of baskets reaching that correlation level, we always get

higher percentages in the case of Sato models, as reported in Table 3. This is confirmed

by the median of the maximum correlation level achievable for all baskets, shown in the

last column of Table 3. Again, in a high volatility period such as date 1, Sato models

are remarkably more flexible than Lévy models, being the median 0.77 (0.74) in the

Sato-VG (Sato-NIG) model vs 0.56 (0.53) of the VG (NIG) model.

Results in Table 1 and 2 taken together suggest that the extra parameter of ⇢↵-Sato
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Date Model Proportion

1 VG 75.56%
1 NIG 77.78%

2 VG 78.21%
2 NIG 80.77%

3 VG 74.73%
3 NIG 75.82%

Table 2: Proportions of all possible bivariate baskets of a given size for which the maxi-

mum achievable correlation is lower under the Lévy model than under the corresponding

Sato model. Quoting dates are November 5, 2008 (date 1), October 31st, 2012 (date 2)

and October 26, 2016 (date 3).

Date Model 0.25 0.5 0.75 0.9 Median

1 VG 97.78% 55.56% 20.00% 15.56% 0.56
1 Sato-VG 100.00% 100.00% 51.11% 22.22% 0.77
1 NIG 93.33% 60.00% 17.78% 4.44% 0.53
1 Sato-NIG 100.00% 93.33% 48.89% 13.33% 0.74

2 VG 100.00% 70.51% 29.49% 16.67% 0.64
2 Sato-VG 100.00% 85.90% 47.44% 16.67% 0.74
2 NIG 100.00% 70.51% 32.05% 15.38% 0.61
2 Sato-NIG 100.00% 87.18% 44.87% 16.67% 0.72

3 VG 100.00% 74.73% 35.16% 14.29% 0.68
3 Sato-VG 100.00% 89.01% 38.46% 18.68% 0.71
3 NIG 100.00% 74.73% 34.07% 13.19% 0.64
3 Sato-NIG 100.00% 84.62% 38.46% 15.38% 0.71

Table 3: Percentage of bivariate baskets whose maximum achievable correlation is higher

or equal to levels 0.25, 0.5, 0.75 and 0.9, for all quoting dates and models. The last column

shows the median of the maximum achievable correlations.

models allows a more accurate marginal fit, while enhancing on average the correlation

flexibility with respect to Lévy specifications. This is examined in more detail in the

next section, where we consider also how increasing the basket size a↵ects the correlation

fit.

4.3 Two-step calibration procedure

By increasing the number of assets the constraint on the common parameter a becomes

more binding, as one can see from equation (3.3) for the VG case and from Equation

(3.6) for the NIG case. These bounds reduce the correlation ranges of each pair of

assets. A measure of this e↵ect is a challenging issue, since we should define a range

for a correlation matrix. Furthermore, the Brownian correlation parameters should be

also considered to define this range. We therefore adopt a di↵erent approach, by using

the historical correlation matrix as a proxy of asset correlations for illustration purposes.
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Ideally, factor-based Lévy processes should be calibrated to the market prices

of multi-asset derivatives. However, this approach is not always feasible in

practice. Therefore, we explore the model flexibility by calibrating the cor-

relation structure to historical correlations, as in Luciano and Schoutens

(2006) and Leoni and Schoutens (2008). An alternative, more robust ap-

proach, can be found in Guillaume (2012). Summary statistics of the historical

correlation matrices are reported in Table 4. For each trading day, the table pro-

vides the minimum, the maximum, the mean and the median of all pairwise

correlation values. Historical correlations have been computed on daily log returns

by exponentially-weighted moving average over the previous year.

Date Min Max Mean Median

1 0.46 0.89 0.67 0.68
2 -0.24 0.77 0.30 0.33
3 -0.39 0.98 0.28 0.30

Table 4: Summary statistics of the historical correlation matrix computed on daily log

returns by exponentially-weighted moving average over the previous year. Quoting dates

are November 5, 2008 (date 1), October 31st, 2012 (date 2) and October 26, 2016 (date

3).

We calibrate the dependence structure for each basket of underlyings by minimising

the root mean squared error between empirical and model return correlations, consider-

ing baskets with sizes ranging from two to five.

The number of all possible baskets of di↵erent sizes analyzed in our two step cali-

bration procedure is reported in Table 5.

Size Date 1 Date 2 Date 3

2 45 78 91

3 120 286 364

4 210 715 1001

5 252 1287 2002

Table 5: Number of all possible baskets of any given size (from 2 to 5) on November 5,

2008 (date 1), October 31st, 2012 (date 2) and October 26, 2016 (date 3).

For di↵erent models, volatility scenarios and basket sizes, Figures 3, 4 and 5 show

the proportion of baskets whose correlation maximum absolute error (MAE) is higher

than any given level. More specifically, the correlation MAE is defined as

max1i,jn | ⇢emp
Y (i, j)� ⇢Y (i, j) |,

where ⇢emp
Y (i, j) and ⇢Y (i, j) are the sample and model return correlations,

respectively.
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Figure 3: Proportion of baskets whose correlation maximum absolute error (MAE) is

higher than any given level, for di↵erent models and basket sizes n = 2, 3, 4, 5 on Novem-

ber 5, 2008.
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Figure 4: Proportion of baskets whose correlation maximum absolute error (MAE) is

higher than any given level, for di↵erent models and basket sizes n = 2, 3, 4, 5 on October

31, 2012.
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Figure 5: Proportion of baskets whose correlation maximum absolute error (MAE) is

higher than any given level, for di↵erent models and basket sizes n = 2, 3, 4, 5 on October

26, 2016.
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We can see that in all cases the Sato models outperform the Lévy counterpart. This

e↵ect is more pronounced in a high volatility market, as of November 5, 2008. It is

also evident that the ⇢↵-models significantly improve the correlation fit of the ↵-models,

thanks to the additional Brownian correlation parameters.

We underline that the same correlations can be fitted by di↵erent pairs of

common parameters (a,⌃⇢). This fact will be used in the next section to show

that in principle the model is able to have di↵erent nonlinear dependence

structures for a given correlation level when correlation levels are not too

binding. A nonlinear dependence measure could be used to identify a and

the Brownian motion correlations in general.

Finally, Table 6 shows correlation, cokurtosis and coskewness ranges spanned by

Sato and Lévy models with the parameters calibrated on October 26, 2016 (date 3)

for all possible baskets generated by the first five assets. Specifically, we consider the

standardized coe�cients

mrs =
E [(R1(t)� E (R1(t)))

r (R2(t)� E (R2(t)))
s]

V ar [R1(t)]
r/2 V ar [R2(t)]

s/2
,

(r, s) 2 (1, 2), (2, 1), (1, 3), (3, 1), (2, 2),

with Ri(t) = log Si(t)
Si(0)

, i = 1, 2, for t equal to 1 month, 6 months and 1 year. While

correlation is time independent in both models, comoments are time independent in the

⇢↵-Sato models and time-dependent in the ⇢↵-Lévy models. For sake of brevity,

only the cokurtosis m22 and the coskewness m12 are reported in Table 6, which

also shows the maximum value of a. Notice that the constraint on the common

parameter a is more binding in the Sato models, although we observe more often a

wider correlation range. This fact indicates that the improvement of the performance of

the Sato models is not directly linked to the common parameter a, but it derives from

the combined influence of marginal parameters on the correlation structure. Cokurtosis

ranges clearly indicates the presence of nonlinear dependence, that in Sato models is

constant over time, while in Lévy models is higher in the short term and tends to

Gaussian values as time to maturity increases. We also observe that the cokurtosis level

of Sato models is close to the 3-month cokurtosis level of the Lévy counterpart.

As already highlighted in Guillaume (2012) for the ↵-VG model and confirmed in

Marena et al. (2015) for the ⇢↵-VG and ⇢↵-NIG models, a joint calibration approach

enable to exploit the trade-o↵ between marginal distributions and correlation fit may be

required to enhance the goodness-of-fit of the correlation structure, especially when

the number of the assets is large. We complete our empirical analysis by performing

a joint calibration procedure.
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Lévy models Sato models

NIG amax ⇢asset max(|m12|)) max(m22) amax ⇢asset max(|m12|) max(m22)

basket min max 1M 3M 6M 1M 3M 6M min max

aapl/amzn 6.32 -0.48 0.72 0.86 0.49 0.35 6.94 3.66 2.44 1.49 -0.42 0.66 0.45 3.39
aapl/jnj 1.84 -0.21 0.52 2.34 1.35 0.96 13.51 5.53 2.54 0.53 -0.20 0.57 1.46 6.09
aapl/msft 4.07 -0.36 0.79 2.24 1.29 0.91 13.83 6.10 3.20 0.92 -0.32 0.77 1.39 6.46
aapl/xom 2.94 -0.23 0.64 2.44 1.41 1.00 14.15 5.94 2.86 1.13 -0.22 0.81 1.52 6.87
jnj/amzn 1.84 -0.17 0.37 0.53 0.31 0.22 7.02 3.19 1.75 0.53 -0.15 0.37 0.31 3.07
msft/amzn 4.07 -0.29 0.56 0.77 0.45 0.31 7.22 3.49 2.09 0.92 -0.23 0.50 0.40 3.24
msft/jnj 1.84 -0.14 0.67 3.28 1.90 1.34 24.75 9.52 3.81 0.53 -0.09 0.75 2.09 11.07
msft/xom 2.94 -0.11 0.84 3.45 1.99 1.41 26.29 10.38 4.41 0.92 -0.03 0.89 1.80 10.26
xom/amzn 2.94 -0.19 0.45 0.69 0.40 0.28 7.31 3.38 1.90 1.13 -0.17 0.52 0.46 3.38
xom/jnj 1.84 -0.06 0.79 4.06 2.34 1.66 37.01 13.83 5.14 0.53 0.03 0.68 2.00 10.09

VG

aapl/amzn 6.23 -0.49 0.73 0.82 0.47 0.33 6.01 3.37 2.39 1.54 -0.47 0.71 0.46 3.28
aapl/jnj 1.63 -0.23 0.50 2.03 1.17 0.83 9.77 4.25 2.19 0.50 -0.24 0.56 1.21 4.44
aapl/msft 3.40 -0.37 0.73 1.95 1.13 0.80 10.22 4.78 2.75 0.84 -0.35 0.73 1.16 4.86
aapl/xom 2.36 -0.25 0.59 2.09 1.21 0.85 10.03 4.48 2.40 0.87 -0.27 0.72 1.24 4.88
jnj/amzn 1.63 -0.19 0.36 0.47 0.27 0.19 5.42 2.65 1.60 0.50 -0.19 0.39 0.30 2.65
msft/amzn 3.40 -0.30 0.53 0.66 0.38 0.27 5.68 2.93 1.90 0.84 -0.28 0.51 0.37 2.86
msft/jnj 1.63 -0.22 0.69 2.95 1.71 1.21 18.54 7.48 3.34 0.50 -0.20 0.77 1.76 7.88
msft/xom 2.36 -0.22 0.83 3.04 1.75 1.24 19.19 7.98 3.77 0.84 -0.19 0.98 1.75 8.49
xom/amzn 2.36 -0.21 0.42 0.57 0.33 0.23 5.54 2.75 1.71 0.87 -0.22 0.50 0.40 2.85
xom/jnj 1.63 -0.17 0.83 3.67 2.12 1.50 27.35 10.70 4.46 0.50 -0.10 0.76 1.79 7.91

Table 6: Ranges of correlation, coskewness m12 and cokurtosis m22 for all bivariate

baskets generated by the first five assets. Coskewness and cokurtosis of Lévy models

refer to 1-month, 3-months and 1 year time to maturity. Parameters are calibrated on

October 26, 2016 (date 3).

4.4 Joint calibration procedure

Setting the tolerance on the maximum absolute error in matching asset correlations to

✏, we fit all option surfaces together. In particular, for each basket of n underlyings, we

numerically solve the problem:

min
{✓,a,⇢}

nX

i=1

RMSEi

s.t. max|⇢emp
Y (j, k)� ⇢Y (j, k)|  ✏, j 6= k,

where ✓ is the vector of all marginal parameters and ⇢ = {⇢ij, i = 1, . . . n, j = 2, . . . n}
are the correlation coe�cients between the Brownian components collected in B⇢. The

relative importance of marginal versus correlation fit can then be fine-tuned through the

threshold ✏. Initial conditions are provided by the parameters of the two step calibration.

In our exercise, for all dates and models, we set ✏ = 0.1 and we consider all possible

baskets generated by the first five assets: 10 baskets of size 2 and 3, 5 baskets of size

4 and one basket of size 5 . Only baskets for which the two-step calibration procedure

provides a maximum correlation error higher than 0.1 are considered. Results are sum-

marized in Figure 8 that shows the average RMSE of the two-step calibration vs the
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joint one for each basket. Most baskets are quite closed to the diagonal, implying that

the increase in the RMSE of the joint calibration with respect to the two-step procedure

is within reasonable values. Furthermore, all large errors of both calibration procedures

are associated to Lévy models.

5 Impact of the nonlinear dependence structure on

option prices

In this section we explore the impact of nonlinear dependence and its evolution over

time on two-assets derivatives pricing, under the ⇢↵-Sato and ⇢↵-models. We consider

the following derivative contracts: basket, best-o↵, worst-o↵ and spread options. These

contracts are known to be highly sensitive to linear and nonlinear dependence, as high-

lighted in Tankov (2006) and Marfè (2012). In the bivariate case, we have two common

parameters driving the dependence structure within our framework. Therefore, in prin-

ciple, once calibrated the marginals, we can change nonlinear dependence, leaving the

correlation level unchanged. For illustration purposes, Figure 6 shows iso-correlation

and iso-comoments contours for the ⇢↵-Sato-NIG process. In fact, the upper right plot

in Figure 6 shows the iso-correlation contours for di↵erent values of the common pa-

rameters: a and the Brownian motion correlation ⇢. The other subplots, reporting

also iso-coskewness and iso-cokurtosis contours, suggest how higher order comoments

increase/decrease along the iso-correlation contours. In this sense, the most evident dif-

ference between linear and nonlinear dependence can be found when moving along the

0-correlation line. When the 0-line touches the left part of the graphs, the two assets

are independent, whilst approaching the right part, the two asset become dependent

but still uncorrelated. Then, to quantify the potential impact of nonlinear dependence,

we can consider two di↵erent model calibrations, representing the minimum and max-

imum nonlinear dependence scenarios associated to any given asset correlation level.

The calibration corresponding to the minimum nonlinear dependence can be obtained

by setting the parameter ⇢ equal to 1 and choosing a according to the iso-correlation

contour. On the other hand, if we set the parameter a = amax and choose ⇢ according

to the iso-correlation contour, we get the maximum nonlinear dependence, as measured

by coskewness and cokurtosis.

Figure 7 shows the scatter plots of bivariate returns corresponding to the minimum

(upper plot) and maximum (lower plot) nonlinear dependence scenarios, labeled as A

and B respectively. These scenarios are associated to a correlation level of 0.5. The plot

also exhibits the iso-price contours for our di↵erent contracts, coming into play in our

regression exercise. In particular, nonlinear dependence - ceteris paribus - changes the

shape of the “point cloud”. If an increasing number of points falls on di↵erent iso-price

curves in the two scenarios, we observe increasing di↵erences in derivative valuations.

We generate by Montecarlo simulation a dataset of options prices written on all
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Figure 6: Contour plots for the bivariate basket including Apple and Microsoft on Oc-

tober 26, 2016. Sato-NIG model. Black dot lines indicate iso-correlation contours.

possible bivariate baskets with marginal parameters given by the two step calibration

procedure and dependence structures calibrated according to the maximum and mini-

mum dependence scenarios. We thus obtain two set of prices, PA and PB. To study the

impact of nonlinear dependence on derivative prices, we consider the following regression

�P/P = �0 + �1corr + �2T + �3�m12 + �4�m21 + �5�m13 + �6�m31 + �7�m22 + ",

where �0, �1, . . . , �7 are regression coe�cients and " is an error term. We define relative

price variations as �P/P = PB�PA

PA , where PB and PA correspond to values computed

under our two di↵erent nonlinear dependence scenarios, A and B. Within this frame-

work, we have the same correlation in the two di↵erent scenarios, i.e. corrA = corrB,

and di↵erent absolute values of comoments, i.e. |mB
ij| > |mA

ij|, i 6= j. In this sense, the

regression analysis can be meaningful in assessing the e↵ect of comoments variations on

our relative price variations, keeping all the other relevant factors a↵ecting the price un-

changed. We add two control variables: correlation and time to maturity levels, in order

to control for possible e↵ects. Therefore, we first run a regression of relative variations

in derivative prices �P/P against correlation and time to maturity only. Then, in our

second regression, we add comoments variations �m12, �m21,�m13,�m31 and �m22.

In particular, we consider the following correlation levels: -0.5, -0.25, 0, 0.25, 0.5, 0.75

and 0.9, and maturities: 1, 3, 6, 12, 18, 24, 30 months. Table 7 shows the overall num-

ber N of baskets considered in the regression experiment for our three di↵erent quoting

dates and it exhibits the regression results relative to date 3 and the adj. R2 relative to

date 1 and date 2. In fact, the significance level of the coe�cients is similar for all the
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Figure 7: Scatter plots of 1 year log-returns. Apple and Microsoft, October 26, 2016

(SatoNIG model - correlation level = 0.5).
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regressions, as well as the impact of nonlinear dependence, which we are going to discuss

below. We notice that in the high market volatility scenario (date 1) the explanatory

power of the regression models tends to be lower, nevertheless the same considerations

made for the dates 2 and 3 apply.

It is apparent from results in Table 7 that almost all coe�cients are highly significant.

As we observe a remarkable improvement in the explication power of the regression

model for all option types and models when we add the comoment variations (increasing

adj. R2), we expect a relevant influence of nonlinear dependence on the pricing of the

claims. The fact that option prices are significantly a↵ected by the nonlinear dependence

incorporated in a model indicates that the calibration procedure could be improved

by considering not only correlation, but also a measure of nonlinear dependence. We

can notice that the time to maturity e↵ect is always the same in both specifications

for Sato models, because we have seen that in Sato processes time is orthogonal to

any other variable included in both regressions (comoments, variation and correlation).

Moreover, looking at the sample size of each regression model, we notice that the number

of products that can be valued within Sato models is always higher than that of Lévy

models, coherently with the observation that in Sato specifications we can reach more

often our highest correlation threshold of 0.9. Analysing regression coe�cients estimates,

we can observe that in some cases comoments variations have a scarce impact in economic

terms on price variations, whereas in other cases they have a significant influence. For

instance, we observe smaller absolute values of beta estimates in the worst-of put case (in

particular with Sato models), so we do not expect any significant influence of nonlinear

dependence on the pricing of the claim in this setting. On the contrary, we can observe

greater absolute values of the estimates relative to coskewness in both worst-of call and

best-of put cases. In the best-of put case we also observe the greatest absolute values

of beta estimates relative to cokurtosis variation. These observations are somehow in

line with what we observe in Figure 7, enhancing and completing the results found

in the regression analysis: the di↵erences between these two scenarios are more severe

depending on the shape of the iso-price curves, so depending on the specific payo↵

function of the multivariate derivative under consideration.
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6 Conclusion

In the risk neutral setting, Sato models provide a significant material gain to practioners

with respect to Lévy models in terms of marginal fit in both time to maturity and strike

dimensions. In fact Lévy models should be calibrated to one maturity at a time or

on maturity buckets to provide a reasonable fit. At the multivariate level, Guillaume

proposed a model which incorporates the marginal properties of Sato processes and

the dependence structure of the ↵-models. Since the dependence flexibility of the ↵-

models has been significantly improved by the more general ⇢↵-models, here we introduce

a class of multivariate models with the dependence structure of ⇢↵-models and Sato

marginal distributions. In a multivariate framework, given the trade-o↵ of marginal-

dependence for ⇢↵-models, we need to assess if the correlation flexibility is preserved in

the Sato setting. Comparing the performance of ⇢↵-Lévy and ⇢↵-Sato models it comes

out that, as expected, Sato models outperform the marginal fit of plain vanilla markets

in both strike and maturity dimensions. Furthermore, in our datasets, Sato marginal

parameters reveal to be less binding for the correlation fit than the Lévy marginal ones in

a higher percentage of baskets. Indeed, although the bounds on the parameters driving

correlations are more restrictive, Sato models tend to span a higher range of achievable

correlations than the Lévy counterpart. A sensitivity analysis shows that the nonlinear

dependence incorporated in this class of models has a significant impact on derivative

prices. Therefore, the calibration procedure could be improved by considering not only

correlation, but also a measure of nonlinear dependence, especially for most sensitive

products. This feature is incorporated in practice in the calibration step if multivariate

option quotes are available for some specific products.

Appendices

A Model correlations

Applying Theorem 3.3 in Barndor↵-Nielsen et al. (2001) and its univariate version

(Theorem 30.1 in Sato (1999)) to Y I(t) = (B1(X1(t)), ..., B1(X1(t))) and Y ⇢(t) =

(B⇢
1(Z(t)), ..., B

⇢
n(Z(t))), we find the characteristic function  Y (t) of Y (t)

 Y (t)(u) =  Y I(t)(u) Y ⇢(t)(u) =

= exp(t
nX

j=1

lXj(log( Bj(uj)))) exp(tlZ(log( B⇢(u)))),
(A.1)

26



where lXj and lZ are the Laplace exponents of the subordinators. Correlations are

independent of time and are given by

⇢Y (i, j) =
Cov(B⇢

i , B
⇢
j )E(Z) + E(B⇢

i )E(B⇢
j )V (Z)

p
V (Yi)V (Yj)

=
⇢ij�i�j

p
↵i
p
↵jE(Z) + µiµj↵i↵jV (Z)
p

V (Yi)V (Yj)
.

A discussion on correlation features and dependence structure of these models can be

found in Luciano et al. (2016) and Marena et al. (2015).

B Specifications

B.1 Variance Gamma

The VG univariate process, introduced by Madan and Seneta (1990), is a real Lévy

process LV G = {LV G(t), t � 0} which can be obtained as a Brownian motion time-

changed by a Gamma process {G(t), t � 0}. Let � > 0 and µ be real parameters, then

the process LV G is defined as

LV G(t) = µG(t) + �B(G(t)),

where B is a standard Brownian motion. Its characteristic function is

 V G(u) =

✓
1� iuµ↵ +

1

2
�2↵u2

◆� t
↵

.

We now specify G to have Gamma marginal distributions. Let Xj and Z be distributed

according to Gamma laws:

L(Xj) = �

✓
1

↵j
� a,

1

↵j

◆
and L(Z) = �(a, 1),

and let the parameters ↵j and a satisfy the constraints 0 < ↵j < 1
a , j = 1, ..., n. The

subordinator G(t) has marginals L(Gj) = �
⇣

1
↵j
, 1
↵j

⌘
and the process Y defined in (1.1)

has VG marginal processes with parameters µj,↵j, �j - denoted as V G (µj,↵j, �j) - i.e.

L(Yj) = L(µjGj(t) + �jW (Gj(t))).

We name Y a ⇢↵-Variance Gamma process, shortly ⇢↵VG.

By imposing ⇢ij = 0, for i 6= j, ⇢ij = 1, for i = j, we find as a subcase of the current

model the ↵-VG process introduced in Semeraro (2008).
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B.2 Normal inverse Gaussian

A NIG process with parameters � > 0, �� < � < �, � > 0 is a Lévy process LNIG =

{LNIG(t), t � 0} with time one characteristic function

 NIG(u) = exp
⇣
��
⇣p

�2 � (� + iu)2 �
p
�2 � �2

⌘⌘
.

It can be constructed by subordinating a Brownian motion with an Inverse Gaussian

distribution. Let

Xj ⇠ IG

✓
1� a

p
↵j,

1
p
↵j

◆
, j = 1, ..., n and Z ⇠ IG(a, 1),

where

0 < a <
1

p
↵j

, j = 1, ..., n; (B.1)

let now �j, �j, �j be such that

�j > 0, ��j < �j < �j, �j > 0;

further, let
1

p
↵j

= �j
q
�2j � �2

j . (B.2)

If we set µj = �j�2j and �j = �j in the process Y defined in (1.1), then Y has NIG

marginal processes, i.e.

L(Yj(t)) = L(�j�2jGj(t) + �jW (Gj(t)))

We name Y a ⇢↵-Normal Inverse Gaussian process, shortly ⇢↵-NIG.
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Figure 8: Average RMSE in the two-step vs the joint calibration procedure for each

basket and di↵erent basket sizes n = 2, 3, 4, 5. Only baskets for which the two-step

calibration procedure provides a correlation maximum absolute error higher than 0.1

are reported.
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