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 1 

Interpretive Summary 2 

 3 

Prediction of Direct Genomic Values for dairy traits in Italian Brown and Simmental Bulls 4 

using a Principal Component Approach By Pintus et al. 5 

In this work, principal component analysis is used to reduce the number of predictors for calculating 6 

direct genomic breeding values (DGV) for bulls of two cattle breeds in Italy. The PC method allows 7 

for a relevant reduction (about 94%) in the number of independent variables when predicting DGV, 8 

with a huge decrease in calculation time and without losses in accuracy compared to the direct use 9 

of SNP genotypes. 10 

 11 

12 
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ABSTRACT 30 

The huge number of markers in comparison with phenotypes available represents one of the 31 

main issues in genomic selection. In this work, principal component analysis (PCA) was used to 32 

reduce the number of predictors for calculating direct genomic breeding values (DGV) and genomic 33 

enhanced estimated breeding values (GEBV). Bulls of two cattle breeds in Italy (749 Brown and 34 

479 Simmental) were genotyped with the 54K Illumina beadchip. After data editing, 37,254 and 35 

40,179 SNP were retained for Brown and Simmental, respectively. Principal component analysis 36 

carried out on SNP genotype matrix extracted 2,257 and 3,596 new variables in the two breeds, 37 

respectively. Bulls were sorted by birth year or randomly shuffled to create reference and prediction 38 

populations. The effect of principal components on de-regressed proofs in reference animals was 39 

estimated with a BLUP model. Results were compared to those obtained by using SNP genotypes 40 

as predictors either with BLUP or Bayes_A methods. Traits considered were milk, fat and protein 41 

yield, fat and protein percentage, somatic cell score, and udder score. GEBV were obtained for 42 

prediction population by blending DGV and PA. No substantial differences in correlations between 43 

DGV and EBV were observed among the three methods in the two breeds. The approach based on 44 

the use of PCA showed the lowest prediction bias. The PCA method allowed for a reduction of 45 

about 90% in the number of independent variables when predicting DGV, with a huge decrease in 46 

calculation time and without losses in accuracy. 47 

 48 

Key words: SNPs, genomic selection, principal component analysis, accuracy  49 

 50 

51 
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INTRODUCTION 52 

Advancements in genome sequencing technology have been implemented into high 53 

throughput platforms able to genotype simultaneously tens of thousands SNP markers distributed 54 

across the whole genome of livestock species (Van Tassell et al., 2008). Dense marker maps are 55 

nowadays used in cattle breeding for genome-wide association studies (Cole et al., 2009, Price et 56 

al., 2006) and for predicting genomic-enhanced breeding values (GEBV) of candidates to become 57 

sires and dams in genomic selection (GS) programs (Meuwissen et al., 2001). The basic framework 58 

of genomic selection involves two steps. Firstly, effects of chromosomal segments are estimated in 59 

a set of reference animals with known phenotypes and SNP genotypes. Then estimates are used to 60 

predict Direct Genomic Values (DGV) of animals for which only marker genotypes are known. 61 

DGV are usually blended with other measures of genetic merit such as official pedigree index (PI) 62 

to obtain the final GEBV (Ducrocq and Liu 2009; VanRaden et al., 2009). GS programs have 63 

already been implemented in different countries to evaluate young bulls entering progeny testing, 64 

achieving reliabilities higher than those of PI (Hayes et al., 2009a, VanRaden et al., 2009). 65 

Expected benefits of the GS are the reduction of generation intervals, the increase of EBV 66 

accuracies for females and a cost reduction for progeny testing (Konig et al., 2009, Schaeffer, 67 

2006). 68 

However, several issues are still to be addressed in GS. Examples are the assessment of the 69 

frequency of marker effect re-estimation along generations (Solberg et al., 2009), the evaluation of 70 

the impact of population structure on estimated effects (Habier et al., 2010), and the choice of the 71 

most suitable mathematical model and dependent variable for the estimation step (Guo et al., 2010). 72 

Apart from situations in which the number of genotyped animals is quickly approaching or 73 

overcoming the number of markers used, as the North American genomic project (VanRaden and 74 

Sullivan, 2010), the huge imbalance between predictors and observations still represents the main 75 

constraint to the implementation of GS programs, especially for breeds other than Holstein.   76 
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A way to reduce this data asymmetry could be found in combining data from different 77 

populations of the same breed or from different breeds in a common reference set, both within and 78 

across countries (Boichard et al, 2010). Reports on simulated and real data show some increases in 79 

DGV accuracies, but results are strongly dependent on the genetic similarity between breeds and/or 80 

on the trait analyzed (de Roos et al., 2009, Hayes et al., 2009b). 81 

A different strategy is based on the reduction of the number of predictors used in the 82 

estimation equations. A straightforward approach is to perform a preliminary selection of markers 83 

on the basis of their relationship with the phenotype or of their chromosomal location (Hayes et al., 84 

2009a, Moser et al., 2010, Vazquez et al., 2010). An alternative is represented by the Bayes_B 85 

method that retains markers with non-zero effect on phenotypes directly during the estimation step 86 

(Meuwissen et al., 2001, VanRaden, 2008). Other approaches of SNP selection have been proposed 87 

mainly for genome-wide association analyses (Aulchenko et al., 2007, Gianola et al., 2006, Gianola 88 

and van Kaam, 2008, Long et al., 2007). In all the above mentioned methodologies, SNP selection 89 

is based on their relevance to the considered phenotype. Thus specific sets of markers may be 90 

required for different traits. 91 

An alternative to marker selection for reducing predictor dimensionality is represented by 92 

their synthesis via multivariate reduction techniques. In particular, principal component analysis 93 

(PCA) and Partial Least Squares Regression (PLSR) have been proposed for estimating DGV 94 

(Solberg et al., 2009). Actually, in the PLSR approach the extraction of latent variables from 95 

predictors is carried out by maximizing their correlation with the dependent variable(s). Thus the 96 

reduction of the system dimension is still based on the magnitude of the predictor effects on the 97 

considered trait. On the contrary, PCA is entirely based on the factorization of the SNP (co)variance 98 

(or correlation) matrix. This technique allows for a huge reduction of the number of independent 99 

variables (>90%) in the estimation of DGV while achieving accuracies comparable to those 100 

obtained using all SNP genotypes (Macciotta et al., 2010, Solberg et al., 2009). A recent 101 
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comparison highlighted good accuracies of both dimension reduction techniques in predicting DGV 102 

for milk yield in US Holsteins (Long et al., 2011). Compared to other approaches of predictor 103 

reduction, PCA limits the loss of information because each SNP is involved in the composition of 104 

each principal component Moreover, extracted principal components are orthogonal, thus avoiding 105 

multicollinearity problems. The PCA approach also allows to model the variance structure of 106 

predictors in the BLUP normal equations by using eigenvalues as variance priors (Macciotta et al., 107 

2010). Furthermore, PCA has been used in genome-wide association studies to reduce the number 108 

of dependent variables (Bolormaa et al., 2010). 109 

The reduction of predictor dimensionality is a straightforward strategy when implementing 110 

GS with reference populations of limited size. This situation may occur in minor cattle breeds or in 111 

larger populations at early stages of GS programs. This is the case of the SELMOL project recently 112 

started in Italy that involves different cattle breeds (both dairy and beef).  113 

Aim of this study is to calculate genomic breeding values for dairy traits in populations of 114 

limited sizes of Italian Brown and Simmental bulls by using the principal component approach for 115 

reducing the number of predictors. The PCA based method is compared with other approaches that 116 

fit directly all SNP genotypes available as predictors. 117 

 118 

MATERIALS AND METHODS 119 

Data 120 

A total of 775 Italian Brown and 493 Italian Simmental bulls were genotyped at 54,001 SNP 121 

loci with the Illumina Bovine SNP50TM bead-chip. Considering the limited size of the sample, the 122 

priority in the edit was to keep the number of bulls as large as possible. A stringent selection was 123 

performed on markers. Edits were based on the percentage of missing data (<0.025), Mendelian 124 

inheritance conflicts, absence of heterozygous loci, minor allele frequency (<.05), deviance from 125 

Hardy-Weimberg equilibrium (<0.01) (Wiggans et al., 2009). Edits on animals were based on the 126 
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number of missing genotypes (<1,000) and on inconsistencies in the Mendelian inheritance (96 and 127 

70  father-son pairs were included in the archives for Italian Brown and Simmental, respectively). 128 

An overall accuracy higher than 99% was obtained by double-genotyping some animals. A 129 

summary of the initial and final number of bulls and SNP, together with the impact of the different 130 

elimination steps is reported in table 1. In the final data, missing genotypes (in general less than the 131 

0.5%) were replaced by the means of the observed genotypes at that specific locus. 132 

Phenotypes used were both MACE de-regressed proofs (DRPF) provided by the two breed 133 

associations. Traits considered were milk, fat and protein yield (kg), fat and protein percentages, 134 

somatic cell score. Average reliabilities of DRPF were 0.87 (±0.08) and 0.92 (±0.04) for Italian 135 

Brown and Simmental bulls, respectively.   136 

Animals were sorted by year of birth and the dataset split into reference (REF) and 137 

prediction (PRED) subsets, comprising older and younger animals, respectively. Three ratios of 138 

REF-PRED animals were considered (0.70:0.30, 0.80:0.20, 0.90:0.10). The distribution of years of 139 

birth in the different breeds is depicted in figure 1. 140 

A common strategy when dealing with a small population of genotyped animals is to obtain 141 

different sets of reference and prediction by randomly picking up animals from the original archive 142 

(Luan et al., 2009). Thus, in the present study, PRED population (30% of animals) was also 143 

generated by extracting bulls at random from the 50% of youngest animals. Ten replicates were 144 

performed for each trait. 145 

 146 

Statistical Models 147 

Principal component analysis was used to extract latent variables from the SNP data matrix 148 

M with m rows (m= number of individuals in the entire data set, i.e. REF plus PRED) and n 149 

columns (n=number of SNP retained after edits). Each element (i,j) corresponded to the genotype at 150 

the jth marker for the ith individual. Genotypes were coded as -1 and 1, for the two homozygotes, 151 
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and 0 for  the heterozygote, respectively. PCA was performed separately for each chromosome. On 152 

simulated data, analyses carried out either on the whole genome simultaneously or separately by 153 

chromosome did not affect DGV accuracy (Macciotta et al., 2010). PCA was carried out on the 154 

whole data set (REF+PRED) separately for each breed. The number of principal components 155 

retained (k) was based on the sum of their eigenvalues. An empirical threshold of 80% of explained 156 

variance was fixed according to indications of other authors (Boolorma et al., 2010). Scores of the 157 

selected components were calculated for all individuals.  158 

For each breed, the estimation of predictor effects on the REF data set was carried out using 159 

the following BLUP model (PCA_BLUP): 160 

y = 1 + Zg + e 161 

where y is the vector of DRPF, 1 is a vector of ones, µ is the general mean, Z is the matrix of PC 162 

scores, g is the vector of PC regression coefficients treated as random, and e is the vector of random 163 

residuals. Covariance matrices of random PC effects (G) and residuals (R) were modeled as 164 

diagonal I aj
 and I e

 respectively. In particular, the contribution of each j-th principal 165 

component to the genetic variance was assumed to be proportional to its corresponding eigenvalue 166 

(), i.e.  ji
= (a

k) * j (Macciotta et al., 2010). Variance components were those currently 167 

supplied by breed associations for Interbull evaluations (http://www-168 

interbull.slu.se/national_ges_info2/framesida-ges.htm). BLUP solutions were estimated using 169 

Henderson’s normal equations (Henderson, 1985) solved by using a LU factorization where the left 170 

hand side part of mixed model equations was decomposed into the product of a lower and a upper 171 

triangular matrix, respectively (Burden and Faires, 2005). 172 

To evaluate the effect of the PCA reduction of predictors on DGV accuracy, the estimation 173 

step was carried out also with two methods that fit all available SNP genotypes, but with different 174 

assumptions on the distribution of their effects. 175 
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The first was the BLUP (SNP_BLUP) method that assumed an equal contribution of each 176 

marker locus to the variance of the trait, sampled from the same normal distribution (Meuwissen et 177 

al., 2001). In this case, Z was the matrix of SNP genotypes coded as 0, 1 and 2. Mixed model 178 

equations were solved using a Gauss-Seidel iterative algorithm. 179 

The second was the Bayes_A method, that allowed for variance to differ across chromosome 180 

segments on the assumption that a large number of SNP have small effects and few have a large 181 

effect (Meuwissen et al., 2001). The fitted model (BAYES_A) was:  182 

y = 1 + Zg + Wu+e 183 

where u is a vector of polygenic breeding values assumed to be normally distributed, with 184 

ui~N(0,Aa
), where A is the average relationship matrix and a

 is the additive genetic variance. 185 

Prior structure and hyper-parameters were chosen according to Meuwissen et al. (2001). A scaled 186 

inverted chi-squared prior distribution was assumed for SNP specific variances, under the 187 

hypothesis that most of markers have nearly zero effects (i.e. markers not linked to any QTL) and 188 

only few have large effects. A total of 20,000 iterations were performed, discarding the first 10,000 189 

as burn-in and considering no thinning interval. A residual updating algorithm was implemented to 190 

reduce computational time (Legarra and Misztal, 2008).  191 

The general mean () and the vector ( ĝ ) of the principal component or marker effects 192 

estimated either with BLUP (SNP_BLUP) or Bayes A (BAYES_A) in the REF population were 193 

used to calculate the DGV for the jth animal in the PRED subset for each breed as: 194 


=

+=
k

i

iij

1

j
ˆ'DGV gz  195 

where z is the vector of component scores or marker genotypes and k is the number of principal 196 

component or markers used in the analysis. Pearson correlations between DGV and DRPF in PRED 197 

individuals were calculated. 198 
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DGV obtained with three different estimation methods were blended with PI to obtain 199 

GEBV by using the EDC as weighting factors: 200 

iedcedcG += iii PIDGVGEBV
 

201 

where edcG and edc are the equivalent daughter contributions for DGV or PI respectively. 202 

Values of edcG were calculated from the approximate DGV reliabilities, obtained as RELDGV = 203 

(r2
DGV,DRPF)/RELDRPF (Hayes et al., 2009), as 204 

 edcG=k*RELDGV/(1-RELDGV)  205 

where k=(4-h2)/h2
. The same approach was used to calculate edc for PI. The procedure 206 

followed was the same used to validate the international GEBV of Italian Simmental approved in 207 

November 2011 (http://www.interbull.org). 208 

Finally, in order to evaluate the efficiency of genomic predictions versus the traditional 209 

polygenic evaluations, squared correlation between Genomic Enhanced estimated Breeding Values 210 

and EBV (R2
EBV-GEBV

 ) were computed and compared with those between PI and EBV. Bias was 211 

assessed by evaluating the regression coefficient of EBV on predicted GEBV. 212 

 213 

RESULTS 214 

A common criterion for choosing the number of principal components to retain is the visual 215 

inspection of their eigenvalue pattern. As an example, Figure 2 reports the chromosome-wide 216 

variance explained by each successive component extracted from SNP located on BTA6 in the 217 

Brown breed. The eigenvalue was small also for the top two components (about 7% and 5%, 218 

respectively) with a smooth decrease followed by a plateau reached at about 100 PCs (86% of 219 

variance explained) for this chromosome. The number of retained principal components genome-220 

wide was 3,596 and 2,257 for the Simmental and Brown breeds, respectively. A similar amount of 221 

components was retained by Long et al. (2011). In any case, a large reduction of predictor 222 

dimensionality (less than 10% of the number of original variables) was realized. 223 

http://www.interbull.org/
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The extracted principal components were able to distinguish Brown from Simmental bulls. 224 

Individual scores of the first principal component of BTA6, for example, discriminated the two 225 

breeds whereas the third component highlighted a larger heterogeneity within the Brown sample 226 

(Figure 3). In PCA, the meaning of each extracted component is usually inferred by looking at 227 

eigenvector coefficients, i.e. the weights of each original variable (in this case the SNP genotype) in 228 

the component. However, it would be very hard to achieve an interpretation by examining 229 

thousands of correlations. The meaning of extracted variables could be assessed indirectly by 230 

looking at their relationships with other characteristics of the considered individuals. For example, 231 

the third principal component for BTA6 in the Brown breed was negatively correlated with the 232 

observed average individual heterozygosity (-0.43) and its score average showed a progressive 233 

decrease across year of birth of bulls. Such an ability of PCA to cluster individuals based on causes 234 

of variation of SNP genotype frequency was reported also for simulated data (Macciotta et al., 235 

2010). 236 

Correlations between DGV and DRPF for PRED bulls in different scenarios are reported in 237 

table 2 for the two breeds. In general, DGV accuracies were low to moderate, as expected due to the 238 

reduced size of the reference populations considered. Small differences across estimation methods 239 

were found. PC_BLUP and BAYES_A performed generally better than SNP_BLUP, and especially 240 

for  Italian Brown. PC_BLUP accuracies were similar or slightly higher than those of BAYES_A 241 

for yield traits, especially milk (on average +5% and +0.5% for Brown and Simmental, 242 

respectively). The Bayesian method performed better in the case of SCS (average differences of 243 

12.8% and 9.1% for Brown and Simmental, respectively). 244 

Table 3 reports DGV accuracies for milk yield in the two breeds, obtained by creating 245 

PRED data by randomly picking up bulls from the 50% youngest animals. For brevity, only results 246 

for the PCA_BLUP approach are reported. Accuracies tended to increase, sometimes markedly, as 247 

in the case of somatic cell count for Brown, (+12.6% and +8.3% for Brown and Simmental, 248 
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respectively). These results do not agree with previous reports of Luan et al (2009) for Norwegian 249 

Red Bulls, who did not find substantial differences in DGV accuracies of PRED animals obtained 250 

by randomly shuffling the original data set or by sorting bulls according to their progeny testing 251 

year. In the present work, similar improvement of DGV accuracies were observed for all statistical 252 

approaches. 253 

Squared correlations between GEBV or PI and EBV are reported in table 4 and 5 for the two 254 

breeds. R2
GEBV,DGV values for Brown were substantially lower than those found for Simmental, 255 

except for fat and protein percentages that showed opposite behavior. Squared correlations  of 256 

pedigree indexes were generally lower than those for GEBV in the Brown breed. Similar behavior 257 

could also be observed for the Simmental, except for  whereas higher except for fat and protein 258 

percentages. PC_BLUP and BAYES_A gave better performances compared to the SNP_BLUP 259 

method in Brown bulls. Finally, enlarging the ratio REF:PRED size seemed to increase R2
EBV,GEBV 260 

in Brown whereas no effect have been observed  in Simmental. 261 

In particular, squared correlations ranged from  0.01 to 0.39 for Italian Brown (Table 4). 262 

Lowest values were obtained for yield traits, in particular for milk and protein (on average <0.1). 263 

Highest R2
EBV,GEBV were observed for fat percentage, protein percentage, and somatic cell count  264 

(on average  0.35, 0.32 and 0.15, respectively). Olson et al. (2011) reported the same value of  265 

genomic prediction accuracy for SCS in a study on 1,188 brown Swiss bulls. These authors 266 

observed higher values for yield traits. Accuracies for protein percentages reported in Table 4 agree 267 

with results obtained on Australian Holsteins and Jerseys using different approaches and a 268 

comparable size of reference population (Hayes et al., 2009; Moser et al., 2009). Best results in 269 

genomic predictions for protein percentage have been also observed on US Holsteins (VanRaden et 270 

al., 2009).    271 

R2
EBV,GEBV obtained for the Simmental bulls ranged from 0.05 to 0.37  (Table 5). Values for 272 

milk yield were on average (0.35  across all scenarios and methods) about five times compared to 273 
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the Brown breed. Yield traits had higher values compared to composition traits. For some scenarios, 274 

squared correlations for protein yield were similar to those recently reported for Fleckvieh cattle 275 

(Gredler et al., 2010). Intermediate values accuracies were obtained for somatic cell count (0.20on 276 

average). PC_BLUP and BAYES_A slightly outperformed the SNP_BLUP approach. As in the 277 

case of Brown, PC_BLUP gave slightly larger values than BAYES_A for yield traits and smaller 278 

for composition traits, respectively. A part from fat and protein percentage, R2
EBV,GEBV were higher 279 

than R2
EBV,PI for all estimation methods.  280 

Regression coefficients of EBV on Genomic enhanced estimated breeding values (Table 6) 281 

showed variability across breeds, methods, and traits. Differences between breeds were evident for 282 

yield traits, with lower values for Brown bulls. For these traits, regression slopes were quite close to 283 

the unity for all of the three methods and for all scenarios in the Simmental breed. For composition 284 

traits and SCS, regression coefficients were lower than one indicating an underprediction of EBV 285 

for high values and overprediction for low values. An opposite behavior can be opbserved for 286 

Brown. The PC_BLUP method showed the lowest variability across traits. 287 

 288 

DISCUSSION 289 

In this paper, direct genomic breeding values genomic enhanced estimated breeding values 290 

for some dairy traits were estimated by reducing the dimensionality of predictors with the principal 291 

component analysis. Such a reduction aimed at simplifying data handling and at reducing 292 

computational burdens while retaining most of the information. The PCA approach was compared 293 

with some of the most popular methods used to predict DGV and GEBV, i.e. BLUP regression and 294 

Bayes A, that fits directly all marker genotypes available but with different theoretical assumptions 295 

on the distribution of their effects. 296 

The BLUP methodology overcomes formally the problem of degrees of freedom in the 297 

estimation step by fitting SNP effects as random rather than fixed (Meuwissen et al., 2001; Muir, 298 



 

iris-AperTO 
University of Turin’s Institutional Research Information System and Open Access Institutional Repository 

15 

2007). However, the curse of dimensionality still represents the most important theoretical 299 

constraint for GS implementation. This problem is enhanced when a small number of genotyped 300 

animals is available, as in the case of this study. Actually, PCA does not completely address such an 301 

issue because of the data structure. The SNP correlation matrix is singular and therefore the number 302 

of eigenvalues different from zero is equal to the number of animals (i.e. the rows) minus one 303 

(Bumb, 1982; Patterson et al., 2006). In this study, PCA was carried out separately by each 304 

chromosome. At this level, the gap between predictors and observations was reduced and the 305 

number of components retained per chromosome (on average 75 and 120 in Brown and Simmental, 306 

respectively) was markedly smaller than the number of markers and of animals. 307 

In agreement with previous findings on both simulated and real data, PCA was able to 308 

efficiently describe the correlation matrix of SNP genotypes (80% of explained variance) with less 309 

than 10% of the original variables. Such a reduction had a straightforward impact on calculation 310 

time. The PC_BLUP approach required about 2 minutes using a personal computer with a 2.33 GHz 311 

Quad core processor and 3.25 Gb of RAM. On the other hand, 6 to 9 hours were needed on average 312 

for the SNP_BLUP and Bayes_A approaches using a Linux server with 4 x 4 quad core processors 313 

and 128 Gb RAM. PCA required approximately half an hour, but it had to be done just once at the 314 

beginning of the work. Although calculation speed is not usually considered a technical priority for 315 

GS, compared for example to genotyping costs, it is likely to become more relevant due to the 316 

recent development of a larger (800K) SNP platform and to the upcoming very low cost sequencing 317 

technologies (Van Raden et al., 2011). 318 

Of great interest is that such a huge reduction of calculation time did not result in a loss in 319 

DGV GEBV accuracy. The similarity of results between the PC_BLUP approach and the other two 320 

methods considered in the present paper confirms previous findings obtained with another 321 

multivariate dimension reduction technique, the Partial Least Squares Regression (Long et al., 322 

2011; Moser et al., 2010, Moser et al., 2009). The reduction of the predictor dimensionality 323 
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obtained by selecting subsets of SNPs based on their chromosomal location or on their relevance to 324 

the trait usually resulted in a decrease of DGV accuracy (VanRaden et al., 2009, Vazquez et al., 325 

2010). Actually, compared to subset SNP selection, the multivariate reduction has the advantages of 326 

not discarding any marker and of using uncorrelated predictors. The latter feature is confirmed by 327 

the observed lower bias of the PCA method compared to the SNP_BLUP method. 328 

The similar results obtained by using methods characterized by different theoretical 329 

foundations suggests further considerations. The BLUP assumption of an equal effect of all markers 330 

on the variance of the trait is commonly considered rather inadequate to fit the assessed distribution 331 

of QTLs, i.e many loci with a small effect and a few with large effects (Hayes and Goddard, 2001). 332 

On the other hand, the superiority of the Bayesian approach that fits heterogeneous variances across 333 

chromosome segments is marked in simulations but not in real data; (Hayes et al., 2009a, Moser et 334 

al., 2009, VanRaden et al., 2009). Genome-wide association studies on human height suggest that 335 

genetic variation is explained by many loci of small additive effects (Yang et al., 2010). Moreover, 336 

a superior predicting ability of GEBVs for models that assume a heavy-tailed distribution of gene 337 

effects compared with finite locus models has been recently reported (Cole et al., 2009). Thus also 338 

BLUP methodology, even though not very accurate in terms of description of gene effect 339 

distribution, may offer robust DGV estimates (Goddard, 2009) with reasonable accuracies.  340 

A possible criticism to the use of PCA is the lack of biological meaning of the extracted 341 

variables. Such a feature is in contrast with the general aims of the use of molecular markers in 342 

animal breeding, i.e. the overcome of the black-box approach of traditional quantitative genetics. 343 

However, even though a clear interpretation based on eigenvectors is not feasible, some results 344 

obtained in this work are worth to be mentioned. The extracted PC scores have been able to cluster 345 

animals of the two breeds, confirming the ability of this statistical technique to capture genetic 346 

variation across and within populations, highlighted in human genetic studies (Cavalli-Sforza and 347 

Feldman 2003, Paschou et al., 2007; Price et al., 2006). Moreover, a relationship between one of the 348 
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extracted PC and the average individual heterozygosity has been evidenced. It is interesting to 349 

notice that, in the case reported for BTA6, it was not the first extracted component to show the 350 

relationship with heterozygosity but the third one. This is also a distinguishing common feature of 351 

PCA: the first extracted component seldom contains biologically relevant information whereas 352 

these may be retrieved in components associated to smaller eigenvalues (Jombart et al., 2009).  353 

In general, DGV accuracies GEBV reliability were rather low, as expected due to the 354 

reduced size of the sample of bulls considered and to their distribution across years of birth. 355 

Composition traits and udder score showed higher accuracies compared to yield traits,. These 356 

results, in agreement with previous findings (Hayes et al., 2009a, VanRaden et al., 2009), may 357 

reflect some variation in the genetic determinism of the trait (Cole et al., 2009). In particular, genes 358 

with large effects for fat and protein percentages have been discovered (Cohen-Zinder et al., 2005, 359 

Cole et al., 2009, Grisart et al., 2002). Thus, considering that genomic predictions works by tracking 360 

the inheritance of causal mutations (VanRaden et al., 2009), the method may be more efficient for 361 

traits where few loci affect a large proportion of the genetic variance. Also the slightly higher 362 

accuracy observed for BAYES_A compared to the other two methods on fat and protein percentage 363 

can support the above reported considerations. 364 

Observed reliability accuracies of genomic predictions were similar or higher to those of 365 

traditional pedigree indexes in the case of Brown bulls but rather smaller, except for percentage of 366 

fat and protein milk yield, in the case of Simmental bulls. Even though genomic prediction have 367 

been reported to be more accurate than PI (De Los Campos et al., 2010; Olson et al., 2011; 368 

VanRaden et al., 2009), these are rather expected results, considering the limited size of the samples 369 

used in this study. 370 

Obtained DGV accuracies GEBV reliablitiy are characterized by a relevant variation both 371 

within and between breeds. In particular, the Brown breed showed a higher variation in R2
DGV,EBV 372 

across traits compared to the Simmental. Differences in genomic accuracies between traits have 373 
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been reported in other papers (Hayes et al., 2009; Su et al., 2010; VanRaden et al., 2009) even 374 

though not of this magnitude. Moreover, it has to be remembered that most of literature deals with 375 

Holstein cattle. In any case, apart from the different genetic background of the considered traits, the 376 

sample size together with the wide range of birth year of bulls can be reasonably considered main 377 

causes of the present results. This consideration may explain the relevant reduction in accuracy for 378 

milk yield in the last scenario (REF:PRED 90:10) of the Brown bulls (Table 3). Actually this trait 379 

has been intensively selected across years and therefore the youngest 75 Brown bulls are very far 380 

from many REF animals both in terms of time and of genetic background(ora è il contrario). 381 

Therefore, PC or maker effects estimated in the REF population can be not adequate to predict their 382 

DGV  GEBV. Actually, the random inclusion of some of the youngest animals in the REF data set 383 

results in an increase of accuracy in the yield traits (Table 4). Reasons for the different behavior of 384 

the Simmental breed (less variation between traits, higher values for milk yield) remain unclear less 385 

clear. A partial explanation could be found in the pattern of birth year of bulls, narrower compared 386 

with Brown. Moreover, the lower accuracy for fat percentage compared to Brown should be 387 

ascribed to the known fixation of the favorable mutation at the DGAT1 locus in the Italian 388 

Simmental.  389 

 390 

CONCLUSIONS 391 

Principal Component Analysis was effective in reducing the number of predictors needed 392 

for calculating direct genomic values genomic enhanced estimated breeding values for dairy traits 393 

in Brown and Simmental bulls. Such a reduction did not affect DGV and GEBV accuracy and 394 

allowed for a relevant decrease of calculation time. The obtained accuracies, although moderate to 395 

low mainly due to the size of the sample of animals considered, highlighted some differences 396 

between traits ad breeds. Results of the present work suggest the PC approach as a possible 397 
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alternative to the use of SNP genotypes for predicting DGV, especially for populations of limited 398 

size. 399 
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Table 1. Number of animals and markers discarded in the different edit steps. 592 

Breed Repeated1 Mendelian 

Inheritance2 

Missing3 MAF4 HW5 Final 

dataset DRG 

  Animals     

Brown 17 3 6   634 

Simmental 6 2 6   469 

  SNP markers     

Brown  23 1,118 15,046 560 37,254 

Simmental  21 999 12.215 587 40,179 

 593 

1Number of animals genotyped twice to check genotyping quality  594 

2SNP that showed Mendelian conflicts in more than 2.5% father-sons pairs; animals that showed 595 

more than 2,000 Mendelian conflicts . 596 

3Animals with more than 1,000 missing genotypes; SNP with more than 2.5% missing genotypes 597 

4 SNP with a minor allele frequency lower than 0.05. 598 

5 SNP that deviate significantly (P<0.01) from Hardy Weinberg equilibrium. 599 

600 
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Table 2. Pearson correlations (X100) between direct genomic values and polygenic estimated breeding 601 

values , for different estimation methods for both Simmental and Brown datasets 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

622 

 PC-BLUP  SNP-BLUP  BAYES A 

 BROWN SIMENT  BROWN SIMENT  BROWN SIMENT 

Trait Ref:Pred 70:30 

Milk yield  17.4 31.0  4.9 36.5  14.6 37.7 

Fat yield 26.1 24.5  16.5 27.6  29.9 28.6 

Protein yield 15.7 22.8  6.8 28.4  16.9 29.9 

SCC 23.9 1.4  13.5 15.2  25.4 16.4 

Fat percentage 40.5 13.8  18.3 18.4  45.1 18.2 

Protein percentage 47.4 33.2  24.2 33.5  46.5 35.1 

 Ref:Pred  80:20 

Milk yield 18.1 44.6  6.6 41.2  17.5 42.3 

Fat yield 26.4 34.8  21.9 27.4  31.1 28.8 

Protein yield 18.2 40.9  11.5 30.9  22.1 33.6 

SCC 31.7 9.3  25.9 15.1  32.5 17.2 

Fat percentage 40.7 3.3  28.2 9.1  42.5 6.2 

Protein percentage 42.4 30.8  25.9 31.0  38.8 31.9 

 Ref:Pred 90:10 
Milk yield 28.9 51.4  14.8 42.7  16.8 45.5 

Fat yield 43.5 40.3 
 

35.9 34.9 
 

41.8 36.0 

Protein yield 40.7 48.7  26.3 35.5  32.7 38.1 

SCC 4.2 7.3  11.6 17.3  38.7 11.8 

Fat percentage 35.4 12.4  19.8 8.5  34.9 11.9 

Protein percentage 53.2 21.3  28.4 25.9  40.8 21.5 
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 623 

 624 

Table 3. Average (standard deviations in brackets)  Pearson correlations between predicted direct 625 

genomic breeding values and polygenic breeding values in the two breeds using Principal 626 

component scores as predictors when prediction population (30% of the whole data set) is created 627 

by randomly picking up animals from the 50% of youngest bulls 628 

Trait Brown Simmental 

Milk yield 27.3 (2.5) 46.3 (2.3) 

Fat yield 32.7 (1.7) 39.1 (2.8) 

Protein yield 33.2 (3.0) 43.6 (4.0) 

Fat percentage 43.7 (3.2) 18.0 (4.7) 

Protein percentage 49.2 (3.8) 30.8 (4.3) 

SCC 34.0 (6.9) 25.4 (7.0) 

 629 

 630 

631 



 

iris-AperTO 
University of Turin’s Institutional Research Information System and Open Access Institutional Repository 

27 

Table 4. Squared correlations between genomic enhanced  breeding values obtained using principal 632 

component scores (PC_BLUP) as predictors, or SNP genotypes with a BLUP (SNP_BLUP) or 633 

Bayesd A (BAYES_A) methods, or pedigree indexes (PI) and polygenic estimated breeding values, 634 

for different scenarios in the Brown breed. 635 

 Estimation method 

Trait PC_BLUP SNP_BLUP BAYES_A PI 

 Ref:Pred 70:30 

Milk yield 4.5 1.6 3.6 4.6 

Fat yield 9.3 6.0 9.9 5.7 

Protein yield 2.7 1.1 2.5 3.5 

SCC 13.9 13.2 13.4 12.5 

Fat percentage 35.1 30.4 35.2 25.6 

Protein percentage 38.4 30.5 34.9 29.8 

 Ref:Pred 80:20 

Milk yield 9.0 4.6 7.8 8.6 

Fat yield 9.7 8.1 10.4 6.3 

Protein yield 2.4 1.0 2.3 2.2 

SCC 11.7 11.2 10.9 9.7 

Fat percentage 38.5 34.4 36.7 26.7 

Protein percentage 34.2 28.8 30.6 24.5 

 Ref:Pred 90:10 

Milk yield 12.3 7.1 6.6 6.6 

Fat yield 22.9 19.2 18.4 8.3 

Protein yield 12.6 3.5 2.9 0.4 

SCC 21.0 22.0 19.8 20.9 

Fat percentage 36.7 34.1 34.5 28.4 

Protein percentage 37.6 26.3 27.1 20.4 

 636 

637 
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Table 4. Squared correlations between genomic enhanced  breeding values obtained using principal 638 

component scores (PC_BLUP) as predictors, or SNP genotypes with a BLUP (SNP_BLUP) or 639 

Bayesd A (BAYES_A) methods, or pedigree indexes (PI) and polygenic estimated breeding values, 640 

for different scenarios in the Simmental breed. 641 

 Estimation method 

Trait 
PC_BLUP SNP_BLUP BAYES_A PI 

 Ref:Pred 70:30 

Milk yield 36.6 35.4 35.8 34.5 

Fat yield 34.3 33.8 33.9 33.3 

Protein yield 35.3 34.1 34.4 34.1 

SCC 20.1 20.4 20.3 20.5 

Fat percentage 14.8 15.0 14.7 15.4 

Protein percentage 20.2 19.0 19.4 21.0 

 Ref:Pred 70:30 

Milk yield 36.7 35.3 35.7 33.1 

Fat yield 31.2 30.0 30.3 28.8 

Protein yield 33.0 30.6 31.0 30.5 

SCC 20.3 20.5 20.6 20.6 

Fat percentage 12.7 14.9 14.1 15.9 

Protein percentage 17.9 16.5 17.4 16.9 

 Ref:Pred 70:30 

Milk yield 36.6 30.4 31.8 24.8 

Fat yield 29.4 27.3 27.8 23.4 

Protein yield 32.7 24.0 25.1 20.5 

SCC 18.2 18.3 17.8 18.2 

Fat percentage 5.2 6.0 5.5 7.0 

Protein percentage 11.9 15.2 13.3 15.0 

 642 

643 
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 Table 6. Regression coefficients of polygenic breeding values on genomic enhanced breeding 644 

values (bEBV,GEBV) or PI (bEBV,PI)  for some dairy traits in Brown and Simmental prediction animals 645 

using principal components scores (PC_BLUP), SNP genotypes (SNP_BLUP) or Bayes 646 

(BAYES_A) estimation method.  647 

  
BROWN SIMMENTAL 

Trait Method 70:30 80:20 90:10 70:30 80:20 90:10 

Milk yield PC_BLUP 0.49 0.66 0.86 1.09 1.00 0.96 

 SNP_BLUP 0.26 0.45 0.59 1.12 1.10 1.01 

 BAYES_ A 0.47 0.71 0.70 1.12 1.06 1.04 

 PA 0.31 0.44 0.41 0.91 0.88 0.73 

Fat yield PC_BLUP 0.80 0.83 1.26 1.05 1.06 1.20 

 SNP_BLUP 0.56 0.66 1.00 1.09 1.11 1.38 

 BAYES_ A 0.93 0.99 1.34 1.09 1.11 1.38 

 PA 0.39 0.43 0.48 0.93 0.94 1.05 

Protein yield PC_BLUP 0.42 0.41 1.01 1.00 0.99 1.10 

 SNP_BLUP 0.22 0.23 0.47 1.02 0.99 1.04 

 BAYES_ A 0.43 0.44 0.62 1.04 0.99 1.07 

 PA 0.29 0.25 0.13 0.87 0.85 0.79 

SCS PC_BLUP 2.27 2.17 2.53 0.73 0.73 0.83 

 SNP_BLUP 1.95 1.86 2.28 0.78 0.77 0.88 

 BAYES_ A 2.28 2.15 2.57 0.78 0.77 0.87 

 PA 0.80 0.73 0.94 0.73 0.72 0.81 

Fat percentage PC_BLUP 1.33 1.35 1.48 0.59 0.64 0.47 

 SNP_BLUP 1.20 1.31 1.29 0.65 0.65 0.59 

 BAYES_ A 1.46 1.54 1.46 0.64 0.64 0.56 

 PA 0.78 0.80 0.80 0.53 0.54 0.46 

Protein percentage PC_BLUP 1.29 1.18 1.45 0.88 0.93 0.72 

 SNP_BLUP 1.13 1.18 1.21 0.96 0.88 0.89 

 BAYES_A 1.33 1.32 1.32 0.96 0.91 0.85 

 PA 0.81 0.76 0.77 0.83 0.73 0.68 
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 653 

 654 

FIGURE 1. Distribution of number of bulls across year of birth. 655 

 656 
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 658 

FIGURE 2. Pattern of the proportion of variance (%) accounted for by each successive principal component 659 

extracted from  the correlation matrix of SNP markers for the chromosome six in the Brown breed. 660 
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 667 

FIGURE 3. Plot of the individual scores of the first three principal components (PC1, PC2 and PC3) 668 

extracted from chromosome six in the two breeds (Circles=Brown; Pyramids=Simmental).. 669 
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