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Deep Learning Electronic Cleansing 
for Single- and Dual-Energy CT 
Colonography

Electronic cleansing (EC) is used for computational removal of 
residual feces and fluid tagged with an orally administered contrast 
agent on CT colonographic images to improve the visibility of  
polyps during virtual endoscopic “fly-through” reading. A recent 
trend in CT colonography is to perform a low-dose CT scanning 
protocol with the patient having undergone reduced- or noncathar-
tic bowel preparation. Although several EC schemes exist, they have 
been developed for use with cathartic bowel preparation and high-
radiation-dose CT, and thus, at a low dose with noncathartic bowel 
preparation, they tend to generate cleansing artifacts that distract 
and mislead readers. Deep learning can be used for improvement of 
the image quality with EC at CT colonography. Deep learning EC 
can produce substantially fewer cleansing artifacts at dual-energy 
than at single-energy CT colonography, because the dual-energy 
information can be used to identify relevant material in the colon 
more precisely than is possible with the single x-ray attenuation 
value. Because the number of annotated training images is limited 
at CT colonography, transfer learning can be used for appropriate 
training of deep learning algorithms. The purposes of this article are 
to review the causes of cleansing artifacts that distract and mislead 
readers in conventional EC schemes, to describe the applications 
of deep learning and dual-energy CT colonography to EC of the 
colon, and to demonstrate the improvements in image quality with 
EC and deep learning at single-energy and dual-energy CT colo-
nography with noncathartic bowel preparation.
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After completing this journal-based SA-CME activity, participants will be able to:
■■ Describe the fundamentals of EC methods and the cleansing artifacts that the cur-

rent EC methods generate.

■■ Discuss an effective application of deep learning to virtual bowel cleansing.

■■ Explain how the combined use of deep learning and dual-energy CT colonography 
can improve the image quality with EC.
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methods have been developed mostly for single-
energy CT colonography, where soft tissue can 
be confused with partial-volume tagging artifacts 
and unclearly tagged regions because of their 
similar CT values (12–15). Therefore, current 
EC methods can generate cleansing artifacts 
that distort normal anatomy and imitate pol-
yps, thereby complicating the interpretation of 
virtually cleansed CT colonographic images. The 
current trend of using a very low-radiation-dose 
CT protocol and noncathartic bowel preparation 
tends to escalate this issue.

Attempts to perform EC with dual-energy CT 
colonography to reduce cleansing artifacts have 
been made (16,17). At two energy levels, two CT 
values of materials with a high effective atomic 
number deviate more from a linear relationship 
than do those of materials with a small effective 
atomic number (18,19). Therefore, dual-energy 
CT can be used to identify tagged and other 
materials and their partial-volume effects more 
precisely than can single-energy CT (20), and 
thus it has the potential to provide precise cleans-
ing of the fecal materials in the colon.

Deep learning recently has become a popular 
method of choice in many applications (21). Es-
pecially in the interpretation of medical images, 
deep convolutional neural networks (DCNNs) 
have shown a remarkable ability to outperform 
conventional state-of-the-art classifiers in classifi-
cation of abnormalities and disease patterns, and 
they are reaching interpretation levels compa-
rable to those of human experts (22–25). Un-
like conventional classification methods that use 
manually designed mathematical image features, 
DCNNs have a built-in mechanism for automatic 
computation of optimal discriminating features 
directly from input images for precise classifica-
tion of a target object on the images (26). There-
fore, DCNNs have the potential to provide pre-
cise electronic cleansing of the colon when they 
are applied to pixel and voxel classification of CT 
colonographic images and volumetric images. 

In this article, we first review the causes of 
cleansing artifacts that distract and mislead read-
ers of conventional CT colonographic images. We 
then describe how deep learning can be applied 
effectively to the EC of patients who undergo 
single- and dual-energy CT colonography. We also 
demonstrate the high cleansing quality of such a 
deep learning EC method at low-radiation-dose 
CT colonography for which patients have under-
gone reduced- or noncathartic bowel preparation.

Conventional EC: Artifacts and Pitfalls
Existing conventional EC methods originally 
were developed for CT colonographic exami-
nations that involved rigorous cathartic bowel 

Introduction
Colorectal cancer is the third leading cause of 
cancer-related deaths in women and the second 
leading cause in men in the United States (1). 
Colorectal cancer screening facilitates not only 
early detection of cancers while they are still 
treatable but also prevention of cancers, because 
polyps can be detected and removed while they 
are still benign.

CT colonography, also known as virtual colo-
noscopy, is recommended by the U.S. Preventive 
Services Task Force and the American Cancer 
Society as an option for colorectal cancer screen-
ing (2,3). It provides a safe and accurate means 
of examining the complete region of the colon 
(4,5). Also, CT colonography does not necessar-
ily require rigorous physical cathartic cleansing 
of the colon; thus it has the potential to increase 
patient compliance with colorectal cancer screen-
ing guidelines (6–9).

Patients typically prepare for a CT colono-
graphic examination by orally ingesting an iodin-
ated fecal-tagging contrast agent that enhances 
the fluid and stool that could obscure or resemble 
polyps on CT colonographic images (10). Elec-
tronic cleansing (EC) is an image postprocessing 
method for computational removal of contrast 
material–enhanced (tagged) fecal material from 
the colonic lumen on CT colonographic images. 
EC enables virtual endoscopic “fly-through” 
reading of a virtually reconstructed three-di-
mensional (3D) colonic surface for detection of 
polyps that otherwise would have been covered 
by fecal material (11). However, current EC 

Teaching Points
■■ Electronic cleansing (EC) is an image postprocessing method 

for computational removal of contrast material–enhanced 
(tagged) fecal material from the colonic lumen on CT colo-
nographic images.

■■ DCNNs have a built-in mechanism for automatic computation 
of optimal discriminating features directly from input images 
for precise classification of a target object on the images.

■■ With recent trends toward reducing bowel preparation re-
quirements and radiation dose at CT colonography, conven-
tional EC methods have been shown to produce cleansing 
artifacts that appear similar to or distort polyps on CT colono-
graphic images, thereby distracting readers.

■■ Through its ability to allow differentiation of the chemical 
composition of materials, dual-energy CT circumvents the 
inherent problem of single-energy CT, which is that soft tis-
sue is sometimes represented by CT values similar to those of 
unclearly tagged fecal material and partial-volume mixtures 
with air.

■■ Together, deep learning and dual-energy CT colonography 
are promising approaches for providing a next-generation EC 
scheme that is a substantial improvement on the quality of EC 
of the colon at CT colonography.
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tion among soft tissue, tagged fecal material, and 
their partial-volume mixtures with air.

Dual-Energy CT Colonography
Through its ability to allow differentiation of the 
chemical composition of materials, dual-energy 
CT circumvents the inherent problem of single-
energy CT, which is that soft tissue is sometimes 
represented by CT values similar to those of un-
clearly tagged fecal material and partial-volume 
mixtures with air. The material decomposition 
can be performed by expressing the linear attenu-
ation coefficient of a dual-energy CT image at 
energy E, µE, as a linear combination of the mass-
attenuation coefficients of two basis materials at 
two energy levels (28).

80keV
 =  1

80keV  
·  1 + 2

80keV
 ·  2 

140keV
=  1

140keV
· 1  +  2

140keV
 ·  2 

where µ is the linear attenuation coefficient, 
m1

80keV and m1
140keV are the mass-attenuation coef-

ficients of basis material 1 at 80 keV and 140 
keV, respectively, and m2

80keV and m2
140keV are the 

mass-attenuation coefficients of basis material 

preparation and a relatively high CT radiation 
dose (11). However, with recent trends toward 
reducing bowel preparation requirements and 
radiation dose at CT colonography, conven-
tional EC methods have been shown to pro-
duce cleansing artifacts that appear similar to 
or distort polyps on CT colonographic images, 
thereby distracting readers (27). 

Three types of cleansing artifacts commonly 
are observed. Type I (air-tagging boundary) 
artifacts are artificial residual soft-tissue lay-
ers that are caused by incomplete removal of 
partial-volume boundaries between air and 
tagged material (Fig 1). Type II (three-material 
boundary) artifacts are those that are incorrectly 
removed thin soft-tissue surfaces between air 
and tagged material (Fig 2), which occur when 
an EC method interprets the soft-tissue surface 
incorrectly as a Type I air-tagging boundary. Type 
III (three-material mixture) artifacts are partial-
volume mixtures of air, soft tissue, and tagged 
material that are resolved unsatisfactorily with 
an EC method, thereby generating pseudopolyps 
or artificial diverticula (Fig 3). The three types 
of cleansing artifacts are caused largely by the 
inability of single-energy CT to allow differentia-

Figure 1.  Type I cleansing artifact. (a, b) Original uncleansed axial CT colonographic image (a) 
and the corresponding virtual endoluminal view (b) show tagged fluid that obstructs the view 
of the bowel wall. (c, d) After cleansing with a conventional EC method, the corresponding 
axial image (c) and the virtual endoluminal view (d) show a Type I artifact of incomplete re-
moval of the partial-volume boundary between air and tagged material (arrows on c and d).
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2 at 80 keV and 140 keV, respectively. The mass 
densities of the two basis materials, ρ1 and ρ2, 
can then be obtained by solving these two linear 
equations. At CT colonography, the basis ma-
terials of choice are typically water and iodine. 
By solving these equations for water and iodine, 
one obtains the material fractions of air, soft tis-
sue, and iodine at each image voxel (29–31).

Dual-energy CT also can be used for calculation 
of virtual monochromatic images by reapplying the 
equations to the material decomposition images 
at a desired virtual monochromatic energy level. 
Virtual monochromatic images provide quan-
titatively more accurate attenuation measure-
ments than do conventional single-energy CT 
colonographic images (18). With an appropriately 
chosen energy level, virtual monochromatic 
images also can be used to minimize the beam-
hardening and pseudoenhancement artifacts that 
tend to appear around regions of highly attenu-
ating tagged fecal material on single-energy CT 
colonographic images.

Deep Learning Electronic Cleansing
Most EC methods are based on the use of one 
or more image-based features to guide the 

cleansing of tagged fluid and feces on CT colo-
nographic images. Traditionally, such features 
are designed manually on the basis of a math-
ematical model of cleansing. Our deep learning 
EC method derives such features automatically 
with the use of DCNNs. In the case of single-
energy CT colonography, our method includes 
only one input volumetric image, the single-
energy CT colonographic volumetric image, 
whereas in the case of dual-energy CT colonog-
raphy, our method includes six input volumetric 
images: the two dual-energy CT colonographic 
volumetric images acquired with the dual-
energy CT scanner, two material decomposition 
volumetric images, and two virtual monochro-
matic volumetric images. We use DCNNs to 
classify the image voxels of the input volumetric 
images into five key material and pseudomate-
rial classes needed for performing EC: air, soft 
tissue, tagged fecal material, the partial-volume 
boundary between air and tagged material, and 
the partial-volume boundary between soft tissue 
and tagged material (Fig 4). The volumetric 
image that indicates the spatial distribution of 
these material classes is called the multimate-
rial feature image (MFI) volume. We provide a 

Figure 2.  Type II cleansing artifact. (a, b) Original uncleansed axial CT colonographic image (a) 
shows tagged fecal material next to a thin fold, which appears complete on the corresponding 
virtual endoluminal view (b). (c, d) After cleansing with a conventional EC method, the cor-
responding coronal image (c) and the virtual endoluminal view (d) show a Type II artifact of 
an incorrectly removed thin soft-tissue surface of the fold (arrow in c and d).
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general overview of our EC method, whereas 
the details of the training and evaluation of 
the DCNNs specific to the current study are 
provided in the “Deep Learning Single-Energy 
versus Dual-Energy EC Methods” section.

Transfer Learning of Deep  
Convolutional Networks
Before a DCNN is used, it must be trained. A 
DCNN has a large number of interconnected 
nodes that have been organized into several 
layers. The training of a DCNN involves adjust-
ment of the connection weights and biases of 
the nodes so that it performs a desired compu-
tation (32). However, whereas a DCNN has a 
large number of such internal parameters to be 
adjusted, in medical imaging in general and in 
CT colonography in particular, the number of 
available appropriately annotated training cases 
is often limited. 

In general, if the number or variety of train-
ing cases is limited, the DCNN is not able to 
classify new, unseen cases accurately. Transfer 
learning is an efficient paradigm for training 
highly complex classifiers when there are few 

domain-specific data (33–35). Transfer learn-
ing can be implemented by retraining a publicly 
available DCNN that has been pretrained with 
millions of general images by using domain-
specific images. For application of such a 
pretrained DCNN to a new problem domain, 
only its highest layers must be retrained; this 
is because the bottom layers contain generic 
low-level image features such as edge-detection 
features that do not require retraining, whereas 
the highest layers are progressively more specific 
to the features of target classes of the original 
training data and thus must be retrained by us-
ing domain-specific images.

Voxel Classification with Deep Learning
CT colonography is a volumetric 3D imaging 
modality, whereas publicly available pretrained 
DCNNs suitable for transfer learning have 
been designed to classify two-dimensional im-
ages only. To incorporate the volumetric im-
age information of CT datasets in our transfer 
learning EC method, we sampled multiple 
cut-plane region-of-interest images in symmetric 
3D orientations at each voxel (Fig 5). Multiple 

Figure 3.  Type III cleansing artifact. (a, b) Original uncleansed sagittal CT colonographic 
image (a) shows tagged fecal material obstructing the bowel wall, as shown on the cor-
responding virtual endoluminal view (b). (c, d) After cleansing with a conventional EC 
method, the corresponding sagittal image (c) and the virtual endoluminal view (d) show a 
Type III artifact, an unsatisfactorily resolved mixture of air, soft tissue, and tagged material 
(arrows in c and d).
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DCNNs were then trained with transfer learning 
to classify these cut-plane images. The output of 
each DCNN is a probability vector that indi-
cates the probabilities at which the center voxel 
of a region-of-interest image belongs to each of 
the five multimaterial classes. Each DCNN is 
specific to the type and 3D orientation at which 
the input region-of-interest image was sampled. 

At each voxel, the outputs of the DCNNs are 
subjected to a metaclassifier (support vector ma-
chine [36,37]) for final prediction of the multi-
material class to which the voxel belongs. In this 
manner, the DCNNs form an ensemble clas-
sifier in which the output MFI volume repre-
sents the volumetric distribution of the five key 
material and pseudomaterial classes to perform 
the cleansing (38,39). Because DCNNs excel in 
multiclass classification tasks such as the classi-
fication of a voxel into multiple material classes 
(40), they enable us to calculate an optimal MFI 
volume (38,39).

Generation of the Final EC CT 
Colonographic Volumetric Image
By using the MFI volume, the final cleansed 
volumetric image is generated by converting the 
CT values at tagged voxels, which correspond 
to the MFI labels of tagged fecal material and 
the partial-volume boundary between air and 
tagged material, to the CT value of air (−1024 
HU). However, a direct conversion could cause 
an unnaturally rapid transition of CT values at 
cleansed soft-tissue surfaces. Therefore, these 
surfaces are identified with the MFI volume la-
bel of the partial-volume boundary between soft 
tissue and tagged material, and they are recon-
structed with a dedicated algorithm that assigns 
a predefined 3D intensity profile to the bound-
ary for reconstruction of a realistic mucosal 
surface and performs 3D Gaussian smoothing 
for simulating the partial-volume effect between 
the soft-tissue surface and lumen air (12).

Improvements in EC  
with Deep Learning

Type I Artifacts
Figure 6 shows the cleansing of an inhomoge-
neous partial-volume boundary between air and 
tagged material. The deep learning single-energy 
EC scheme (third row) incorrectly retains some 
of the partial-volume boundary, thereby produc-
ing a Type I artifact. The automatically calculated 
MFI labels (Fig 6, G) indicate that the inhomo-
geneous portion of the boundary was labeled 
incorrectly as soft tissue, and thus it was retained 
on the virtually cleansed image. However, the 
deep learning dual-energy EC scheme (fourth 
row) identifies and thereby subtracts the entire 
partial-volume boundary correctly.

Type II Artifacts
Figure 7 shows the retention of a thin soft-tissue 
layer between air and tagged material. The deep 
learning single-energy EC scheme (third row) 
incorrectly removes part of the soft-tissue layer, 
thereby producing a Type II artifact. The auto-
matically calculated MFI labels (Fig 7, G) indicate 
that the artifact was caused by incorrect interpre-
tation of a portion of the layer as a partial-volume 
boundary between air and tagged material, which 
was then removed on the virtually cleansed im-
age. However, the deep learning dual-energy EC 
scheme (fourth row) identifies and thereby retains 
the thin soft-tissue layer correctly.

Type III Artifacts
Figure 8 shows the cleansing of a multimaterial 
mixture of soft tissue, air, and tagged material. 
The deep learning single-energy EC scheme (third 
row) incorrectly identifies the junction of the air-
tagging material boundary and colonic wall as soft 
tissue, thereby producing Type III artifacts that 
imitate the appearance of small polyps. The deep 
learning dual-energy EC scheme (fourth row) 

Figure 4.  Multimaterial classes used with our EC method. (a) Original CT colonographic image contains 
the three base material classes of lumen air, soft tissue, and tagged fecal material. (b) The corresponding 
reference-standard labels are manually prepared labels delineating the five multimaterial classes indicated in 
the table on the right.
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resolves the multimaterial mixture correctly, 
thereby producing correctly cleansed images.

Deep Learning Single-Energy versus Dual-
Energy EC Methods
By using the principle of transfer learning, we 
acquired a Berkeley Vision and Learning Center 

Reference CaffeNet model (http://caffe.berke-
leyvision.org/) that had been pretrained with 1.3 
million images for 1000 natural object catego-
ries (41,42). We replaced the highest classifica-
tion layer of the model with a randomly initial-
ized classification layer for our five multimaterial 
classes. We then continued the training of the 

Figure 5.  Schematic diagram of the deep learning EC method for dual-energy CT colonography (CTC). 
(A–B) An overview of the EC workflow shows that, A, six multispectral CT colonographic input volumetric 
images are reviewed by using, B, a DCNN ensemble classifier. The classifier consists of multiple DCNNs 
for reviewing each input volumetric image. With the use of output class probabilities of the individual 
DCNNs, a metaclassifier (support vector machine) determines the final multimaterial class labels for each 
voxel of an MFI volume. C, The virtually cleansed volumetric image is generated from a 120-keV CT 
colonographic volumetric image by converting its CT values that correspond to non–soft-tissue MFI vol-
ume labels to CT values of air, and by reconstructing cleansed soft-tissue surfaces within the MFI partial-
volume boundary between soft tissue and tagged material. Each DCNN of the ensemble classifier in B 
has the same overall single-stream architecture. D, The regions of interest are represented by cut-plane 
images that are sampled at 0°, 45°, and 135° angles to the axial, coronal, and sagittal axes from the 
volumetric image. The use of multiple DCNNs allows calculation of class probabilities at each voxel from 
different input cut-plane region-of-interest images.
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Figure 6.  Electronic cleansing with Type I artifacts. (A–C) The first row shows, A, the original un-
cleansed axial CT colonographic image, B, the corresponding reference standard labels, and C, the 
uncleansed virtual endoluminal view. (D, E) The second row shows the outcome of a conventional 
EC method on, D, the axial CT colonographic image, and E, the virtual endoluminal view. White 
arrows on D and E indicate Type I artifacts. The corresponding space for the labeled image is kept 
blank, because the conventional EC method does not generate labels. (F–H) The third row shows 
the outcome of the deep learning single-energy EC on, F, the axial CT colonographic image, G, the 
corresponding automatically labeled image, and H, the corresponding virtual endoluminal view. The 
white arrows on F and H indicate Type I artifacts. The gray arrows on G indicate the portions of the 
partial-volume boundary between air and tagged material that were labeled incorrectly as soft tissue, 
and thus were causing the Type I artifacts. (I–K) The fourth row shows the outcome of the application 
of the deep learning dual-energy EC, I, on the axial CT colonographic image, J, the corresponding 
automatically labeled image, and K, the corresponding virtual endoluminal view. The entire partial-
volume boundary between air and tagged material was correctly identified and removed, and thus 
no Type I artifacts were generated.

DCNN for yielding labels for the MFI volumes 
on the basis of manually labeled reference stan-
dard MFI volumes (38,39). This enabled us to 
obtain rapidly an appropriately trained DCNN 
for each specific type of input image (eg, 120 
keV virtual monochromatic images) (Fig 5).

Figure 9 shows a quantitative comparison of 
the accuracy of the deep learning single- and 
dual-energy EC schemes in cleansing of the colon 
regions that typically cause cleansing artifacts 
with a conventional EC method. The cleansing 

accuracy was quantified with the use of a two-
fold cross-validation method with 384 volumes 
of interest extracted from the very low-radiation-
dose CT colonographic images of 18 patients 
who underwent a noncathartic bowel prepara-
tion regimen. The CT colonographic images 
were acquired with the use of a dual-energy CT 
scanner (SOMATOM Definition Flash, Siemens 
Healthineers, Erlangen, Germany) and with the 
patient in supine and prone positions. The non-
cathartic bowel preparation regimen consisted of 
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Figure 7.  Electronic cleansing with Type II artifacts. (A–C) The first row shows, A, the origi-
nal uncleansed axial CT colonographic image, B, the corresponding reference standard la-
beled image, and C, the corresponding uncleansed virtual endoluminal view. (D, E) The 
second row shows the outcome of a conventional EC method on, D, the axial image, and E, 
the corresponding virtual endoluminal view. The white arrows on D and E indicate Type II ar-
tifacts. The corresponding space for the labeled image is kept blank, because the conventional 
EC method does not generate labels. (F–H) The third row shows the outcome of the deep 
learning single-energy EC on, F, the axial CT colonographic image, G, the corresponding 
automatically labeled image, and H, the corresponding virtual endoluminal view. The white 
arrows on F and H indicate Type II artifacts. The yellow arrow on G indicates a portion of the 
soft tissue that was labeled incorrectly as a partial-volume boundary between air and tagged 
material and thus was the cause of the Type II artifacts. (I–K) The fourth row shows the 
outcome of the application of the deep learning dual-energy EC on, I, the axial CT colono-
graphic image, J, the corresponding automatically labeled image, and K, the corresponding 
virtual endoluminal view. The entire thin layer between the air and tagged material is identi-
fied correctly as soft tissue, and thus no Type II artifacts were generated.

oral ingestion of 50 mL of the iodinated contrast 
agent amidotrizoate meglumine (Gastrografin; 
Bracco Diagnostics, Princeton, NJ) on the day 
before and 2 hours before the CT examinations. 
The CT section thickness was set to 0.6 mm, and 
the tube current was 25–36 mA at 140 kVp and 
54–115 mA at 80 kVp for an average volume CT 
dose index of 0.95 mGy and an effective dose 
of 0.75 mSv. Single-energy CT colonographic 
images for these patients were obtained as virtual 
monochromatic images at 120 keV.

The accuracy of cleansing was measured by 
calculating the overlap ratio (OR):   

where N(V) is the number of correctly assigned 
automatically calculated MFI volume labels 
(38,39), and R(V) is the number of all voxels in the 
corresponding reference standard volumetric image. 
The reference standard volumetric images were 
prepared with 3D segmentation of the multimate-
rial classes (Fig 4) by three imaging scientists (R.T., 

 OR( ) ( ) / ( )V N V R V=
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Figure 8.  Electronic cleansing with Type III artifacts. (A–C) The first row shows, A, the 
original uncleansed sagittal CT colonographic image, B, the corresponding reference stan-
dard labeled image, and C, the corresponding uncleansed virtual endoluminal view.  
(D, E) The second row shows the outcome of conventional EC on, D, the sagittal CT colono-
graphic image and E, the virtual endoluminal view. The white arrows on D and E indicate Type 
I artifacts. The corresponding space for the labeled image is kept blank, because the conven-
tional EC method does not generate labels. (F–H) The third row shows the outcome of the deep 
learning single-energy EC on, F, the sagittal CT colonographic image, G, the automatically 
labeled image, and H, the virtual endoluminal view. The gray arrow on G indicates that the 
junction of air, tagged material, and colonic wall is identified incorrectly as soft tissue, thereby 
generating the Type III artifacts indicated by white arrows on F and H. (I–K) The fourth row 
shows the outcome of the application of the deep learning dual-energy EC scheme on, I, the 
sagittal CT colonographic image, J, the corresponding automatically labeled image, and K, the 
corresponding virtual endoluminal view. No type III artifacts were generated with this scheme.

J.O., and N.K., with 4, 2, and 1 years of experience 
in CT colonography) who used ITK-SNAP (www.
itksnap.org [43]), which is open-source software for 
image segmentation and registration. The box plot 
of the accuracy (overlap ratios) in Figure 9 indicates 
that the use of dual-energy CT colonographic 
images yields consistently higher accuracy in 
cleansing of the colon than does the use of single-
energy CT colonographic images for all three types 
of cleansing artifacts.

Lumen Coverage
Figure 10 shows the effect of cleansing on the 
virtual 3D reconstruction and lumen coverage 

of the colon. The uncleansed colon (Fig 10a) 
has pink regions that represent tagged fecal 
material covering parts of the colon surface. A 
commercially available (conventional) single-
energy EC method (Fig 10b) retains some of 
the residual fluid and/or feces and thus fails to 
cover the complete region of the colonic lumen 
(a section of the descending colon is missing), 
whereas the deep learning dual-energy EC 
scheme (Fig 10c) removes all of the residual 
fluid and feces correctly, thereby facilitating 
complete fly-through visualization of the region 
of the colonic surface without the presence of 
obstructing fecal material.
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Quality of Images Virtually Cleansed  
with Conventional versus Deep Learning 
EC Schemes
To date and to our knowledge, there have not 
been studies performed to compare deep learn-
ing EC schemes with conventional commercially 
available EC methods. However, we previously 
performed experiments (38) in which we com-
pared deep learning EC schemes with simulated 
conventional EC methods in combination with 
single-energy CT colonography and multienergy 
CT colonography. When the cleansing perfor-
mance was quantified with manually labeled 
volumetric images, the use of deep learning EC 
with multienergy features yielded the highest 
performance, with a statistically significant im-
provement in the overlap metric (increasing from 
0.89 to 0.94) in comparison with a conventional 
machine-learning EC with multienergy CT colo-
nography (P < .001). Without the use of multie-
nergy features, the performance of deep learning 
EC (0.87) was significantly lower than that with 
multienergy CT colonography (P < .001). 

In another study (44) in which noncathar-
tic bowel preparation was used with very low-
radiation-dose dual-energy CT colonography, 
the overlap metric used to quantify the cleansing 
performance was significantly higher with deep 
learning EC than that with conventional EC 
methods based on k-nearest neighbor or random 
forest classifiers.

Figures 11–13 show how cleansing with deep 
learning single-energy EC and dual-energy EC 
schemes produces fewer cleansing artifacts than 

does commercially available conventional EC 
software. The use of the deep learning dual-
energy EC scheme tends to produce the least 
amount of cleansing artifacts. In these examples, 
all three EC schemes used the same uncleansed 
virtual monochromatic volumetric image as 
input.

Figure 11 shows a 10-mm polyp submerged in 
tagged fluid. The conventional EC method incor-
rectly retains the partial-volume boundary be-
tween air and fluid, thereby preventing the polyp 
from being seen. The deep learning single-energy 
EC scheme removes the partial-volume bound-
ary and makes the polyp visible; however, some 
Type III artifacts that distort the endoluminal 
view remain. The deep learning dual-energy EC 
scheme correctly removes the tagged fluid from 
the images without generating any artifacts.

Figure 12 shows another 10-mm polyp 
submerged in fluid adjacent to the colonic wall. 
This is a challenging case, because the polyp 
could be interpreted incorrectly as a partial-
volume three-material junction of air, soft tissue, 
and tagged fecal material. The conventional 
EC method resolves the three-material mixture 
incorrectly, thereby producing a Type III artifact 
and distorting the shape of the polyp. The deep 
learning single-energy EC method preserves the 
shape of the polyp more faithfully than does the 
conventional EC method, although some Type 
III artifacts remain. The deep learning dual-
energy EC scheme removes the tagged fluid 
correctly from the images without generating 
any artifacts.

Figure 9.  Box plot shows a quantitative comparison of the accuracy of the MFI volume 
labels automatically calculated by deep learning single- and dual-energy EC schemes for 
cleansing of regions affected by the three types of artifacts and that of a conventional EC 
method. The metric for accuracy was the overlap ratio between the automatically cal-
culated MFI volume labels and the manually labeled reference-standard volume labels. 
The box plot was calculated from 384 volumes of interest sampled from 18 patients, 
where each of the three types of artifacts was represented by 128 volumes of interest.
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Figure 10.  Virtual 3D reconstructions of a colon from virtual monochromatic CT colonographic images before and after 
virtual cleansing. (a) The uncleansed volume has residual materials (pink regions in a) distributed throughout the colon, and 
part of the descending colon is completely missing from the reconstruction due to a major obstruction of the lumen by the 
residual materials. (b) The corresponding volume that was virtually cleansed with a conventional EC method shows that some 
of the residual materials are still retained in the colon and that the reconstruction of the descending colon is still incomplete. 
(c) The corresponding volume that was virtually cleansed by our deep learning dual-energy EC scheme shows that all of the 
residual materials have been removed, and this also has enabled complete reconstruction of the descending colon for com-
plete fly-through visualization.

Figure 13 shows a 6-mm polyp submerged 
in semisolid feces. This is a challenging case, 
because part of the polyp could be interpreted 
incorrectly as a part of the partial-volume bound-
ary between air and tagged material. Cleansing 
with the conventional EC method removes part 
of the polyp while retaining some tagged residual 
feces, which makes the polyp difficult to see in 
the endoluminal view. Cleansing with the deep 
learning single-energy EC scheme is more ac-
curate, but it also reduces the apparent size of the 
polyp. Cleansing with the deep learning dual-
energy EC scheme preserves the size of the polyp 
without producing cleansing artifacts.

Limitations of Deep Learning EC
One of the limitations of current deep learn-
ing EC schemes is that supervised training of 
DCNNs requires a large number of annotated 
samples. The samples should be annotated accu-
rately by multiple experts, and multiple patho-
logic diagnoses should be represented. Errors or 
disagreements in the annotations can reduce the 
performance of trained DCNNs. Furthermore, 
as new samples with higher image quality than 
previous samples become available, the annotated 
cases should be updated accordingly. This is a 
time-consuming and costly process.

Although one can apply transfer learning to 
make use of pretrained classifiers, the dimensions 
of the input and output of the pretrained classi-
fier must be compatible with those of the current 

case. Currently available pretrained classifiers 
have been trained with relatively low-resolution 
two-dimensional 8-bit color photographs with a 
fixed image size. Optimal transfer learning of CT 
images requires pretraining with high-resolution 
3D medical datasets with 16-bit depth.

Deep learning EC does not allow interpreta-
tion of situations that it has not been trained to 
interpret. For example, if the method has not been 
trained to identify metallic, motion, and beam-
hardening artifacts or image noise, these artifacts 
are interpreted according to the object categories 
that were used for training the network. Therefore, 
an effective deep learning EC should be trained 
not only with tagged fecal material but also with a 
wide variety of examples of normal anatomy. Ide-
ally, those examples also should be annotated into 
distinct categories to help in understanding the 
decisions made with deep learning (45).

Currently available deep learning EC meth-
ods do not allow reliable differentiation between 
partial-volume effects of fecal material and thin 
soft-tissue layers that appear “sandwiched” 
between tagged regions. One of the problems is 
that such soft-tissue layers tend to be distorted 
by pseudoenhancement artifacts that cause soft-
tissue layers to imitate partial-volume effects of 
fecal materials (46), and the number of train-
ing samples that represent such circumstances 
is relatively low. A more comprehensive training 
dataset would be needed for such artifacts to be 
addressed.
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Figure 11.  Electronic cleansing of tagged fluid with a submerged 10-mm polyp (arrowhead 
in a, c, e–h). (a, b) Uncleansed sagittal CT colonographic image (a) and the correspond-
ing uncleansed virtual endoluminal view (b) show how the fluid obstructs the view of the 
colonic wall, including the polyp. (c, d) After cleansing with a conventional EC method, the 
corresponding sagittal image (c) and virtual endoluminal image (d) show a Type I artifact 
(white arrows) that still prevents the submerged polyp and the colonic wall from being seen. 
(e, f) After cleansing with our deep learning single-energy EC scheme, the sagittal image (e) 
and virtual endoluminal view (f) show that the polyp is visible; however, the virtual endolumi-
nal view is distorted by Type III artifacts (white arrows in f). (g, h) After cleansing with our deep 
learning dual-energy EC scheme, the sagittal image (g) and virtual endoluminal image (h) 
show that the polyp is visible and that there are no image artifacts.
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Figure 12.  Electronic cleansing of tagged fluid with a partially submerged 10-mm polyp located at 
a three-material junction of soft tissue, tagged fluid, and air (arrowhead in all images except b and c). 
(a–c) Uncleansed sagittal CT colonographic image (a) clearly shows the polyp (arrowhead), but it is 
not as visible in the virtual endoluminal forward (b) and backward (c) views. (d–f) After cleansing with 
a conventional EC method, sagittal CT colonographic image (d) and virtual endoluminal views (e, f) 
show a distorted polyp with Type III artifacts (white arrows in e and f). (g–i) After cleansing with 
deep learning single-energy EC, the sagittal CT colonographic image (g) and virtual endoluminal 
views (h, i) show that the shape of the polyp is preserved; however, some Type III artifacts remain 
(white arrows in h) and imitate polyps, thereby distracting and misleading readers. (j–l) After cleans-
ing with deep learning dual-energy EC, the sagittal CT colonographic image (j) and virtual endolu-
minal images (k, l) show that the shape and size of the polyp are preserved without generation of 
cleansing artifacts.

Another limitation of deep learning EC is that 
it remains challenging to determine what exactly 
a DCNN has learned. An extensive evaluation is 
needed to determine how the DCNN performs 
with new, unseen cases. If the DCNN does not 
perform as it should, it is not necessarily clear 
whether one should increase the number of 
training samples, increase the heterogeneity of 

training samples, or perhaps change the DCNN 
architecture in some way.

Conclusion
Conventional rigorous cathartic bowel cleans-
ing for colorectal examinations can be reduced 
or avoided at CT colonography when patients 
orally ingest a contrast agent that mixes with 
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residual fecal material and an EC method is used 
to remove tagged fecal material from the CT 
colonographic images and volumetric images. 
However, conventional EC methods tend to pro-
duce three types of cleansing artifacts: air-tagging 
boundaries (Type I), three-material boundaries 
(Type II), and three-material mixtures (Type 

III). Deep learning can be used to improve the 
quality of cleansing over that of conventional EC 
methods, especially in low-radiation-dose CT 
colonographic examinations in patients who have 
undergone noncathartic bowel preparation. Dual-
energy CT can be used to optimize the quality of 
images cleansed with deep learning EC. Together, 

Figure 13.  Electronic cleansing of semi-
solid tagged feces with a submerged 
6-mm polyp. (a) The uncleansed axial 
CT colonographic image shows the polyp 
(arrowhead). (b) The virtual endoluminal 
view shows how the semisolid feces ob-
struct the view of the polyp. (c, d) After 
cleansing with a conventional EC method, 
the axial CT colonographic image (c) and 
virtual endoluminal view (d) show the 
distorted shape of the polyp (arrowhead). 
(e, f) After cleansing with the deep learn-
ing single-energy EC scheme, the axial 
CT colonographic image (e) and virtual 
endoluminal view (f) reveal the polyp (ar-
rowhead), but the polyp appears inaccu-
rately smaller. (g, h) After cleansing with 
the deep learning dual-energy EC scheme, 
axial CT colonographic image (g) and vir-
tual endoluminal view (h) show that the 
size of the polyp (arrowhead) is preserved 
without producing cleansing artifacts.
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deep learning and dual-energy CT colonogra-
phy are promising approaches for providing a 
next-generation EC scheme that is a substantial 
improvement on the quality of EC of the colon at 
CT colonography.
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