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ABSTRACT  

 

Objective: To identify shared polygenic risk and causal associations in amyotrophic 

lateral sclerosis (ALS).  

Methods: Linkage disequilibrium score regression and Mendelian randomization were 

applied in a large-scale, data-driven manner to explore genetic correlations and causal 

relationships between > 700 phenotypic traits and ALS. Exposures consisted of publicly 

available genome-wide association studies (GWASes) summary statistics from MR Base 

and LD-hub. The outcome data came from the recently published ALS GWAS involving 

20,806 cases and 59,804 controls. Multivariate analyses, genetic risk profiling and 

Bayesian colocalization analyses were also performed. 

Results: We have shown via linkage disequilibrium score regression that ALS shares 

polygenic risk genetic factors with a number of traits and conditions, including positive 

correlations with smoking status and moderate levels of physical activity, and negative 

correlations with higher cognitive performance, higher educational attainment, and light 

levels of physical activity. Using Mendelian randomization, we found evidence that 

hyperlipidemia is a causal risk factor for ALS and localized putative functional signals 

within loci of interest.  

Interpretation: Here we have developed a public resource (https://lng-

nia.shinyapps.io/mrshiny) which we hope will become a valuable tool for the ALS 

community, and that will be expanded and updated as new data become available. Shared 

polygenic risk exists between ALS and educational attainment, physical activity, smoking 

and tenseness/restlessness. We also found evidence that elevated LDL cholesterol is a 
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causal risk factor for ALS. Future randomized controlled trials should be considered as a 

proof of causality. 

 

 

INTRODUCTION 

 

Amyotrophic lateral sclerosis (ALS, OMIM #105400) is a progressive, fatal 

neurodegenerative disease. Symptom onset of ALS peaks in the mid-sixties, and most patients 

succumb to the disease within two to five years of becoming symptomatic 1. The prevalence 

of ALS is projected to nearly double by 2040, primarily due to aging of the global population 

2. 

Despite considerable advances made in understanding the genetic architecture underlying 

ALS 3,4, the contribution of lifestyle factors and of disease-related conditions predisposing 

individuals to the disorder have been more difficult to elucidate. Epidemiological studies 

have attempted to identify risk factors and comorbidities associated with ALS, although the 

inability of such observational research to fully mitigate confounding effects or to exclude 

reverse causality has made it challenging to find replicable causes of the disease 5. 

Genome-wide association studies (GWAS) have revolutionized human genetics and have led 

to the discovery of thousands of risk variants involved in disease etiology 6. From the 

perspective of ALS research, summary statistics from hundreds of these studies have been 

published online in an effort to facilitate the application of current generation genomic 

techniques, such as linkage disequilibrium (LD) score regression testing and Mendelian 
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randomization. Both methodologies are powerful tools to assess causality and investigate the 

extent to which genetic etiologies are shared across different diseases.  

LD score regression and Mendelian randomization test distinct aspects of the genetic 

architecture underlying a disease. More specifically, LD score regression investigates whether 

polygenic risk contributing to a phenotype of interest might also contribute to the risk of ALS. 

This approach relies on the identification of shared genome-wide heritability to pinpoint 

overlapping polygenic genetic variation between traits (pleiotropic relationship) 7. On the 

other hand, Mendelian randomization uses genetic data to assess whether an exposure exerts a 

causal effect on a particular outcome 8. In contrast to LD score regression, Mendelian 

randomization usually focuses on genome-wide significant SNPs for the exposure of interest 

(causal relationship) 8. As this analytical technique relies solely on genetic elements that 

remain constant over the lifespan of an individual, and that are randomized during 

gametogenesis, it effectively excludes reverse causality and reduces confounding to allow 

more reliable identification of a causal association between exposure and outcome.   

Recent ALS related Mendelian randomization studies have focused on a hypothesis driven by 

only a single trait 9-11. Here, we implemented LD score regression and Mendelian 

randomization in a large-scale audit relevant to ALS. In brief, our goal was to survey curated 

libraries of GWAS results using LD score regression and Mendelian randomization. The 

former is more liberal in identifying shared variation that suggests a significant degree of 

shared genetic risk, whereas the latter is more conservative and attempts to pinpoint causal 

associations via established loci. We also created an online resource (https://lng-

nia.shinyapps.io/mrshiny) that can be used by the ALS community to inform pleiotropy or 
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causality when undertaking observational studies or pursuing disease-modifying interventions. 

 

METHODS 

Outcome data 

Summary statistics from our recently published GWAS of ALS involving 20,806 cases and 

59,804 controls of European ancestry were used as the outcome for both LD score regression and 

Mendelian randomization analyses. This study included 10,031,630 genotyped and imputed 

variants. Sample recruitment and genotyping quality control procedures are described  

elsewhere 4. 

 

Linkage disequilibrium score regression 

LD patterns across the genome enable the calculation of genetic correlations between traits. This 

is because the observed association for a SNP is a product of both its own contribution toward a 

phenotype and the association of the SNPs that are in LD with it. SNPs in regions of high LD tag 

a greater proportion of the genome and will show stronger associations than SNPs in regions of 

low LD. Using the known LD structure of a reference SNP panel, the heritability of a single 

phenotype or the genetic correlation of two phenotypes can be computed using LD score 

regression 7,12.  

To study shared genetic risk via LD score regression, we used LD Hub, a centralized database of 

summary-level GWAS results across multiple diseases/traits gathered from publicly available 
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resources 13. LD score regression was implemented by regression of the chi-squared statistics for 

the genetic associations with the trait against the LD scores for genetic variants across the whole 

genome. Unlike Mendelian randomization, LD score regression does not assess casualty, but 

rather only assesses multi-directional correlations and can distinguish between population 

stratification and polygenicity in GWAS studies. Default settings were used in our analyses.  

 

Mendelian randomization 

Mendelian randomization is a proxy-based approach for exploring whether an exposure is causally 

associated with an outcome. This is done by: identifying the single nucleotide polymorphisms 

(SNPs) associated with a particular exposure (for example, SNPs identified in a genome-wide 

association study (GWAS) as being associated with colon cancer); extracting data for those SNPs 

from the outcome (in this case, a large-scale GWAS of ALS 4); harmonizing the exposure and 

outcome summary data; and, applying Mendelian randomization methods to test for a causal 

relationship between the exposure and the outcome rooted in genetic associations. 

 
Similar to LD-Hub, MR Base database is a curated database containing summary results from 

1,094 GWASes involving 889 traits 14 . These traits encompass a wide range of physiological 

characteristics and disease phenotypes. Each trait was tested separately as an exposure to 

determine if it alters risk of developing ALS. The analyses were performed using the R package 

TwoSampleMR (version 3.2.2). The instrumental variables used for each exposure/phenotype 

consisted of the per-allele log-odds ratio (i.e., beta estimate) and standard errors for all 

independent loci (i.e., SNPs) reaching genome-wide significance in the tested GWAS. Of the 

1,094 GWASes with data available in MR Base (accessed 15th August 2018), 635 GWASes 
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(consisting of 345 published GWASes and 290 unpublished GWASes performed on the UK 

Biobank, www.ukbiobank.ac.uk) were included in our analysis based on the following criteria: (i) 

GWAS with at least two associated SNPs with p-values less than 5.0x10-8, considering this p-

value to be the generally accepted genome-wide significant threshold; (ii) SNPs present in both 

the exposure and outcome (ALS) datasets or when not present their linkage-disequilibrium proxies 

(R2 value >= 0.8); and, (iii) independent SNPs (R2 < 0.001 with any other associated SNP within 

10 Mb), considered as the most stringent clumping threshold used when performing Mendelian 

randomization analyses.   

Harmonization was undertaken to rule out strand mismatches and to ensure alignment of SNP 

effect sizes. Within each exposure GWAS, Wald ratios were calculated for each extracted SNP by 

dividing the per-allele log-odds ratio of that variant in the ALS data by the log-odds ratio of the 

same variant in the exposure data. We then applied a two-step approach designed to decrease the 

risk of false positive associations (see Fig 1 for the workflow).  

First, the inverse-variance weighted method was implemented to examine the relationship 

between the exposure and ALS. In this method, the Wald ratio for each SNP is weighted 

according to the inverse variance, and a line, constrained to pass through the origin, is fitted to the 

data. The slope of the line represents the pooled-effect estimate of the Wald ratios 15. Traits were 

brought forward to the next stage of analysis only if the p-value of the pooled-effect estimate was 

less than or equal to 0.05.  Next, two Mendelian randomization sensitivity tests (i.e., MR Egger 

and Weighted Median) were applied to those traits/GWASes passing the first phase of analysis. 

These sensitivity analyses evaluated core assumptions of Mendelian randomization, and traits 

were considered to be consistent with a causal effect when p-values were less than or equal to 
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0.05. Heterogeneity of effects were tested using the Cochran’s Q test, quantified using the I2 

statistic, and displayed in forest plots. Steiger analyses were performed to verify that the proposed 

instruments were directly associated with the outcome 16 or effect estimate directionality.  

We evaluated the possibility that the overall estimate was driven by a single SNP using leave-one-

out analyses for each of the GWASes associated with ALS. We further explored the possibility of 

reverse causality by using SNPs tagging the five independent loci described in the ALS GWAS as 

exposure instrument variables, and the identified GWASes as the outcome. Lasso-based 

multivariate analysis was used to explore how each related exposure of interest (i.e., low-density 

lipoprotein (LDL cholesterol), self-reported cholesterol, and coronary heart disease) 

independently contribute to ALS.  

 

Genetic risk score 

To further test the relationship between LDL cholesterol and ALS, a cumulative genetic risk score 

for LDL cholesterol was calculated in a smaller subset of the samples for which individual 

genotype data were available, including 8,229 ALS cases and 36,329 controls 4. The instrumental 

variables of interest were incorporated and weighted by beta values in the ALS GWAS. Next, a 

logistic regression was performed on this subset of cases and controls, regressing disease against 

quintile membership based on genetic risk score 17. Odds ratios were reported comparing the 

lowest risk quintile (reference group) to the remaining quintiles. Genetic risk scores were also 

calculated for different subtypes of ALS patients (carriers of the pathogenic C9orf72 repeat 

expansion, familial cases, sporadic cases, male cases and female cases). Risk profiling was 

adjusted for sex, age, and twenty principal components to account for population stratification. 
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Colocalization analysis 

Bayesian colocalization analysis was used as a statistical method to identify putative candidate 

genetic variants involved in LDL cholesterol blood levels that contribute most to the risk of 

developing ALS 18. For these analyses, we considered the 78 SNPs that were significantly 

associated with increased LDL cholesterol and were used as relevant instrumental variables for 

Mendelian randomization analyses. We extracted summary statistics for those variants (as well as 

variants one megabase (Mb) upstream and downstream) from the LDL cholesterol GWAS and 

from the ALS GWAS. Bayesian colocalization was then run for each independent region as 

implemented in the R package coloc (https://CRAN.R-project.org/package=coloc). This analysis 

assessed the probability of each SNP being responsible for the change in ALS risk through 

variation in LDL cholesterol. We derived posterior probabilities (PPH0-4) for each region and 

considered PPH4 greater than 0.95 as strong evidence for colocalization under the assumption of a 

single causative variant per locus. 

 
 
RESULTS 

Large-scale linkage disequilibrium score regression analysis in ALS 

LD score regression was applied to examine the genetic correlation between our recently 

published GWAS meta-analysis of ALS 4 and 736 phenotypes available in LD-hub, a centralized 

database of GWAS results across multiple diseases and traits (http://ldsc.broadinstitute.org/ldhub/, 

Fig 1).  

 
Traits genetically correlated to ALS by linkage disequilibrium score regression 
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Our analyses identified eighteen traits that were genetically correlated to ALS after adjusting for 

multiple testing via false discovery rate (Table 1). Among these, nine traits were related to 

educational attainment and intelligence, indicating that higher levels of education were associated 

with a decreased risk of ALS (smallest adjusted p-value = 1.78x10-4; regression coefficient  = -

0.338; 95% confidence interval (CI) = -0.46, -0.20).  

Traits related to light physical activity including walking for pleasure, walking as a mean of 

transport and light DIY physical activities were associated with decreased risk of developing ALS 

(smallest adjusted p-value = 5.19x10-4; regression coefficient = -0.403; 95% CI = -0.35, -0.14), 

whereas heavier activity levels such as duration of moderate activity and performing a job that 

involves mainly walking or standing were positively associated to ALS (smallest adjusted p-value 

= 3.09x10-2; regression coefficient  = 0.28; 95% CI = -0.36, -0.09). 

Smoking behaviour including Exposure to tobacco and being a light smoker showed genetic 

correlation with ALS (smallest adjusted p-value = 1.66x10-3; regression coefficient  = 0.42; 95% 

CI = 0.23, 0.62). Detailed results for the remaining 718 non-significant traits are shown in Table 

S1 and can be interactively searched at https://lng-nia.shinyapps.io/mrshiny. 

 
Large-scale Mendelian randomization in ALS 

Next, we performed Mendelian randomization to further investigate causal links between 

multiple phenotypic traits (exposures) and ALS (outcome, Fig 1). The exposures of interest 

consisted of 345 GWASes involving a wide range of physiological characteristics and disease 

phenotypes for which data was available in MR Base (http://www.mrbase.org/). The recently 

published GWAS of ALS involving 20,806 cases and 59,804 controls was used as the outcome 

 

This article is protected by copyright. All rights reserved.

https://lng-nia.shinyapps.io/mrshiny
http://www.mrbase.org/


4. 

There are no previous reports in the literature where multiple phenotypes were tested using 

Mendelian randomization in an unbiased, hypothesis-free manner. This raised concerns about 

false-positive associations and multiple-testing correction. To control for this and to confirm 

the validity of our findings, we replicated in an independent collection of phenotypes (290 

unpublished GWASes performed on the UK Biobank, www.ukbiobank.ac.uk). Here, we only 

report associations that were significant across both the published and unpublished sets of 

GWASes. Detailed results for the 635 GWAS under study are shown in Tables S2-S4 and can 

be visually explored at https://lng-nia.shinyapps.io/mrshiny.  

Traits causally linked to ALS by Mendelian randomization 

We identified the phenotypic traits LDL cholesterol and coronary heart disease in the 

published GWASes, and self-reported high cholesterol in the UK Biobank, as being causally 

linked to ALS risk (see Table 2 and Table S5 for SNPs used to construct the instruments of 

interest. Multivariate analysis showed that the signals arising from the coronary heart disease 

and self-reported high cholesterol were driven by SNPs related to LDL cholesterol, revealing 

that both traits represent closely-related phenotypes (Table 3). 

Leave-one-out analysis indicated that no single SNP accounted for these associations in 

isolation (Table S6). Additional analyses examining directionality, pleiotropy, and reverse 

causality did not indicate any violation of core Mendelian randomization assumptions for these 

traits (Table S7-S8). We used genetic risk profiling to estimate the extent to which risk of 

developing ALS is attributable to LDL cholesterol. We found that individuals with the highest 

burden of genetic risk were 1.075 times more likely to develop ALS (95% CI, 1.001–1.15, p-
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value = 0.003). The increase in ALS risk associated with LDL cholesterol levels was similar 

across different subtypes of ALS (C9orf72 carriers, familial ALS, sporadic ALS, male and 

female-only cases, Table S9). 

 

Identification of functional causal variants 

Bayesian colocalization analysis was performed to putatively identify the functional candidate 

variants that may drive risk of developing ALS through shared pathway effects of LDL 

cholesterol levels. We focused our efforts on the 78 independent regions associated with LDL 

cholesterol in the exposure GWAS. This analysis identified two independent regions with 

greater than 95% probability of containing a shared causal SNP (Table S10). Fine mapping of 

these regions identified two SNPs (rs182826525 within COL4A3BP and rs116226146 

intergenic between PPP1R2P3 and TIMD4) as being causally linked to ALS through an 

increase of LDL cholesterol levels (Fig 2). 

 

DISCUSSION 

We applied cutting-edge analytical techniques to genomic data across a wide range of phenotypic 

traits to identify factors associated with risk of developing ALS. This hypothesis-free, data-driven 

approach provided prima facie evidence supporting the existence of multiple such factors. Using 

genetic data to comprehensively map the risk factor landscape of ALS represents a novel approach 

in neurological disease. We used these results from nearly 25 million individuals (24,538,000 

from published GWAS and ~ 337,159 from UKBB studies) to establish a public resource that can 

be accessed by other researchers to explore risk factors and shared disease mechanisms in ALS. 
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LD score regression analyses found that common genetic variation associated with higher 

cognitive performance is negatively correlated to ALS. At a molecular level, these findings 

indicate that the genetic factors driving mental ability and ALS overlap to some extent. This may 

have been an expected outcome given the well-known relationship between ALS and 

frontotemporal dementia, and our findings are consistent with previous epidemiological reports 

assessing the causal relationship between education and ALS 19. Nevertheless, the large number of 

samples analyzed in our study and its grounding in genetics puts this risk factor on a firmer 

footing within the ALS field. Similar education effects have been observed in Alzheimer’s disease 

20, but understanding how education protects against neurodegeneration or which genetic variants 

are responsible for this shared risk will require additional study. One intriguing possibility is that 

the genetic variants responsible for ALS in middle age or in the elderly are also associated with 

decreased cognitive performance at a younger age. This is plausibly consistent with the 

observation that connectivity and grey matter volumes are altered in asymptomatic carriers of the 

C9orf72 repeat expansion 21-22. 

Epidemiological case-control studies have extensively reported a relationship between exercise 

and risk of developing ALS 23-25, though there are conflicting results as to the level of physical 

activity required to increase risk 19. Our genetic-based data demonstrate that this neuromuscular 

interconnection may be more complex than previously appreciated: light physical activity 

including ‘Walking for pleasure’ or ‘Light DYI activities’ was negatively associated with 

developing ALS, whereas more strenuous activity, such as ‘duration of moderate activity’ was 

paradoxically correlated with ALS. Extrapolating from these observations to neuromuscular 

physiology, relatively low levels of exercise may exert a neuroprotective effect by preventing 
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muscle atrophy that, in turn, supports motor neuron integrity though the neuroadaptive generation 

of neurotrophic factors 26). In contrast, excessive physical activity may be detrimental to motor 

neurons due to excessive free radical production and/or glutamate excitotoxicity that overwhelms 

neuroprotective mechanisms 27,28. Regardless, our data does not provide any insight into the effect 

of exercise on survival once the patient has presented with symptoms. 

There is compelling epidemiological evidence showing that cigarette smoking is a key 

environmental risk factor for ALS 29. Our LD data not only confirms that being a smoker is 

positively correlated to developing ALS, but also shows that this effect is mediated, at least in 

part, through shared genetic mechanisms. This is an example of the ability of this type of genomic 

analysis to identify pleiotropic effects, which is where a defect in a single gene can give rise to 

multiple, apparently unrelated phenotypes. Here we are extending the concept of pleiotropy 

beyond the single gene paradigm to encompass inherently complex traits driven by multiple 

genetic variants spread across the genome and that are typically outside of coding regions. LD 

score regression is not designed to identify the specific shared genetic variants responsible for 

both phenotypic traits, but instead focuses on establishing whether such pleiotropy exists between 

traits. 

Using Mendelian randomization, we found strong evidence that an alteration of lipid 

metabolism is causally linked to ALS. We undertook sensitivity analyses to reduce the 

possibility of bias in our results and replicated our findings across three different exposure 

GWASes, including a large, independent cohort obtained from the UK Biobank. 

Furthermore, we demonstrated that the increased risk of ALS due to coronary heart disease is 

driven by LDL cholesterol. Though hyperlipidemia only modestly increases the risk of ALS, 
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this effect likely operates over the lifetime of the individual, and the cumulative effect on 

disease risk may be substantial. 

Previous epidemiological studies have explored the role of blood lipids in the pathogenesis of 

ALS. These observational studies have yielded controversial results with many reporting that 

hyperlipidemia increases disease risk, and others suggesting the opposite 30-36. In addition to 

being underpowered, much of this previous research was based on blood lipid profiles 

obtained after diagnosis of ALS when ancillary factors may be influencing these levels 30-36.  

The singular advantage of Mendelian randomization is that it is agnostic to these confounders 

and can be considered nature’s randomized controlled trial. Based on genetic data that remain 

constant between the pre-symptomatic and symptomatic phases of the disease, it accurately 

pinpoints predisposing factors for the disease of interest. While this manuscript was under 

review, a link between blood lipids and the risk of ALS has been recently reported in 

European and East Asian populations using polygenic risk scores and Mendelian 

randomization 9, 10. These studies were performed involving a smaller cohort of ALS cases, 

and were based on the a priori hypothesis that blood lipids were involved in the pathogenesis 

of ALS. Our work extends these recent reports by definitely applying Mendelian 

randomization across a large number of phenotypic traits in an unbiased fashion, by 

replicating our findings in an independent cohort (UK Biobank), and by delineating the 

specific aspects of lipid metabolism relevant to the pathogenesis of ALS.  

Circulating blood cholesterol are multifunctional molecules, involved primarily in energy 

generation, as precursors or cofactors for signaling molecules, and in neuronal development 

 

This article is protected by copyright. All rights reserved.

https://paperpile.com/c/yzCWIC/wkBvu+rRj3H+pO8l9+QeRJY+NXN5O+Uv4Av+WRxBo
https://paperpile.com/c/yzCWIC/wkBvu+rRj3H+pO8l9+QeRJY+NXN5O+Uv4Av+WRxBo


and function 37. Dysregulation of cholesterol homeostasis in the brain has been linked to 

many neurodegenerative diseases such as Huntington's disease, Parkinson's disease, 

Niemann-Pick disease type C, and, most notably, Alzheimer's disease 38. The generation and 

clearance of β-amyloid protein is regulated by cholesterol, and drugs that inhibit cholesterol 

synthesis lower this protein within neurons 39, as is the more recent finding that the two 

secretory forms (APPɑ  and APP β) of amyloid precursor protein (APP) have opposing 

associations with β-amyloid generation, cholesterol biosynthesis, and LDL receptor levels 40. 

The identification of the cholesterol transport protein apolipoprotein E as a major genetic 

risk factor for Alzheimer's disease is also consistent with a role for cholesterol in the 

pathogenesis of neurodegenerative disease 41-42. Despite this, the molecular mechanisms by 

which altered lipid metabolism leads to neuron degeneration are unclear. 

An important question arising from our analysis centers on why LDL may causally affect ALS, 

while at the same time LDL levels are not genetically correlated with ALS under the LD Score 

regression model. This apparent divergence is because the variants linked to these two traits are 

not pleiotropic, and again highlights the fact that Mendelian randomization and LD regression 

analysis investigate different aspects of the genetic architecture underlying diseases. Mendelian 

randomization allows us to compare two groups of people that differ by the genetic variants of 

interest and therefore by any modifiable factor to which those genetic variants relate. In this case, 

genetic variants that are associated with LDL metabolism affect LDL levels and a ratio measure is 

calculated to determine how much this estimated change in LDL level would predispose 

individuals to ALS. If substantial pleiotropy were present, we would find that the same genetic 

variants that affect LDL metabolism also increase the risk of ALS by themselves (i.e genetic 
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correlation). Such pleiotropy was not observed in our data. Instead, we found that the only 

mechanism by which ALS risk could be increased is through an increase of LDL cholesterol 

levels (i.e linear association). 

Our data lead us to propose that lowering blood cholesterol levels is a viable strategy for 

reducing risk associated with ALS. A similar approach may be effective in Alzheimer's 

disease where exposure to statins is associated with substantially reduced risk of dementia in 

observational studies 43-44. Though the American Heart Association guidelines for treating 

blood cholesterol to reduce cardiovascular risk are widely implemented in the community, 

they primarily focus on patients over the age of 50 45. An alternative strategy may be to 

identify a younger subpopulation at increased risk of developing ALS and to institute 

treatment with lipid-lowering agents. This approach would initially focus on individuals with 

a family history of ALS or frontotemporal dementia, and on pre-symptomatic cases carrying 

the C9orf72 repeat expansion; together these subtypes account for nearly one in five cases of 

ALS 46. Long-term monitoring would be required to detect side-effects from the medication, 

and to determine effect on the age of disease onset. 

We conclude by saying that the reported findings should be interpreted in the context of existing 

evidence from other research studies using different designs, and definite conclusions should not 

be elaborated uniquely based on Mendelian randomization results. Future randomized controlled 

trials should be considered as a proof of causality. 

 

Limitations to this study 

Our analyses were limited to only those GWAS studies present in two public databases, 
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namely LD-hub and MR Base. Furthermore, the available data are focused on European 

populations. We envisage that future studies may expand our findings by employing larger 

sample sizes, greater density across the genome, and importantly Non-European populations, 

highlighting the utility of an ALS resource that is constantly updated as new data become 

available.  

One of the main caveats of working with summary level data (rather than individual level 

data) is that there is no possibility to filter and exclude sample overlap. For Mendelian 

randomization analyses, we cannot exclude the possibility that samples from the same 

individuals were used in both the GWASes that we identified as significant exposures and in 

the ALS GWAS that we used as the outcome measure. Such sample overlap may bias 

estimates in MR and increase Type 1 error rates. We reviewed the origin of the European 

cohorts present in our ALS outcome and in the significantly associated exposures, and the 

results of this comparison are outlined in Table S11. Our data suggest that sample overlap had 

only a minimal effect on our results. We also performed sensitivity analyses by calculating 

the F-statistic parameter as described elsewhere 47. Our results showed that two of the three 

GWASes of interest for which F-statistic could be calculated were considered strong 

instruments and are unlikely to be susceptible to bias due to overlapping samples (F-statistic 

for LDL cholesterol = 59.02, F-statistic for coronary heart disease =742.2). Furthermore, 

sample overlap alone cannot account for our findings, as any sample overlap would be 

equally likely to occur across the diverse GWASes that we studied, and yet, we consistently 

identified altered lipid metabolism as a risk factor for ALS across multiple GWAS studies and 

across multiple populations. There is no realistic scenario in which sample overlap could have 
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been consistently confined to just GWASes involving lipid metabolism. However, since 

Mendelian randomization effect estimates are often small, mandating additional follow-up on 

connected pathways. 

A concern that might arise is to what extent hereditary cases of ALS carrying rare genetic 

variants might have influenced our analyses. One should expect that carrying large effect, 

rarer variants would not generally preclude the carrying of more common, small effect genetic 

risk factors which comprise the majority of GWAS results that were used for Mendelian 

randomization and LD Score regressions.  

Finally, we are aware that certain bias could exist due to undetectable issues in underlying 

GWAS results utilized in this survey, but the fact that we have replicated our results in 

independent GWASes alleviates this concern. 
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FIGURE LEGENDS 

Figure 1. Flowchart of analysis 

The ALS Research Resource is an interactive tool where the user can explore genetic 

correlations and causal associations across more than 700 traits. GWAS exposures used 

for LD score regressions are available in LD hub at http://ldsc.broadinstitute.org/ldhub/. 

GWAS exposures used for the Mendelian randomization analyses are available in MR 

Base at http://www.mrbase.org/; (A) The inclusion criteria used for LD score regression 

analyses comprise traits with heritability estimates within normal boundaries. (B) The 

inclusion criteria used for Mendelian randomization includes (i) GWAS with at least 

two associated SNPs with p-values less than 5.0x10-8, (ii) SNPs present in both the 

exposure and outcome (ALS) datasets or when not present their linkage-disequilibrium 

proxies (R2 value >= 0.8); and, (iii) independent SNPs (R2 < 0.001 with any other 
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associated SNP within 10 Mb), considered as the most stringent clumping threshold 

used when performing MR analyses. (C) LD score regression analyses included 751 

publicly available GWASes considered as exposures of interest versus the most recent 

ALS GWAS as an outcome, and (D) MR analyses were performed considering two 

phases. Phase I includes 345 available GWAS in the public domain as exposures of 

interest while phase II includes unpublished UK Biobank GWAS data. (E) Significantly 

associated GWASes with ALS at Inverse variance weighted (p < 0.05). (F) 

Significantly associated GWASes with ALS at Weighted median and MR Egger (p < 

0.05). (G) Causally linked GWASes with ALS after performing reverse causality, 

sensitivity and directionality analyses. (H) Multivariate analyses used to explore how 

each related exposure of interest independently contribute to ALS. GWAS, Genome-

Wide Association study; kb, kilobases; R2, clumping threshold; LDL, low-density 

lipoprotein. 

Figure 2. Bayesian colocalization plots 

A plot and B plot represent two independent LDL cholesterol-associated regions with 

posterior probability greater than 95 % of sharing a causal variant involved in ALS. 

Panels in column A show the region spanning chr5:73656720-75651786 where 

rs182826525 is likely the shared causal variant with a posterior probability of nearly 

100%. Panels in column B show the region spanning chr5:155390511-157388284 

where rs116226146 is likely the shared causal variant with a posterior probability of 

96%.  The first row displays the p-values from the LDL GWAS for each region. Color 

is coded by p-values in the ALS GWAS.  The second row displays the P-values from 
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the ALS GWAS for the same regions. Color is coded by P-values in the LDL GWAS.  

The third row shows local gene positions (with strands denoted by +/-), as well as 

recombination rates measured in cM/Mb. 38 The bottom row shows the posterior 

probabilities of a shared causal variant between LDL cholesterol and ALS. 
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Trait Source rg [se] p-value FDR
p-value h² [se]

Fluid intelligence score UKBB -0.338
[0.067] 4.74E-07 1.78E-04 0.238

[0.011]
Qualifications: Other professional qualifications 

eg: nursing_ teaching UKBB -0.257
[0.071] 3.00E-04 1.73E-02 0.047

[0.003]
Qualifications:

A levels/AS levels or equivalent UKBB -0.255
[0.059] 1.61E-05 1.66E-03 0.097

[0.004]
Qualifications:

College or University degree UKBB -0.249
[0.053] 2.77E-06 5.19E-04 0.168

[0.005]
Qualifications:

O levels/GCSEs or equivalent UKBB -0.238
[0.069] 5.00E-04 2.68E-02 0.049

[0.003]

Age completed full time education UKBB -0.229
[0.068] 7.00E-04 3.09E-02 0.084

[0.005]

Years of schooling 2016 27225129 -0.226
[0.059] 1.00E-04 6.83E-03 0.127

[0.004]

Number of incorrect matches in round UKBB 0.229
[0.06] 1.00E-04 6.83E-03 0.055

[0.003]

EDUCATION

Qualifications: None of the above UKBB 0.255
[0.059] 1.49E-05 1.66E-03 0.098

[0.004]
Types of transport used
(excluding work): Walk UKBB -0.403

[0.085] 2.11E-06 5.19E-04 0.033
[0.002]

Types of transport used (
excluding work): Public transport UKBB -0.402

[0.092] 1.13E-05 1.66E-03 0.022
[0.002]

Types of physical activity
in last 4 weeks: Light DIY UKBB -0.287

[0.07] 4.24E-05 3.54E-03 0.039
[0.002]

Types of physical activity
in last 4 weeks: Walking for pleasure UKBB -0.286

[0.079] 3.00E-04 1.73E-02 0.037
[0.002]

Duration of moderate activity UKBB 0.283
[0.084] 7.00E-04 3.09E-02 0.032

[0.002]

ACTIVITY

Job involves mainly walking or standing UKBB 0.216
[0.065] 9.00E-04 3.56E-02 0.08

[0.004]

Exposure to tobacco smoke at home UKBB 0.42
[0.122] 6.00E-04 3.00E-02 0.012

[0.002]
SMOKING Light smokers

(at least 100 smokes in lifetime) UKBB 0.427
[0.1] 1.77E-05 1.66E-03 0.077

[0.008]

OTHER
Frequency of tenseness /

restlessness in last 2 weeks UKBB 0.227
[0.068] 9.00E-04 3.56E-02 0.044

[0.003]



 
 

See supplementary materials for a description of the phenotypes included in the UK Biobank dataset, and 
Figure 1 for the number of traits screened as part of the LD score regression analysis. Source: number 
denotes PubMed identification numbers; UKBB, UK Biobank; rg, regression; se, standard error; FDR, 
false discovery rate adjusted p-value; h², observed narrow-sense heritability. 
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Table 2. Mendelian randomization results for exposures causally linked to ALS 
 
 

id,specific code attributed to each trait by MR Base; No.of SNPs, number of SNPs;  

OR, Odds ratio; CI, confidence interval; LDL, low densitity lipoprotein. 
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Inverse variance 
weighted             MR Egger     Weighted  Median

Exposure  Source No. of 
SNPs

OR
[CI 95 %] p-value OR

[CI 95 %] p-value OR
[CI 95 %] p-value

LDL cholesterol 
id:300 24097068 78 1.116

[1.03-1.20] 0·003 1.115 
[1.00-1.23] 0·054 1.108

[1.00-1.226] 0·046

Coronary heart 
disease id:7 26343387 37 1.063

[1.0-1.13] 0·047 1.175 
[1.01-1.35] 0·032 1.116

[1.020-1.220] 0·015

Self-reported: 
high cholesterol 

id:UKB-a:108
UKBB 49 2.389

[1.48-3.84] 0·0003 2.669 
[1.08-6.55] 0·038 2.110

[1.021-4.357] 0·044

Table 3. Multivariable analysis to estimate the simultaneous effects of two exposures 
 

a) Analysis comparing LDL cholesterol versus self-reported cholesterol 
 

Exposure No. of SNPs beta se p-value 
LDL cholesterol || id:300 72 0·175 0·084 0·019 

Self-reported high cholesterol || id:UKB-a:108 34 -0·847 0·722 0·120 
 

b) Analysis comparing LDL cholesterol versus coronary heart disease 
 

Exposure No. of SNPs beta se p-value 
LDL cholesterol || id:300 74 0·087 0·040 0·014 

Coronary heart disease || id:7 26 0·027 0·038 0·239 
 

id, specific code attributed to each trait by MR Base; se, standard error; No. of SNPs, number 
of SNPs; LDL: low density lipoprotein. 
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