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Abstract

The class of marked Poisson processes and its connection with subordinated Lévy processes
allow us to propose propose a new interpretation of multidimensional information flows and
their relation to market movements. The new approach provides a unified framework for multi-
variate asset return models in a Lévy economy. In fact, we are able to recover several processes
commonly used to model asset returs as subcases. We consider a first application example using
the Normal inverse Gaussian specification.
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Introduction

The notion of a stochastic change of time, interpreted as a measure of trading activity, dates back
to Clark (1973) who was the first to link the deviation from normality of asset prices to the changes
in the number of market orders in different time periods. Since then, subordination of Brownian
motions was introduced to model asset returns, with the interpretation of the subordinator as
a stochastic change of time. A subordinated Brownian motion is a process Y (t) defined by the
composition Y (t) := B(π(t)), where π(t) is the subordinator and the Brownian motion B(t) is
called the subordinate process. A prominent example is the variance gamma process proposed
by Madan and Seneta (1990) as an asset return model; the subordinator in this case is a gamma
process.

The first subordinated multivariate model was constructed by considering a time change com-
mon to all assets represented by a univariate subordinator (see Madan and Seneta (1990) and Lu-
ciano and Schoutens (2006)). Unfortunately, the resulting models exhibited several shortcomings
including the lack of independence between asset returns and a limited span of linear correlations.
Furthermore, there is empirical evidence that trading activity is different across assets (e.g., Harris
(1986)). From the theoretical perspective multivariate subordination allowing different assets to
have different time-changes was introduced in the work of Barndorff-Nielsen et al. (2001). Semeraro
(2008) and Luciano and Semeraro (2010) introduced the α-models, using a multivariate subordi-
nator composed of a common component and an idiosyncratic component, named factor-based
subordinator. However, to preserve the intuition of economic time, each asset return distribution
is time changed by a one-dimensional subordinator. The subordinated process Y (t) is therefore
given by the componentwise composition Y (t) = (B1(π1(t)), . . . , Bn(πn(t))). We refer to this tech-
nique as componentwise subordination. Due to this constraint, the subordinate processes, i.e. the
Brownian motions, must be independent. This means that returns conditional to trading activity
are uncorrelated. As a consequence models constructed by componentwise subordination cannot
span a wide correlation range.

To increase correlation flexibility Luciano and Semeraro (2010) extend the α-models depen-
dence structure by introducing the ρα-models. A ρα-model is an Rn-valued subordinated process
{Y (t), t > 0} defined by

Y (t) := (Y I(t) + Y ρ(t)) = (B1(π1(t)) +Bρ
1(πc(t)), . . . , Bn(πn(t)) +Bρ

n(πc(t))) , (0.1)

where πj(t) and πc(t) are both mutually independent subordinators and independent of Bj(t) and
Bρ
j (t). There, Bj(t) are independent Brownian motions and Bρ

j (t) are Brownian motions with
correlations ρ(Bi(t), Bj(t)) = ρij , i, j ∈ {1, . . . , n}. This preserves the intuition that each asset has
its own subordinator, but includes the possibility of co-movements due to the correlated Brownian
components.

Similarly, Ballotta and Bonfiglioli (2014) define the multivariate process using a common and an
idiosyncratic component of returns. Specifically, they introduce an Rn-valued subordinated process
{Y (t), t > 0} defined by

Y (t) := (X1(t) + a1Z(t), . . . , Xn(t) + anZ(t)) , (0.2)

where Xj(t) and Z(t) are mutually independent Lévy processes. With the aim to preserve compo-
nentwise subordination, Buchmann et al. (2016) introduced the weak subordination, a new tech-
nique which allows to correlate Brownian motions and preserve the intuition of change of time.
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The authors introduce a first example, the weak α - variance gamma process, which is between the
α and the ρα-variance gamma processes.

An alternative approach to correlate the unit-time random variables resulting from univariate
subordinated Brownian motions is proposed by Eberlein and Madan (2010). They model individual
returns as one dimensional subordinated Brownian motions

Yj(t) := µjπj(t) + σjWj(πj(t)), j = 1, ...n,

and assume that the subordinators are independent. They introduce dependence between returns at
unit time by merely correlating the Brownian motions and keeping the subordinators independent.
Therefore

L(Yj) = L(µjπj + σj
√
πjWj), j = 1, ...n,

where Wj are standard normal variates with correlations ρWij .

Within this framework, we propose a new interpretation of trade activity which allows us to
correlate asset returns similarly to Eberlein and Madan (2010) and remain in the Lévy setting.
A link between subordinated Brownian motions and marked Poisson processes allows us to in-
terpret the subordinator as the entire trade activity on a portfolio of assets up to a given time,
measured by the corresponding Poisson random measure. By so doing, we introduce a new inter-
pretation of the subordinator π(t) which is still consistent with the intuition of economic time. By
means of this new interpretation of trading activity, we propose to use multivariate subordination
(not-componentwise) in Barndorff-Nielsen et al. (2001). We show that multivariate subordination
processes provides a unified framework and includes as subcases most of the processes listed above.
The new class of processes is fully characterized through its Lévy triplet, and the characteristic
function is given in closed form.

The paper is organized as follows. Section 1 recalls preliminary results needed to introduce
the model. Section 2 introduces the class of Lévy marked Poisson models and their link with
subordinated Lévy processes. The main submodels are presented in Section 3. Section 4 specifies a
flexible class of Lévy marked Poisson processes suitable to model stock returns. The characteristic
function is provided in closed form as well as the linear correlation coefficient. This section also
specifies marks and Poisson measure to find a multivariate version of the normal inverse Gaussian
processes. In Section 5 we perform a calibration exercise of the NIG model to illustrate the flexibility
of the model dependence structure.

1 Preliminaries

We refer to Sato (1999) for Lévy processes and subordination and to Çinlar (2011) for Poisson
processes and their connection with Lévy processes.

Let Π be a Poisson random measure on a measurable space (E, E) with a σ-finite mean measure
µΠ. By slight abuse of notation, with Π = {Πi, i ∈ I} we indicate both the random measure
and the collection of its atoms indexed by some countable set I. Marked Poisson processes are
constructed by attaching a random variable to each atom of the random measure Π. Formally, let
Z = {Zi, i ∈ I} be a family of random variables (marks) on a measurable space (F,F) indexed
by the same countable set I. Assume that the variables Zi are conditionally independent given Π
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with distributions Q(Πi, ·), where Q(s, B) is a transition probability kernel from (E, E) into (F,F).
Each variable Zi can be considered as an indicator of some property associated with the atom Πi.
Then, as proved in Theorem 3.2 in Çinlar (2011), M := (Π, Z) forms a Poisson random measure
on (E×F, E ⊗F) with mean µΠ×Q, where (µΠ×Q)(dx, dy) = µΠ(dx)Q(x, dy). The new measure
M is called marked Poisson random measure.

Let us recall that the subordination of a Lévy process L = {L(t), t ≥ 0} by a univariate
subordinator π(t), i.e., a Lévy process on R+ = [0,∞) with increasing trajectories, defines a new
process X = {X(t), t ≥ 0} by the composition X(t) := (L1(π(t)), . . . , Ln(π(t)))T . Theorem 30.1
in Sato (1999) characterizes the subordinated process X in terms of its Lévy triplet. Barndorff-
Nielsen et al. (2001) generalize the above construction by allowing the introduction of multivariate
subordinators, i.e., Lévy processes on Rn+ = [0,∞)n, whose trajectories are increasing in each
coordinate. For purposes of introduction of multivariate subordination, the notion of Rd+-parameter
process, as introduced in Barndorff-Nielsen et al. (2001), is required. Consider the multiparameter
s = (s1, ..., sd)

T ∈ Rd+ and the partial order on Rd+

s1 � s2 ⇔ s1
j ≤ s2

j , j = 1, . . . , d.

Let now L(s) = (L1(s), L2(s), . . . , Ln(s))T be a process with parameters in Rd+ and values in Rn.
It is called an Rd+-parameter Lévy process on Rn if the following hold

• for any m ≥ 3 and for any choice of s1 � ... � sm, L(sj) − L(sj−1), j = 2, ...,m, are
independent,

• for any s1 � s2 and s3 � s4 satisfying s2−s1 = s4−s3, L(L(s2)−L(s1)) = L(L(s4)−L(s3))
where L(·) denotes the law of the random variable,

• L(0) = 0 almost surely, and

• almost surely, L(s) is right continuous with left limits in s in the partial ordering of Rd+.

Let {L(s), s ∈ Rd+} be a multiparameter Lévy process on Rn with Lévy triplet (γL,ΣL, νL),
and let π(t) be a d dimensional subordinator independent of L(s) having Lévy triplet (γτ , 0, νπ).
The subordinated process X = {X(t), t ≥ 0} defined by

X(t) := L(τ (t)) =

 L1(π1(t), . . . , πd(t))
...

Ln(π1(t), . . . , πd(t))

 , t ≥ 0

is a Lévy process, as proved in Theorem 4.7 in Barndorff-Nielsen et al. (2001), who also provide its
characteristic function and Lévy triplet.

2 Subordinated Brownian motion and marked Poisson process

In this section we introduce a multivariate model by multivariate subordination of a multiparameter
Brownian motion and we provide the connection with marked Poisson processes and the implied
new interpretation of trading activity.
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The connection between multivariate subordinated Lévy processes and marked Poisson processes
allows us to introduce a new interpretation of trading activity, which is consistent with the notion
of stochastic time but more general. This connection lays the foundation of the use of (not-
componentwise) multivariate subordination to construct asset return modeling. Advantages of
multivariate subordination are the possibility to introduce correlation among prices conditional
on trading activity and the characterization of the multivariate resulting process in terms of its
characteristic function.

Let Bi(t) be independent Brownian motions on Rni with drift µ and covariance matrix Σi,
and let B = {B(s), s ∈ Rd+}, defined as B(s) := (B1(s1), . . . ,Bd(sd))

T , be the associated multi-
parameter Lévy process. Let Ai ∈ Mn×ni(R). We can define the process BA = {BA(s), s ∈ Rd+}
as

BA(s) = A1B1(s1) + . . .+AdBd(sd) s ∈ Rd+. (2.1)

The processBA is an Rd+-parameter Lévy process on Rn, see Example 4.4 in Barndorff-Nielsen et al.
(2001). Let A := (A1, . . . ,Ad) and B be block matrices, we can write shortly BA(s) = AB(s).
We call the Rd+-parameter Lévy process BA(s) in (2.1) Rd+-parameter Brownian motion. At this
point we can introduce the multiparameter Gaussian kernel corresponding to BA(s).

Definition 2.1. A process Y defined by

Y (t) := BA(π(t)) =

 BA1(π1(t), . . . , πd(t))
...

BAn(π1(t), . . . , πd(t))

 (2.2)

is a subordinated multi-parameter Brownian motion (SMBM), where BA is a multi-parameter
Brownian motion and π(t) is a multivariate subordinator independent of BA.

Let Π be the Poisson random measure on (R+×Rd+,Bd+1) associated to the subordinator π(t),
where Bd+1 is the Borel σ-algebra. It holds

π(t) :=

∫
(0,t]×Rd+

xΠ(ds, dx), (2.3)

The atoms of Π are family of random variables Π = {(Π1,Π2) = {(Π1i,Π2i), i ∈ I}} on
R+ × Rd+, where Π1i are the jump times and Π2i are the jump sizes.

The following theorem essentially proved in Jevtić et al. (2017), provides a connection between
marked Poisson processes and multivariate subordinated Lévy processes.

Theorem 2.1. Let Y (t) be a SMBM, and let Π be the random measure associated to π(t). Then
it exists a family of marks Z of Π on (Rn,Bn) such that the family N = (Π1,Z) forms a Poisson
random measure N on (R+ × Rn,Bn+1) and it holds

Y (t) =L γY t+

∫
(0,t]×B

y[N(ds, dy)− µN (ds, dy)] +

∫
(0,t]×Bc

yN(ds, dy), (2.4)

where B is the unit ball in Rn.
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Proof. Let Z = {Zi, i ∈ I} be a family of marks of Π = {(Π1i,Π2i), i ∈ I} on (Rn,Bn), with
distributionG(Π2i, ·), whereG is a transition probability kernel from (Rd+,Bn) into (Rn,Bn) defined
by

G(0, B) := P (BA(0) ∈ B) = 1B(0) (2.5)

G(s, B) := P (BA(s) ∈ B). (2.6)

By Theorem 1.1 in Jevtić et al. (2017) the family N = (Π1,Z) forms a Poisson random mea-
sure on (R+ × Rn,Bn+1) with mean measure µN (dt, dy) = dt

∫
Rd+
νΠ(ds)Q(s, dy) and, if γY =∫

Rd+
νΠ(ds)

∫
B xQ(s, dx), the process Y (t) defined as

M(t) := γY t+

∫
(0,t]×B

y[N(ds, dy)− µN (ds, dy)] +

∫
(0,t]×Bc

yN(ds, dy), (2.7)

is (in law) the subordinated Lévy process Y (t).

Theorem 2.1 is stated in a slightly more generality than in Jevtić et al. (2017), since here each
Bi(s), i ∈ {1, . . . , d} in (2.1) is a multivariate process with correlated margins. The links between
a multi-parameter process and Gaussian marks and between subordinator π(t) and the Poisson
random measure Π are proved in Jevtić et al. (2017). This connection provides a theoretical moti-
vation to introduce multi-parameter Brownian motions as models of asset returns, by interpreting
the multivariate subordinator π(t) as the whole information up to time t, measured by Π.

Remark 1. Notice that, if the subordinator is one dimensional the associate measure Π represents
the market wide trade activity and by (2.3) we recover the intuition of market time.

We now consider the componentwise subordination Y (t) = (B1(π1(t)), . . . , Bn(πn(t))), where
the Brownian motions must be independent. Then the associated marked Poisson process M in
Theorem 2.1 must have marks with independent components. Also in this case Π is a measure
of the whole trading activity, but each asset depends only on its own marginal (one-dimensional)
trading activity. We recover the intuition of market time by equation (2.3).

The model introduced above is general and includes several processes widely applied in financial
modelling, as we are going to show in the next section.

We conclude this section by providing the characteristic function of Y in the following propo-
sition, which is a straightforward derivation from Theorem 4.7 in Barndorff-Nielsen et al. (2001).

Proposition 2.1. The characteristic function of a Gaussian-marked Poisson process on Rn has
the following form

E[ei<z,Y (t)>] = exp{tΨπ(logψB̃1
(z), . . . , logψB̃d(z))}, (2.8)

where Ψπ is the characterisctic exponent of π(t), B̃(sl) = AlBl(sl) and B̃ = AlBl(1).

Proof. Let Ai ∈Mn×ni(R) and let the process BA be defined as in (2.1). Have B̃(sl) = AlBl(sl).
Then B̃(sl) is a n-dimensional Brownian motion with parameters µA = Alµl and Σl = AlΣlA

T
l .

Thus
BA(s) = BA(s1, . . . , sd) = A1B1(s1) + . . .+AdBd(sd) s ∈ Rd+.
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We have
BA(δj) = BA(0, . . . , 1

j-th

, . . . , 0) = AjBj(1).

Thus

ψj(z) = E[exp{i < BA(δj), z >}] = E[exp{i < AjBj(1), z >}]

= E
[

exp

{
i
n∑
l=1

nj∑
k=1

(Aj)lkBjk(1)zl

}]
= E[exp{i < B̃j , z >}] = ψB̃j (z),

where B̃j := B̃j(1) has a normal distribution since it is a linear combination of normal distributions.
Hence

log(ψBρ(z)) = (logψ1(z), . . . , logψd(z)) = (logψB̃1
(z), . . . , logψB̃d(z))

giving

ψY (t)(z) = exp{tΨπ(logψBρ(z))} = exp{tΨπ(logψB̃1
(z), . . . , logψB̃d(z))}.

3 Submodels

In this section we show that the class of SMBMs provides a unified framework, since it generalizes
several processes widely used in finance for multiasset modelling.

3.1 α and ρα-models

Since α-models are a subcase of ρα-models obtained by setting ρij = 0, for i 6= j, it suffices to show
that ρα-models belong to the class SMBM. Let B be a n-dimensional Brownian motion with inde-
pendent components and Lévy triplet (µ,Σ, 0) where µ := (µ1, ..., µn) and Σ := diag(σ2

1, ..., σ
2
n).

Have Bρ to be a correlated n-dimensional Brownian motion, with correlations ρij , marginal drifts
µρ := (µ1α1, ..., µnαn) and diffusion matrix Σρ := (ρijσiσj

√
αi
√
αj)ij .

The Rn-valued subordinated process Y = {Y (t), t > 0} defined as

Y (t) :=

 B1(π1(t)) +Bρ
1(π(t))

....
Bn(πn(t)) +Bρ

n(π(t))

 , (3.1)

where πj and π are independent subordinators, independent from B and Bρ is a factor-based
subordinated Brownian motion, also indicated as ρα-model.

Proposition 3.1. Let Y ρ be a ρα-model. Then Y belong to the class of MSMBs.
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Proof. Let us consider the following multiparameter Brownian motion

BA = A(B1(s1), . . . , Bn(sn), Bn+1,1(sn+1), . . . Bn+1,n(sn+1))T ,

where Bi, i ∈ {1, . . . , n} are one dimensional Brownian motions with drift µi and standard deviation
σi, Bn+1 is a n-dimensional Brownian motion with parameters µρ,Σρ and A ∈Mn×2n such that

A :=


1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1

 . (3.2)

Alternatively,BA = A1B1(s1)+. . .+AnBn(sn)+An+1Bn+1(sn+1), whereAi = (0, . . . , 1, . . . , 0), i ∈
{1, . . . , n} and An+1 := I, i.e. an identity matrix. Let π be a (n + 1)-dimensional subordinator
with independent components. We have

Y (t) = BA(π(t)) =

 B1(π1(t)) +Bn+1,1(πn+1(t))
....

Bn(πn(t)) +Bn+1,n(πn+1(t))

 =L

 B1(π1(t)) +Bρ
1(πn+1(t))

....
Bn(πn(t)) +Bρ

n(πn+1(t))

 ,

and the assert is proved.

Remark 2. The class of α-models are obtained by choosing Bρ with independent components, in
this case it can be proved that the Rn-valued subordinated process Y = {Y (t), t > 0} can be defined
by

Y (t) :=

 B1(π̃1(t))
....

Bn(π̃n(t))

 ,

where π̃ = (π̃1, . . . , π̃n) is the factor-based subordinator defined by π̃i(t) = πi(t) + αiπ(t), i =
1, . . . , n. By so doing, we can obtain the α-models by choosing A = I. Another process that can be
obtained by the same choice of A is the variance generalized gamma convolution (VGG) process in-
troduced by Buchmann et al. (2017). The VGG process is obtained by subordination of independent
Brownian motions with a multivariate subordinator belonging to the family of generalized gamma
convolution. The correspondence stated in Theorem 2.1 implies that the VGG process can be con-
structed by marking the Poisson random measure associated to a subordinator of the generalized
gamma convolution family with Gaussian marks with independent components.

3.2 Factor models

In this section we show that the factor model proposed in Ballotta and Bonfiglioli (2014) belongs
to the family of Lévy marked Poisson processes. To construct this model, the Poisson random
measure Π takes values on R+ × Rn+1

+ , i.e. the subordinator takes values in Rn+1, where n is the
dimension of marks. Let A ∈Mn×(n+1) be such that:

A :=


1 0 · · · 0 a1

0 1 · · · 0 a2
...

...
. . .

...
0 0 · · · 1 an

 .

8



Define

Y I(t) :=L B
I(X(t)) =

 BI
1(π1(t))
....

BI
n+1(πn+1(t))

 , t ≥ 0.

Let now

Y (t) :=L AB
I(X(t)) =

 Y I
1 (t) + a1Y

I
n+1(t)

....
Y I
n (t) + anY

I
n+1(t)

 , t ≥ 0. (3.3)

The process Y has the factor structure proposed in Ballotta and Bonfiglioli (2012). As an example,
let π be a gamma subordinator with independent components and let L(πj) = Γ( 1

νj
, 1
νj

). In this

case, the process Y I has independent variance gamma margins with parameters (µj , σj , νj). Up
to constraints on the parameters, process Y is in law the multivariate variance gamma process
introduced in Ballotta and Bonfiglioli (2012).

The general framework constructed above is very rich and defines a broad class of models. Here
we aim at showing that subordination of multi-parameter processes increases the ability to span a
wide correlation range. We do this by analyzing the simplest model that incorporates correlation
among Brownian motions, which is obtained by considering the Brownian motions in (2.1) one
dimensional, as in the model introduced in Jevtić et al. (2017).

4 The model

As a particular case of (2.1), let us consider the Rd+-parameter Brownian motion

Bρ(s) := Bρ(s1, . . . , sd) = AB(s) s ∈ Rd+,

where B(s) := (B1(s1), . . . , Bd(sd)), where A ∈ Mn×d(R) and Bi(si) are independent Brownian
motions on R, with drift µi and variance σi. To accommodate the cross section properties of trade
we use a factor-based subordinator introduced in Semeraro (2008), defined by

π(t) := πI(t) + απC(t) = (πI1(t) + α1π
C(t), . . . , πIn(t) + αnπ

C(t)), (4.1)

where πIj (t) and πC(t), for j = 1, ..., n, are independent subordinators with Lévy measures νIj and

νC respectively.

Remark 3. The multivariate Poisson random measure Π associated to π(t) is a Poisson random
measure on (R+×Rn,B(R+×Rn)) with mean Leb× νΠ, which we call factor-based Poisson random
measure. The measure νΠ and the characteristic exponent of π(t) are derived in Semeraro (2008)
and recalled in Appendix A.

We can now introduce the class of processes to model asset returns.

Definition 4.1. Let Y (t) be defined by

Y (t) := Bρ(π(t)) = AB(π(t)), (4.2)
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where π(t) is the factor-based subordinator in (4.1) and ut is independent of Bρ. The process Y
defined in (4.2) is called factor-based subordinated multi-parameter Brownian motion (factor-
based SMBM).

Obviously Theorem 2.1 applies to factor-based SMBM processes. As a consequence they are
Gaussian marked Poisson processes and we preserve the new interpretation of trading activity. By
equation (2.8), where Ψπ is deduced by (A), we can easily derive the characteristic function of
factor-based SMBMs, which is

ψY (t)(z) = exp{tΨπ(logψBρ(z))} (4.3)

=
n∏
j=1

ψπIj (t)

(
i
n∑
i=1

aijµjzi −
1

2
σ2
j

( n∑
i=1

aijzi
)2)

ψπC(t)

( n∑
j=1

αj

[
i
n∑
i=1

aijµjzi −
1

2
σ2
j

( n∑
i=1

aijzi
)2])

,

where ψπIj (t)(w) = exp{tΨπIj
(w)} and ψπC(t)(w) = exp{tΨπC (w)}. The marginal processes, which

model individual asset returns, are multiparameter process defined on Rn, in fact the k-th log-return
is modeled as

Bρ
k(π1(t), . . . , πn(t)) =

n∑
i=1

akiBi(πi(t)),

having marginal characteristic function

ψYk(t)(zk) =

n∏
j=1

ψπIj (t)

(
iakjµjzk −

1

2
a2
kjσ

2
j z

2
k

)
ψπC(t)

( n∑
j=1

αj

[
iakjµjzk −

1

2
a2
kjσ

2
j z

2
k

])
. (4.4)

Notice that marginal distributions of returns depend on the joint distribution of π(t). The
dependence of marginal returns on the trading activity of the entire collection of assets is now
evident.

4.1 Linear correlation

This section shows that the class of factor-based SMBM allows to widen the correlations ranges of

multivariate model widely used in financial applications. The correlation matrix ρ :=
(
ρ
Y (t)
m,l

)
n×n

can be derived, as presented in Appendix B, by using the total covariance formula and has entries

ρ
Y (t)
m,l =

∑n
i=1 amialiσ

2
i E[πi(t)] +

∑n
i=1

∑n
j=1 amialjµiµjαiαjVar[πC(t)]√

Var[Ym(t)]
√

Var[Yl(t)]
, (4.5)

where

Var[Yk(t)] =

n∑
j=1

a2
kjµ

2
jVar[πIj (t)] + (

n∑
j=1

akjµjαj)
2Var[πC(t)] +

n∑
j=1

a2
kjσ

2
jE[πj(t)].

Notice that, by infinite divisibility E[πi(t)] = tE[πi(1)], Var[πC(t)] = tVar[πC(1)] and Var[Yi(t)] =

tVar[Yi(1)], thus ρ
Y (t)
m,l is independent from t. The model correlations are flexible, since we can

move independently return correlations and subordinator correlations. Furthermore, returns cor-
relations are not bounded in absolute value neither from Brownian motions correlations nor from
the subordinator correlations, as shown by considering the following limit cases
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a. Consider the limit case of conditional independent Brownian motions A := I, µm, µl > 0
and positively correlated subordinators. In this case Bρ(s) has independent components and

ρ
Y (t)
m,l > 0. Thus ρ

Y (t)
m,l is not bounded by the multiparameter Brownian motion correlations.

The case of negatively correlated Brownian motions is similar.

b. Consider the case of the subordinator with independent components and positively correlated
Bρ(s), we have

ρ
Y (t)
m,l =

∑n
i=1 amialiσ

2
i E[πi(1)]√

Var[Ym(1)]
√

Var[Yl(1)]
,

which is positive. Thus ρ
Y (t)
m,l > 0. The case of negatively correlated Gaussian marks is

similar.

Notice that the model also exhibits nonlinear dependence. This fact is straightforward consid-
ering the subcase with conditional independent Gaussian-marks with zero means. Since µj = 0 for
all j ∈ {1, . . . , n} and A is diagonal the process has zero linear correlations (see Equation (4.5))
but it has dependent margins; indeed the Lévy measure of Y is given by

νY (B) =

∫
Rn+
G(s, B)νΠ(ds).

From the expression of νΠ, which has a common factor νC , it follows that the components of
Y may jump together. In that, nonlinear dependence derives from the superimposition of either
independent or correlated marks on the common factor of the Poisson measure.

Concerning the issues of negative dependence of asset returns modelled by factor-based SMBM,
since the subordinator has always positively dependent components (see Semeraro (2008)), negative
dependence is achieved by negative correlations of the multiparameter Brownian motion compo-
nents. This model is also able to capture independence which occurs as a limit case when the
multiparameter Brownian motion has independent components (A diagonal) and the common fac-
tor of the Poisson measure degenerates.

Here, to present a first application exercise, we introduce the NIG specification. The factor-
based Poisson random measures in this case, inherit the subordinator parameters and the con-
straints on them, due to the subordinators convolution requirement as discussed in Luciano et al.
(2013).

4.2 Normal inverse Gaussian SMBM

A normal inverse Gaussian (NIG) process with parameters γ > 0, −γ < β < γ, δ > 0 is a Lévy
process XNIG = {XNIG(t), t ≥ 0} with characteristic function

ψNIG(z) = exp t(−δ(
√
γ2 − (β + iu)2 −

√
γ2 − β2).

Here, we construct a factor-based SMBM process of NIG type. Let πIG(t) be a factor-based IG
subordinator with parameters (γ, αj , j ∈ {1, . . . , n}) introduced in Luciano and Semeraro (2010)

11



and recalled in Appendix A.1. Notice that the assumption E[πi(t)] = t, which is usually assumed
for the subordinator in the VG process, is not required. This is consistent with the interpretation
of πIG(t) as trading activity. Let γj , βj , δj be such that

γj > 0, −γj < βj < γj , δj > 0.

Further, let
1
√
αj

= δj

√
γ2
j − β2

j . (4.6)

Set µj = βjδ
2
j and σj = δj . Under this assumption the process Y (t) defined in 2.1 is named

Normal Inverse Gaussian subordinated multiparameter Brownian motion (NIG-SMBM). By means
of equations (4.3), where Ψπ is deduced by (A.1), the characteristic function of the NIG-SMBM
process is

ψY (t)(z) = exp t
[ n∑
j=1

−(1−√αjγ)(

√√√√−2(iµj

n∑
i=1

aijzi −
1

2
σ2
j (

n∑
i=1

aijzi)2) +
1

αj
− 1
√
αj

)

− γ(

√√√√−2
n∑
j=1

αj(iµj

n∑
i=1

aijzi −
1

2
σ2
j (

n∑
i=1

aijzi)2) + 1− 1)
] (4.7)

Hence, the k-th marginal characteristic function of Y (t) is

ψNIGYk(t)(zk) = exp t{−
n∑
j=1

(1− αjγ)(

√
−2(iakjµjzk −

1

2
a2
kjσ

2
j z

2
k) +

1

αj
− 1
√
αj

)

− γ(

√√√√−2
n∑
j=1

(iakjµjzk −
1

2
a2
kjσ

2
j z

2
k

)
αj + 1− 1)},

Notice that the marginal distributions depend on the common parameter γ, since they depend on
the joint distribution of trading volume.

The NIG − SMBM can be constructed as a linear transformation of the α-NIG process. In
fact, from (4.2), we have:

Y NIG =L AY
NIG
I ,

where Y NIG
I := B(π(t)), with the above specifications. We notice that Y NIG

I is the α-NIG process
in Luciano and Semeraro (2010), which has marginal distributions NIG(γj , βj , δj). Thus, the
marginal processes of a NIG-SMBM are linear combinations of dependent NIG processes. Obviously,
if we further assume A := I, the process Y reduces to the α-NIG process Y NIG

I . Another
interesting subcase is obtained by considering the limit case αj = α for each index j and γ → 1√

α
, the

idiosyncratic components of π(t) degenerate and we find the model with only one GIG subordinator.
On the opposite, if we assume that trading activities of assets are independent, thus the common
component of the Poisson measure degenerates by having γ = 0. In this case Y (t) is a linear
combination of independent NIG processes (see (4.2)). In this case the dependence structure is
very similar to the one proposed in Eberlein and Madan (2010).
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5 Empirical illustration

The aim of this section is to empirically explore the model flexibility in describing nonlinear and
linear dependence and provide some intuition on the interaction of model parameters. To base our
analysis on a meaningful parameter set, we estimate the model on time series data for a pair of
stocks by a straightforward estimation procedure. Let Y be a bivariate NIG−SMBM and define
a 2−dimensional price process, S = {S(t), t ≥ 0}, such that

S(t) = S(0) exp(ct+ Y (t))

where c ∈ R2 is the drift term (equivalently, Sj(t) = Sj(0) exp(cjt + Yj(t)), t ≥ 0, j = 1, 2). For
the purpose of illustration, we consider daily log-returns on Goldman Sachs and Morgan Stanley
US equity from January 3, 2011 to December 31st, 2015, with a total of 1258 observations. Daily
logreturns are defined as

Rj = cj + Yj (1) = log
Sj (1)

Sj (0)
, j = 1, 2

The parameters of the process Y (t) in Definition 2.1 are µ, Σ, A, in addition to the parameters
of the subordinator. In the NIG specification, we have that Y (t) = AY NIG

I , where Y NIG
I is a

bivariate α-NIG process, whose marginals are two dependent NIG factors. The model parameters
defining the two NIG dependent factors can be directly introduced as γ1, β1, δ1, γ2, β2, δ2. Then we

set µj = βjδ
2
j , σj = δj and αj = 1/

(
δ2
j

(
γ2
j − β2

j

))
, j = 1, 2, as required by the NIG representation.

The model in its general formulation is not parsimonious in terms of parameters. In fact, we have
13 parameters for the bivariate case. A reduction of the number of parameters can be made with
additional assumptions which may depend on the application. The parameter vector θ is

θ = [c1, γ1, β1, δ1, c2, γ2, β2, δ2, a11, a12, a21, a22, γ] .

Since Σρ = AΣAT , without loss of generality, we can fix Σ = diag(σ1, σ2). We start by estimating
the α-NIG process by a two-step procedure. First, we calibrate the marginal NIG factors by max-
imum likelihood and then we estimate the remaining common parameter γ by matching historical
and model asset correlations. The estimated parameters, reported in Table 1, allow for a reduced
calibration approach. We recall that σi = δi, i = 1, 2, thus we set δ1 = 0.016 and δ2 = 0.017. This
choice reflects the estimate of the parameters δi obtained by fitting the two one-dimensional NIG
processes on our asset return data. With these assumptions, the parameter vector θ becomes

θ = [c1, γ1, β1, c2, γ2, β2, a11, a12, a21, a22, γ] ,

for a total of 11 parameters.

The reduced model calibration is performed by the two-step GMM method, proposed by Hansen
(1982), matching sample and model raw moments up to the fourth order. We have 4 marginal
moments for asset 1 and 2, respectively, and 6 cross moments1, for a total of L = 14 moment
conditions. The model raw moments can be computed from the model joint characteristic function

E
[
Rk11 R

k2
2

]
= (−i)k1+k2 ∂k1+k2

∂zk11 ∂zk22

ψc+Y (0,θ) , k1, k2 ∈ N.

1Specifically, we consider the following raw cross moments: E (R1R2) , E
(
R2

1R2

)
, E

(
R1R

2
2

)
, E

(
R3

1R2

)
, E

(
R1R

3
2

)
and E

(
R2

1R
2
2

)
.

13



We find θ by solving
θ̂ = arg min

θ
G′T (θ) WGT (θ)

where GT (θ) is the L×1 vector of raw moment errors, T is the number of observations and W is a
positive-definite weighting matrix. We set the weighting W equal to the identity matrix in the first
step estimator and use a HAC estimator in the second step. Initial conditions are chosen by setting
A = I, while the starting values of the remaining parameters are provided by the calibration of
the α-NIG process presented in Table 1. Table 2 shows the model calibrated parameters, whereas
sample and model standardized moments are reported in the Table 3. The standardized moments
are defined as

mk1k2 =
E
(

(R1 − E (R1))k1 (R2 − E (R2))k2
)

(
E
(

(R1 − E (R1))2
))k1/2 (

E
(

(R2 − E (R2))2
))k2/2 , k1, k2 ∈ N.

[ Insert Table 2 ]

[ Insert Table 3 ]

To test if the model is correctly specified, we perform the J-test for overidentifying restrictions.
The J-statistic is 1.27, and has a p-value of 0.74 based on the chi-square distribution with three
degree of freedom, thus providing support to the model specification.

We explore the features of the model changing the parameter γ and the matrix A, i.e., changing
the linear combination of the two α-NIG components, whose parameters are kept fixed. Figure 1
shows how the parameter γ drives nonlinear dependence. Here we can conclude that marginal and
joint skewness and kurtosis move with γ, while linear correlation is not affected. Since the matrix
A influence both the marginal processes and the dependence structure, we show the marginal and
cross moments ranges spanned by changing A. We change two parameters at a time, to have an
accessible graphical representations. Firstly, we change parameters a11 and a22 and secondly we
change parameters a12 and a21. By so doing, we change the dependence structure by changing the
weights of the two α-NIG factors in the model. Clearly asset one is is not affected by a21 and a22

and asset 2 is not affected by a11 and a12.

Next, we examine the correlation range spanned by the model. For a given grid of target asset
correlations ranging from −0.90 up to 0.90, we re-estimate the model by matching model and
target asset correlations, under the constraint that the marginals moments stay unchanged. We
have 11 parameters to match the asset correlation level, under 8 constraints provided by marginal
moments. However, the aim of this exercise is to show that the model construction allows to span a
large correlation range, and this is indeed the case, as illustrated in Table 4, which shows the cross
moment conditions corresponding to the calibrated parameters which allow to match the target
asset correlations and are reported in Table 5. In a general calibration procedure, all parameters
are used to match not only linear dependence but also higher order cross moments and the extra
degrees of freedom disappear.
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Appendices

A Factor-based subordinators

We recall here the definition of factor-based subordinator introduced in Semeraro (2008). A factor-
based subordinator π(t) = πI(t) + πC(t) is defined by

π(t) = (πI1(t) + α1π
C(t), . . . , πIn(t) + αnπ

C(t)),

where πIj (t) and πC(t), for j = 1, ..., n, are independent subordinators with Lévy measures νIj
and νC respectively. The multivariate Poisson random measure Π associated to π(t) is a Poisson
random measure on (R+×Rn,B(R+×Rn)) with mean Leb× νΠ, which we call factor-based Poisson
random measure. We recall below the measure νΠ, which is derived in Semeraro (2008). Consider
a set A ∈ B(Rn \ {0}) and ∆α = {(α1s, . . . , αns)

T : s ∈ R+} where αj ∈ R for j ∈ {1, . . . , n},
and Aαj = Prj(A ∩ ∆α), having Prj be the projection of A on the j-th coordinate axes. Since
Aαj
αj

= {s ∈ R : αjs ∈ Aαj }, and by construction
Aαj
αj

=
Aαk
αk

for each j, k ∈ {1, . . . , n}, we define

A∆ :=
Aαj
αj

for each j. Finally, let Aj := A∩Dj having Dj = {x ∈ Rn : xk = 0, k 6= j, k = 1, . . . , n}.
The Lévy measure νΠ is as follows

νΠ(A) =
n∑
j=1

νIj (Aj) + νC(A∆), A ∈ B(Rn \ {0}).

We finally recall the characteristic exponent of π(t). For any w = (w1, ..., wn)T ∈ Cn with <(wj) ≤
0, j = 1, ..., n Ψπ(t) is given by

Ψπ(w) =
n∑
j=1

ΨπIj
(wj) + ΨπC

( n∑
j=1

αjwj

)
where for any w ∈ C with Re(w) ≤ 0, j = 1, ..., n, ΨπIj

(w) =
∫
R+

(e〈w,s〉 − 1)νπIJ
(ds) and ΨπC (w) =∫

R+
(e〈w,s〉 − 1)νπC (ds).

A.1 Factor-based inverse Gaussian subordinator

Let π(t) be a factor-based subordinator. We specify πIi (t) and πC(t) in (4.1) to have IG marginal
distributions with parameters αj and γ, by defining

πIj ∼ IG
(

1− γ√αj , 1√
αj

)
, j = 1, ..., n

πC ∼ IG(γ, 1).

Using the closure properties of the IG distribution, we obtain that the process αjπ
C is αjπ

C ∼
IG
(
γ
√
αj ,

1√
αj

)
and that its sum with πIj is still IG (see Luciano and Semeraro (2010)):

πIj + αjπ
C ∼ IG

(
1,

1
√
αj

)
.
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In order for the marginal distributions to have non negative parameters, the following constraints
must be satisfied:

0 < γ <
1
√
αj
, j = 1, ..., n.

We call this subordinator factor-based IG with parameters (γ, αj , j = 1, . . . , n). The marginal
subordinators πj(t) are IG:

L(πj(t)) = IG

(
t,

1
√
αj

)
, j = 1, ..., n.

We recall that for any w = (w1, ..., wn)T ∈ Cn with <(wj) ≤ 0, j = 1, ..., n it easily follows
from (A)

Ψπ(w) = −
n∑
j=1

(1−√αjγ)(

√
−2wj +

1

αj
− 1
√
αj

)− γ(

√√√√−2
n∑
j=1

wjαj + 1− 1).

B Derivation of the Equation (4.5)

Given the law of total covariance we have

Cov[Bρ
m(π(t)), Bρ

l (π(t))] = E[Cov[Bρ
m(π(t)), Bρ

l (π(t)] | π(t))]

+ Cov
[
E(Bρ

m(π(t)) | π(t)),E(Bρ
l (π(t)) | π(t))

]
.

Since we have

E[Bρ
m(π(t)) | π(t)] = E

[ n∑
j=1

amjBj(πj(t)) | π(t)

]

=
n∑
j=1

amjE[Bj(πj(t)) | π(t)] =
n∑
j=1

amjµjπj(t)

then

Cov
[
E[Bρ

m(π(t)) | π(t)],E[Bρ
l (π(t)) | π(t)]

]
= Cov

[ n∑
i=1

amiµiπi(t),

n∑
i=1

aliµiπi(t)

]
=

n∑
i=1

n∑
j=1

amialjµiµjCov[πi(t), πj(t)].

Now for a given realization of π(t) = s we have

L(Bρ(π(t)) |π(t)=s) ∼ N (µρ(s),Σρ(s)), where Σρ(s) = AΣ(s)AT ,

and Σ(s) = diag(σ2
i si), hence

Cov[Bρ
m(π(t)), Bρ

l (π(t)) | π(t)] = Σρ(π(t))m,l
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i.e. the m, l-th entry of Σρ(π(t)) matrix.

Hence

E[Σρ(π(t))m,l] =
n∑
i=1

amialiσ
2
i E[πi(t)].

Finally,

Cov[Bρ
m(π(t)), Bρ

l (π(t))] =

n∑
i=1

amialiσ
2
i E[πi(t)] +

n∑
i=1

n∑
j=1

amialjµiµjCov[πi(t), πj(t)]

giving

ρ
Y (t)
m,l =

∑n
i=1 amialiσ

2
i E[πi(t)] +

∑n
i=1

∑n
j=1 amialjµiµjCov[πi(t), πj(t)]√

Var[Ym(t)]
√

Var[Yl(t)]

and therefore

ρ
Y (t)
m,l =

∑n
i=1 amialiσ

2
i E[πi(t)] +

∑n
i=1

∑n
j=1 amialjµiµjαiαjVar[πC(t)]√

Var[Ym(t)]
√

Var[Yl(t)]
.
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cations. The European Journal of Finance, (ahead-of-print):1–31.

Barndorff-Nielsen, O. E., Pedersen, J., and Sato, K. (2001). Multivariate subordination, self-
decomposability and stability. Advances in Applied Probability, pages 160–187.

Buchmann, B., Kaehler, B., Maller, R., and Szimayer, A. (2017). Multivariate subordination using
generalised gamma convolutions with applications to variance gamma processes and option
pricing. Stochastic Processes and their Applications, 127(7):2208–2242.

Buchmann, B., Lu, K., and Madan, D. B. (2016). Weak subordination of multivariate Lévy pro-
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c1 0.002
γ1 56.462
β1 -5.379
δ1 0.016
c2 0.001
γ2 31.874
β2 -1.079
δ2 0.017
γ 0.551

Table 1: α-NIG model. Estimated parameters.

c1 0.001
γ1 25.783
β1 -0.017
c2 0.001
γ2 59.028
β2 1.942
γ 0.395
a11 0.348
a12 -0.818
a21 0.842
a22 -0.604

Table 2: NIG-SMBM model. Estimated parameters, setting δ1 = 0.016 and δ2 = 0.017.

Stand. moment Sample Model

m01 0.0001 0.0001
m02 0.0003 0.0003
m03 -0.2164 -0.0840
m04 6.8098 6.2692
m10 0.0001 0.0002
m20 0.0006 0.0005
m30 -0.0624 -0.0457
m40 9.0421 8.8435
m11 0.8498 0.8476
m12 -0.1146 -0.0537
m21 -0.1638 -0.0625
m13 6.9630 6.7198
m31 6.0121 5.5999
m22 6.1182 5.8008

Table 3: Sample and model standardized moments.
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Figure 1: Marginal and cross moments vs γ
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Target ρY m11 m12 m21 m13 m31 m22

-0.90 -0.899 -0.029 0.112 -7.285 -6.255 6.435
-0.80 -0.800 -0.010 0.075 -6.652 -5.477 5.628
-0.70 -0.697 -0.013 0.006 -6.800 -5.391 5.936
-0.60 -0.601 -0.027 0.016 -6.032 -4.613 5.205
-0.50 -0.500 -0.034 0.018 -5.093 -3.699 4.375
-0.40 -0.400 -0.040 0.010 -4.241 -2.863 3.750
-0.30 -0.300 -0.043 0.000 -3.375 -2.023 3.198
-0.20 -0.200 -0.044 -0.013 -2.519 -1.187 2.726
-0.10 -0.100 -0.037 -0.028 -1.692 -0.310 2.240
0.00 0.000 -0.128 -0.017 2.007 0.680 3.494
0.10 0.103 -0.133 -0.050 3.167 1.995 3.935
0.20 0.200 -0.141 -0.052 4.162 2.840 4.520
0.30 0.301 -0.027 -0.052 1.570 1.809 1.618
0.40 0.403 -0.045 -0.067 2.460 2.406 2.138
0.50 0.503 -0.108 -0.087 5.341 4.141 4.702
0.60 0.595 -0.096 -0.109 4.622 4.063 3.988
0.70 0.701 -0.103 -0.104 6.775 5.551 5.937
0.80 0.800 -0.096 -0.114 7.274 6.073 6.422
0.90 0.900 -0.108 -0.150 7.574 6.507 6.789

Table 4: Target correlations and model standardized cross moments. Marginal moments are kept
fixed.

Target ρY c1 γ1 β1 c2 γ2 β2 γ a11 a12 a21 a22
-0.90 0.0012 21.5693 -1.1763 -0.0004 43.9480 -5.2336 0.1878 -0.3459 0.6961 0.7495 -0.5881
-0.80 0.0011 28.5866 -0.8028 0.0000 38.7772 -4.4335 0.2133 -0.4418 0.6184 0.9629 -0.2793
-0.70 0.0017 29.9833 -0.2002 0.0008 43.4473 -8.3899 0.1532 -0.5778 0.4961 1.0073 0.1742
-0.60 0.0013 29.5902 -0.1257 0.0007 43.7197 -5.8600 0.2303 -0.5334 0.5621 0.9941 0.2223
-0.50 0.0012 29.7312 -0.1311 0.0006 43.8313 -4.4649 0.2997 -0.4743 0.6353 0.9957 0.2283
-0.40 0.0011 29.5550 -0.1197 0.0006 43.8854 -3.8778 0.3253 -0.4205 0.6858 0.9889 0.2510
-0.30 0.0011 29.4598 -0.1290 0.0006 43.8686 -3.4951 0.3346 -0.3612 0.7312 0.9852 0.2622
-0.20 0.0010 29.3724 -0.1557 0.0006 43.8958 -3.2441 0.3236 -0.2969 0.7709 0.9831 0.2660
-0.10 0.0010 29.3308 -0.2313 0.0006 43.9242 -3.0595 0.2627 -0.2206 0.8064 0.9851 0.2516
0.00 0.0011 20.1435 -0.8852 -0.0001 50.0664 -2.9803 0.2526 0.3256 0.7563 0.6971 -0.7007
0.10 0.0012 19.5589 -0.8564 -0.0002 62.6350 -3.8946 0.2781 0.3674 0.7866 0.6890 -0.7782
0.20 0.0013 19.6579 -0.7969 -0.0003 62.5734 -4.6991 0.1995 0.3970 0.7426 0.7055 -0.7362
0.30 0.0011 28.3429 -0.3600 0.0006 46.6894 -3.0166 0.0717 0.0564 0.8714 0.9655 0.2752
0.40 0.0010 27.5988 -0.2833 0.0007 45.8580 -2.9749 0.1311 0.1006 0.8572 0.9423 0.3243
0.50 0.0012 28.6710 -0.7961 0.0001 55.2121 -4.3440 0.3705 0.5014 0.6693 0.9624 -0.3449
0.60 0.0011 27.3207 0.1330 0.0006 47.1605 -3.1999 0.4212 0.1770 0.8491 0.9037 0.4573
0.70 0.0015 30.1855 -0.6654 0.0001 58.1677 -6.8726 0.2843 0.5775 0.5869 1.0118 -0.1943
0.80 0.0016 31.0546 -0.4776 0.0004 54.6971 -7.6637 0.2566 0.5952 0.5510 1.0368 -0.0177
0.90 0.0014 26.0858 0.3778 0.0009 58.1997 -6.6759 0.3769 0.4536 0.7190 0.8813 0.5116

Table 5: Calibrated parameters for target asset correlation levels, keeping the marginal moments
fixed.
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