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Abstract5

Extreme river flows can lead to inundation of floodplains, with consequent impacts for6

society, the environment and the economy. Extreme flows are inherently difficult to model,7

being infrequent, irregularly spaced and affected by non-stationary climatic controls. To8

identify patterns in extreme flows a quantile regression approach can be used. This paper9

introduces a new framework for spatio-temporal quantile regression modelling, where the10

regression model is built as an additive model that includes smooth functions of time11

and space, as well as space-time interaction effects. The model exploits the flexibility12

that P-splines offer and can be easily extended to incorporate potential covariates. We13

propose to estimate model parameters using a penalized least squares regression approach14

as an alternative to linear programming methods, classically used in quantile parameter15

estimation. The model is illustrated on a data set of flows in 98 rivers across Scotland.16
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1 Introduction18

The occurrence of extreme events in the environment, i.e. those that deviate considerably from19

expected average levels, for example extreme temperatures, river flows, wave heights, or pollutant20

concentrations, has received increasing interest over the last decade. The last report by the21

Intergovernmental Panel on Climate Change (IPCC) recognizes the effect that climate change22

may have on the “frequency, intensity, spatial extent, duration, and timing of extreme events”23

(IPCC, 2014). Understanding the spatial and temporal structure of extremes is essential for24

planning purposes. An example of the severe consequences of extreme events, including loss of25

life, are the floods that hit the UK, especially Northern England and Scotland, in December26

2015. These events prompted the National Flood Resilience Review (HM Government, 2016), a27

“review of how we assess flood risk, reduce the likelihood of flooding, and make the country as28

resilient as possible to flooding” and the latest in a series of reviews following damaging events29

in the UK and internationally (Evans et al., 2004; Pitt, 2008; Georgi et al., 2016).30

It is now recognized that statistical methods specifically developed to analyze extreme values31

(over time and/or space) are needed. One common approach for dealing with spatial data is the32

use of geostatistical models (Diggle and Ribeiro Jr., 2007) that assume the data to be a realization33

of an underlying spatial Gaussian random field; these kinds of models have also been extended to34

the spatio-temporal case (see, e.g. Cressie and Wikle (2011)). However, the Gaussian assumption35

is not realistic when modelling extreme values, whose distribution is known to be skewed (Coles,36

2004). The increasing interest in extreme values, especially in environmental applications, has37

led to the development of new statistical models specifically designed for spatial (and spatio-38

temporal) extremes. These include latent variables (Davison et al., 2012; Cooley et al., 2007),39

copula models (Fuentes et al., 2012) and the more recent max-stable processes (Davison et al.,40

2012; Davison and Gholamrezaee, 2012). A max-stable process can be thought of as the limiting41

distribution of the pointwise maxima of independent copies of a process. Max-stable processes42

are best characterized via their spectral representation, for which several models have been43
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proposed. In particular, the Smith (Smith, 1990), Schlather (Schlather, 2002) and Brown-Resnick44

(Brown and Resnick, 1977) models are widely used, where a composite marginal likelihood, built45

using the pairwise marginal distributions, is used for parameter estimation (Davison et al., 2012;46

Davison and Gholamrezaee, 2012; Wadsworth and Tawn, 2012). Good reviews of these models47

can be found in Davison et al. (2012) and Davison and Gholamrezaee (2012). More recently,48

several authors have considered the extension of max-stable processes to model extremes over49

space and time (Davis et al., 2013; Embrechts et al., 2016). Max-stable processes are based50

on asymptotic extreme value theory and hence can be useful when the aim is to estimate very51

extreme events. When interest lies in less extreme values, a further approach is that of quantile52

regression (Koenker, 2005). An extreme event in this case is characterized as a value falling53

in the upper (or lower, e.g. to model drought conditions) tail of the distribution. Quantile54

regression allows estimation of the relationship between response and explanatory variables at55

any percentile of the distribution of the response (conditioned on the explanatory variables). As56

a result, rates of change in the response variable can be estimated for the whole distribution57

and not only at the mean. The regression coefficients are estimated minimizing an objective58

function that is defined in terms of the sum of weighted absolute residuals. Quantile regression59

has been mostly developed in the case of independent observations, but a number of approaches60

for spatial and spatio-temporal quantile regression can be found in the literature. The paper61

by He et al. (1998) is, to our knowledge, the first one to extend the 1-dimensional quantile62

regression problem into a 2-dimensional context; the objective function can be re-written in63

terms of bivariate smoothing splines (Koenker, 2005; He et al., 1998) and then minimized using64

linear programming methods. Penalization and fitting of splines coefficients becomes considerably65

more complex. This initial paper on bivariate quantile regression was followed by the work of66

Hallin et al. (2009), who propose using a local linear regression approach in which the regression67

coefficients are allowed to vary spatially. Quantile regression has also been considered from a68

Bayesian perspective; Lee and Neocleous (2010) and Neelon et al. (2015) develop a quantile69

regression model for spatial and spatio-temporal count data respectively, incorporating a spatial70
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autoregressive term in the predictor to deal with spatial correlation. Reich et al. (2011) and Reich71

(2012) propose, respectively, spatial and spatio-temporal quantile regression models, in which72

the spatial structure is introduced via the covariance function of the Gaussian spatial processes73

associated with the parameters of the model; regarding the temporal structure, the quantile74

function at each spatial location is defined as a linear function of time within a hierarchical75

model. Any residual spatial correlation is then modelled via a spatial copula. More recently, Sun76

et al. (2016) introduce temporal and spatial dependence using a fused adaptive Lasso penalty.77

In this paper, we propose a spatio-temporal quantile regression model for river flow data; by78

re-expressing the quantile model as a weighted linear regression, parameter estimates can be ob-79

tained using penalized iterative re-weighted least squares (PIRLS). The paper introduces a new80

framework for spatio-temporal quantile regression modelling, where the regression model is built81

as an additive model that includes smooth functions of time and space, as well as space-time82

interaction effects. While inclusion of bivariate smooth functions in a quantile regression setting83

has been considered before (He et al., 1998), the case of higher dimensional smooth functions,84

needed, for example, for the space-time interaction term, has not been addressed in the literature.85

The model exploits the flexibility that P-splines offer and can be easily extended to incorporate86

potential covariates. We propose to estimate model parameters using a penalized least squares87

regression approach as an alternative to linear programming methods classically used in quantile88

parameter estimation. The fitting procedure is simple and computationally efficient and allows89

modelling strategies already available for mean regression (e.g. varying coefficient models) to90

be adapted to the case of quantile regression. This presents a clear advantage over linear pro-91

gramming methods given the increasing complexity and availability of data and the interest in92

extreme events. By considering a fully spatio-temporal model rather than modelling one river93

a time, information is borrowed across rivers; this means a more efficient use of the available94

data, fundamental when dealing with short records and/or aiming to estimate very high (low)95

quantiles.96

In particular, quantile regression can be a useful modelling strategy for extreme river flow97
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values, given the direct link between quantile estimates and return levels, which, in turn, are used98

in risk assessment. In the extreme value theory (Coles, 2004) the quantile zp of a generalized99

extreme value distribution G is defined as the return level with return period 1/(1−p); the latter,100

also known as recurrence interval, is defined as the amount of time (on average) until the value101

zp is likely to be equalled or exceeded; i.e. the long term average of the time intervals between102

successive exceedances of a peak of magnitude zp (Coles, 2004). The flexible spatio-temporal103

regression model introduced in Section 3 can be seen as a tool for modelling return levels under104

non-stationary conditions. Such a tool is valuable as environmental variables often exhibit non-105

stationarity; for example, ongoing climate change has been shown to affect both the means and106

extreme values of climatic and river flow time series (Arnell and Gosling, 2013, 2016). By fixing107

the quantile to be estimated, we are fixing the probability of the estimated value being exceeded108

and hence the return period, to then estimate the associated return level, that is allowed to vary109

both in time and space. The proposed model is illustrated on a large set of Scottish rivers.110

In Scotland, the Scottish Flood Risk Management Act (The Scottish Government, 2010)111

was introduced in 2010 following the requirements of the European Union Directive on Flood112

Risk Management (2007/60/EC). This new piece of legislation was partly motivated by changes113

in Scotland’s river flow and rainfall regimes. Evidence from a number of published studies114

(Black, 1996; Black and Burns, 2002; Werritty, 2002) reports increased variability and statistically115

significant changes in annual peak-over-threshold magnitude and frequency of events and in116

annual maxima trends in Scotland during 1956-1995. In particular, dry (1960s-1970s) and wet117

periods (late 1980s-early 1990s) have been identified. However, no general trend seems to hold118

across the country as observed changes are not homogeneous, neither in frequency, with estimates119

of changes in return periods changing with location, nor in time, with seasonal changes in extreme120

rainfall being more pronounced than annual ones, especially in autumn (Fowler and Wilby,121

2010). Climate model predictions (Fowler and Kilsby, 2003; Fowler and Wilby, 2010; Fowler122

and Ekström, 2009) suggest that these differences are likely to continue and/or increase in the123

near future, with fairly reliable estimates over the winter months but greater uncertainty over124
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the summer. Despite these concerns, there seems to be a research gap in the recent literature125

on Scottish hydrology; the most complete paper on Scottish rivers dates back to 1997 (Black126

and Werritty, 1997), while most UK based studies are limited to England and Wales (Hannaford127

and Buys, 2012) and are focused on individual catchments. The work done by Prosdocimi128

et al. (2013) includes a relatively large number of Scottish gauging stations, but analysis is129

limited to one gauging station at a time and autumn and spring are disregarded, even though130

significant rainfall increases in western Scotland have been identified in those seasons (Jenkins131

et al., 2009; Werritty, 2002). The study by Hannaford and Buys (2010) includes twenty Scottish132

gauging stations, but the analysis is performed on the UK as a whole. Results from some of133

the previously mentioned studies suggest regional variation in hydrological trends across the134

UK as a whole and also within Scotland. Although the focus of this paper is development of a135

spatio-temporal modelling methodology, the results presented here also update the literature and136

extend understanding of extreme river flows in Scotland. Rather than working on one gauging137

station at a time, we follow a spatio-temporal modelling approach that takes into account possible138

dependencies among stations. Further, important changes in river flow may not be detected at139

the annual scale (Hannaford and Buys, 2012); we use daily data, without restricting the series to140

annual maxima or peak-over-threshold data, the usual practice in extreme value analysis. The141

dataset considered is very rich, with nearly 100 gauging stations, and the results show how the142

spatio-temporal trend in extreme flows has changed in recent years (1996-2013), helping to fill143

in the current research gap. Identifying these changes is important to understand the effect of144

climate change (Prosdocimi et al., 2013) and to investigate the validity of model projections or145

for historical model run validation (Hannaford and Buys, 2012).146

The paper is organized as follows. The dataset is introduced in Section 2. Section 3 de-147

scribes the proposed methodology for fitting a spatio-temporal quantile regression model. The148

performance of the model is illustrated in Section 4 on a set of Scottish rivers, for which the 95%149

quantile of river flow is estimated. A simulation study is presented in Section 5. Finally, the150

main results and discussion are summarized in Section 6.151
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Figure 1: Location of the 98 selected gauging stations. In red, location of rivers Inver (In), Clyde
(Cl), Carron (Ca) and Deveron (De).

2 Data152

Data, in the form of daily river flow (m3/s), were provided by the Scottish Environment Pro-153

tection Agency (SEPA) and the National River Flow Archive (NRFA). Most of the records are154

available online on the NRFA webpage. Our data set consists of 98 gauging stations, selected155

on the basis of geographical location, quality and length of the records, covering the period 1st156

January 1996- 31st December 2013. The spatial locations can be seen in Figure 1. Forty-three157

series contained missing values. However, the missing proportions (< 0.1%) were small enough158

not to be a concern, and missing values were imputed using linear interpolation. The interpo-159

lation was done separately for each month to better reproduce the variability of the series; i.e.160

missing values in January were imputed using only recorded values in January, and so on. Since161

the distribution of river flow is very skewed, a log transformation was used.162

In particular, four rivers have been chosen for illustrative purposes and are discussed in more163

detail in Section 4: the river Inver (North West), Clyde (South West), Carron (South East)164

and Deveron (North East). The gauging stations are marked in red in Figure 1 while data are165
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shown in Figure 2. The main characteristics of these rivers (catchment area, maximum elevation,166

mean flow, 95th (Q95) and 99th (Q99) quantiles of river flow and mean flow/catchment area)167

are summarized in Table 1. Rivers Clyde and Deveron have higher flow values on average, as168

they are the largest rivers out of the four rivers considered, with a catchment area of 1903.1 km2
169

and 954.9 km2 respectively. Rivers Inver and Carron, on the other hand, have a catchment area170

of 137.5 km2 and 122.3 km2 respectively. All four rivers exhibit a clear strong seasonal pattern,171

with greater variability in rivers Clyde and Carron, which are located on the southern part of172

the country. While there is no apparent long term trend, Figure 2 shows extreme flows in all173

four rivers, but these are not all coincident. This suggests that a simple statistical model with174

only a time trend and a spatial trend will probably not be enough to capture the complexity of175

the data, but inclusion of a time-space interaction may be required. Spatial differences can be176

partly explained by the predominant rainfall pattern in Scotland, wetter in the West and dryer177

in the East, as seen in Figure 3.178

Prior to model fitting, the mean flow was removed at each individual location as a way of179

standardizing the data. This was done to account for differences in flow values due to catchment180

size.181

3 Methodology182

We introduce a new approach that builds upon the idea of approximating the absolute residuals183

with the squared residuals, as suggested in Reiss and Huang (2012). This approximation, mo-184

tivated by the fact that the check function in Equation (1) is not differentiable at zero, ensures185

differentiability everywhere. This way, instead of using linear programming methods to estimate186

the model parameters, a weighted least squares approach is preferred, exploiting the fact that187

the objective function in Equation (1) is a weighted sum of absolute residuals. In their paper,188

Reiss and Huang (2012) consider a very simple model where the response depends on a single189

covariate, while we introduce a flexible spatio-temporal model in a generalized additive model190
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Figure 2: Time series of flow (m3/s) ordered by flow magnitude for the rivers Inver, Carron,
Deveron and Clyde.

Figure 3: Average annual rainfall in 2013 (Source: modified from
https://www.metoffice.gov.uk/climate/uk/summaries). In red, location of rivers Inver (In),
Clyde (Cl), Carron (Ca) and Deveron (De).
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framework.191

The classic simple linear regression model of y over x aims to estimate E[Y |X = x] = α+βx.192

Instead, the aim now is to estimate a quantile of the distribution of Y |X = x rather than the193

mean. The conditional quantile of a random variable Y with cumulative distribution function FY194

can be expressed as QY (τ |X = x) = F−1
Y (τ |X = x), where τ ∈ (0,1), and X = (X1, . . . , Xp)195

is a vector of explanatory variables (Koenker, 2005; Cade and Noon, 2003). As in classic linear196

regression, the errors are assumed to be independent, but here no assumptions are made regarding197

their distribution. The general objective function in a quantile linear regression model is defined198

as:199

R(β) =
n∑
i=1

ρτ (yi − (x1,iβ1 + . . .+ xp,iβp)) , (1)

where β = (β1, . . . , βp)
T , ρτ (u) = u(τ − I(u < 0)) is the check function and I is an indicator200

function (Koenker, 2005; Koenker and Hallock, 2001; Koenker and Bassett, 1978). Estimating the201

parameters β in Equation (1) involves minimizing a sum of weighted absolute deviations, where202

the weights are asymmetric functions of τ . The function R(β) is piecewise linear and continuous,203

being differentiable at every point except at those whose residuals are zero. Until now, linear204

programming methods, like the simplex method or the interior point method (Koenker, 2005;205

Koenker and Hallock, 2001) are used to estimate β.206

3.1 A spatio-temporal quantile regression model207

A simple spatio-temporal additive model (main effects model) for river flow can be expressed as:208

Qlog(flow)i(τ |ti, di, zi) = s1(ti) + s2(di) + s3(zi), i = 1, . . . , n (2)

where Qlog(flow)(τ |t, d, z) is the τ th quantile of the (conditional) distribution of log(flow), s1(t),209

s2(d) are smooth functions of time and day of the year and s3(z) is a bivariate smooth function210

of easting and northing coordinates. These three terms represent the temporal, seasonal and211

spatial trends in river flow respectively. In our particular application, the trend (s1(t)), seasonal212

10



(s2(d)) and spatial (s3(z)) terms were built as smooth functions of t=time (1996 to 2013), d=day213

within the year (1 to 365) and z=(easting, northing), respectively. The model assumes the214

seasonal component s2(d) to be constant over the years and the temporal trend to be the same215

at all spatial locations (or similarly, the spatial trend is assumed to be constant over time). A216

preliminary exploratory analysis of the data revealed a seasonal cycle that changes from year to217

year, suggesting that this might be too simple a model for the Scottish river flow dataset. We218

introduce an interaction term s4(t, d) to adjust for yearly changes in the seasonal pattern:219

Qlog(flow)i(τ |ti, di, zi) = s1(ti) + s2(di) + s3(zi) + s4(ti, di). (3)

Similarly, Model (3) can be further extended to include space-time s5(t, z) and space-season220

s6(d, z) interactions so that the full model becomes:221

Qlog(flow)i(τ |ti, di, zi) = s1(ti) + s2(di) + s3(zi) + s4(ti, di) + s5(ti, zi) + s6(di, zi). (4)

Each of the univariate smooth functions can be rewritten as a linear combination of k cubic222

B-spline basis functions B1(t), . . . , Bk(t) (Eilers and Marx, 2009, 2010), so that s1(t) = B1θ1223

and s2(d) = B2θ2, where θ1, θ2 are k1× 1, k2× 1 vectors of coefficients respectively, B1, B2 are224

the matrices of basis functions (dim(B1) = n× k1, dim(B2) = n× k2), k1, k2 are the number of225

basis functions used in each case and n is the total number of observations.226

The bivariate smooth function s3(z) = s3(easting, northing) can be expressed in terms of the227

tensor product of the marginal B-splines basis on the individual variables easting and northing228

(Wood, 2006; Eilers and Marx, 2003, 2010; He et al., 1998) so that s3(z) = B3θ3 where θ3 is a229

(keast × knorth) × 1 vector of coefficients and B3 is a n×(keast × knorth) matrix. The interaction230

terms s4(t, d), s5(t, z) and s6(d, z) can be built in a similar way in terms of the tensor product231

of the corresponding marginal basis matrices as detailed above.232
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The full model can be expressed in matrix form as:233

y = Bθ+ ε

where the design matrix B = [B1 B2 B3 B4 B5 B6] is the matrix that results from234

combining the individual matrices column-wise and θ = [θ1 θ2 θ3 θ4 θ5 θ6]T is the vec-235

tor of coefficients. By expressing the model as a linear model, the parameters can be estimated236

easily using efficient matrix-vector operations. A penalty term can be added to control for the237

amount of smoothness, which can be tuned individually for each term in the model. This means238

that a vector of smoothing parameters λ = (λ1, λ2,λ3, λ4, λ5, λ6) needs to be specified. In this239

case, a second order different penalty on the spline coefficients is used following Eilers and Marx240

(2009); further, a periodicity constraint can be imposed on the seasonal term s2(d) to ensure241

continuity of the seasonal cycle over the years. This can be implemented, for cubic B-splines,242

by forcing the first and last three spline coefficients to be the same. The penalty term can be243

expressed as θTPθ where P is a block diagonal penalty matrix, each block corresponding to244

the penalization of the individual smooth terms included in the model. For the univariate terms245

s1(t), s2(d) the corresponding penalty matrix can be easily built as DT
doDdo following Eilers and246

Marx (2009), where Ddo is a difference matrix of order do (do = 2 for a second order penalty)247

of dimension (k − 2)× k with k the number of basis functions.248

For the spatial term s3(east, north), the penalty is constructed by penalizing individually249

the rows and columns of matrix B3 (Wood, 2006; Eilers and Marx, 2003, 2010; He et al., 1998).250

Penalty terms for s4(t, d), s5(t, z) and s6(d, z) can be built similarly.251

The vector of model parameters θ is estimated using the penalized iterative weighted regres-252

sion approach described below. Assuming the vector of smoothing parameters λ, to be fixed,253

θ̂ = argmin
θεRk

[
n∑
i=1

ρτ (yi −Biθ) + λθTPθ

]
(5)

where k is the total number of coefficients and Bi represents the ith row of matrix B. We254
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propose translating the minimization problem in Equation (5) into a penalized least squares255

problem that can be solved using penalized iterative reweighted least squares (PIRLS, Wood256

(2006)). The (approximate) objective function expressed in matrix form becomes:257

||W (y−Bθ)||2 + λθTPθ (6)

where W is a diagonal matrix of weights calculated iteratively following Equation (7):258

w
(j)
i =

τ − I
[
(yi −Biθ̂

(j)) < 0
]

2(yi −Biθ̂(j))
(7)

for i = 1, . . .,n. A large upper bound is set for the weights to avoid residuals close to zero,259

which would result in the check function not being differentiable. Truncating all weight values260

above the given upper bound does not have a large effect on the fitting process as we are just261

forcing very small residuals, whose contribution to the objective function is negligible, to be even262

smaller. The estimated vector of parameters θ̂ at iteration (j) can be computed as:263

θ̂(j) = (BTW (j−1)B + λP )−1BTW (j−1)y (8)

Convergence of the algorithm is defined based on the objective function R(θ) defined in Equa-264

tion (1); the algorithm stops when the difference between R(θ(j−1)) and R(θ(j)) is smaller than265

some predefined small tolerance. Results from a simulation study suggest no differences in the266

fitted model for tolerance values of 10−2 and above. Identifiability of the single components of267

the model is ensured by including a ridge penalty (Eilers and Marx, 2002).268

The smoothing parameters are chosen to minimize a modified version of the Schwarz infor-269

mation criterion (SIC, Koenker et al. (1994)):270

SIC(λ) = log

[
1

n

n∑
i=1

ρτ (yi − ŷi)

]
+

1

2n
dfλ log n (9)
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where the approximated degrees of freedom dfλ can be calculated as the trace of the smoothing271

matrix S = B(BTWB + λP )−1BTW (Hastie and Tibshirani, 1990). As previously stated,272

Model (4) is fitted assuming independent observations. In this case, standard errors for the fitted273

values ŷ can be obtained as:274

se(ŷ) =
√
diag(SST )σ̂2

where S is the smoothing matrix at the last iteration and σ̂2 is an estimate of the residual variance275

that can be obtained as σ̂2 = RSS
dferror

, with RSS = Y T (I−S)W (I−S)Y and dferror = n− dfλ.276

However, if some spatio-temporal dependence structure is left in the residual term, standard277

error calculation needs to be adjusted accordingly. Let V be the correlation matrix. Adjusted278

standard errors can be estimated as:279

se(ŷ) =
√
diag(SV ST )σ̂2. (10)

4 Results280

Model (4) was fitted to the data set described in Section 2, comprising 98 rivers with 6570281

daily observations per river spanning 18 years, from 1st January 1996 to 31st December 2013282

(n = 643860 observations in total). The 29th of February was removed from the dataset after283

ensuring that no relevant information (i.e. no extreme values) was lost. Since we are mostly284

interested in extreme values, a value of τ=0.95 was chosen to fit a model for the 95th quantile285

of logged river flow. The trend (s1(t)), seasonal (s2(d)) and spatial (s3(z)) terms in Model (4)286

were built as smooth functions of t=time (1996 to 2013), d=day within the year (1 to 365)287

and z=(easting, northing), respectively. When using penalized splines, the usual practice is to288

choose an arbitrary large number of basis functions and then control the amount of smoothness289

by penalizing the spline coefficients. The definition of large, however, depends on the application290

at hand. We fitted the model using an increasing number of basis functions until the percentage291

change in SIC was smaller than 1%. In this case, the number of basis functions was chosen to292
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Figure 4: Estimated trend (a), seasonal (b) and spatial (c) components along with partial resid-
uals.

be k1 = 12 for the trend component, k2 = 6 for the seasonal component and k3 = 122 for the293

space component, while k4 = 12 × 6, k5 = 123 and k6 = 6 × 122 were used for the interaction294

terms s4(t, d), s5(t, z) and s6(d, z) respectively. A second order penalty was imposed on the295

spline coefficients. This is a commonly used smoothness penalty that corresponds to penalizing296

the roughness of a curve, measured as the integral square of the second derivative of the curve297

(Eilers and Marx, 1996). Smoothing parameters were chosen based on the Schwarz Information298

Criteria (Equation (9)), using a restricted grid of values for λ. The trend, seasonal and spatial299

main effects are shown in Figure 4.300

Overall, the estimated trend (Figure 4 (a)) appears to be fairly flat. There is a seasonal301

effect (Figure 4 (b)), as expected, with lower values during the summer (reaching a minimum302

at the beginning of July) and higher values during the winter months. The estimated spatial303

pattern (Figure 4 (c)) suggests a slight East-West gradient, with greater values on the Western304

side. Figure 5(a) shows the seasonal adjustment that needs to be made to the overall seasonal305

pattern (s4(t, d)) in four different years (1998, 2000, 2003 and 2012); it can be seen that there is306
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Figure 5: (a) Season-year interaction for 4 different years (1998 (orange), 2000 (pink), 2003 (grey)
and 2012 (dark blue), (b) season-space interaction and (c) trend-space interaction for rivers Inver
(black), Clyde (red), Carron (blue) and Deveron (green).

variation from year to year and, in particular, that the seasonal pattern in 2000 (pink curve) is307

very different from the rest.308

Following Model (4), we can identify not only long term trends over the whole period/spatial309

region but also assess how the spatial distribution of extreme flows has changed over time by310

visual inspection of the interaction term s5(t, z), that can also be interpreted as the adjustment311

that needs to be made to the temporal trend s1(t) shown in Figure 4(a) at each location; these312

adjustments can be seen in Figure 5(c) for the four rivers described in Section 2, while the313

corresponding seasonal adjustment (interaction term s6(d, z)) can be seen in Figure 5(b). While314

the trend appears to be very homogeneous over space, with little adjustment needed with respect315

to the overall trend shown in Figure 4(a), seasonality varies considerably among the different316

rivers (Figure 5(b)), supporting the idea that no unique seasonal pattern is valid over the whole317

country.318
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One can graphically show the fitted values from a spatial or a temporal point of view. The319

estimated 95th quantile of river flow over Scotland is shown in Figure 6 for four different time320

points, namely 1st of January, April, July and October, over years 1996 to 2000. These dates321

were chosen to illustrate possible differences between seasons. We can see how the contrast322

between East and West is more pronounced in some periods than others, and that there is a323

clear difference in the summer (1st of July) and winter (1st of January) values between 1996 and324

the remaining years. A model without a time-space interaction term would not have been able325

to identify a spatial pattern changing over time.326

Even though the data were log transformed initially, it is possible to show the fitted model327

at each gauging station in the original scale as quantile regression is invariant to monotonic328

transformations. An example for the fitted model (with and without interaction) can be seen329

in Figure 7 for four different rivers located in various parts of the country (see Figure 1 for330

locations). While for River Carron the fitted models with and without interaction are very close,331

for the River Inver there are clear differences between the two models, especially at the beginning332

and end of the record.333

Model (4) was estimated assuming independence; residual correlation was investigated by334

means of empirical variograms and autocorrelation plots. Once the spatial trend is taken into335

account, there is no spatial structure left in the residuals, as suggested by the flat empirical336

variograms (not included here). This is expected given the spatial flexibility that we have allowed337

for in the model by incorporating the interaction terms space-time and space-season. On the other338

hand, the residual autocorrelation plots indicated the presence of temporal correlation. Hence, an339

AR(1) process was assumed on the residuals, a common choice for environmental processes. The340

standard errors of the fitted model were adjusted for residual correlation following Equation (10)341

and are illustrated in Figure 7. As expected, the pointwise confidence bands become wider once342

correlation is taken into account.343

The full model includes 2826 parameters. With these specifications, running the model took344

≈ 10 hours on a CPU with 2.0Ghz (128Gb RAM). The PIRLS algorithm converged after 43345
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Figure 6: Estimated 95th quantile of (logged) river flow at four different dates (columns) and five
different years (rows)
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iterations, with a tolerance value set to 10−2. The approximation of the check-function as a346

weighted sum of squared residuals was also investigated. At the last iteration, the weighted347

residuals (i.e. using the approximation) were similar to those obtained using the check function.348

As a way of informally assessing whether the model was appropriate or not, the proportion of349

residuals above and below the fitted surface was calculated; these were equal to 5.2% and 94.8%350

respectively, not far from the theoretical expected values of 5% and 95%.351

5 Simulation Study352

A simulation study was run in order to evaluate the performance of the model proposed in353

Section 3.1 and compare it to that of the R package quantreg (Koenker, 2018) for the 95th354

quantile. We simulated daily data under 4 different scenarios with varying sample size in time355

and space. For the time component, we consider 5 and 10 years of data, while for the space356

component we consider 20 and 50 locations on a spatial irregular grid on [0, 1]× [0, 1]. Data were357

generated as the sum of a smooth time trend s(t), a seasonal cycle s(d) and a spatial component358

s(z) as follows:359

s(t) = 1 + 0.3t+ 0.7t2,

s(d) = sin(2πd/365 + π/2),

s(z) = s(z1, z2) = 0.2z1 + 0.25z2 + 3z1z2.

Random noise was simulated from an asymmetric Laplace distribution ALD(µ, σ, q), a com-360

monly used distribution in quantile regression, with µ = 0 and q = 0.95. Regarding σ, two361

different levels of noise were considered in each scenario, corresponding to a signal to noise ratio362

(SNR) of two and four. Table 7 summarizes the different scenarios considered while and example363

of simulated data is illustrated in Figure 8.364

Model (2) was fitted for the 95th quantile to 100 simulated data sets under each scenario365

using the method described in Section 3.1 with k = 5 for all terms. The rqss function from366

the quantreg R package was also used to estimate the same model. Smoothing parameters367
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in both cases were chosen based on SIC. Boxplots of the mean square error (MSE) between368

the simulated and estimated signal are shown in Figure 9, where it can be clearly seen that369

the MSE is considerably lower for the proposed method (panel (a)) in all simulation scenarios.370

In both panels (a) and (b) the MSE is smaller when the signal to noise ratio is greater and371

decreases as the sample size increases (both in time and space), as one would expect. From372

this simulation study, it can be concluded that for nonparametric spatio-temporal modelling our373

method performs better than classical quantile regression estimation. The poorer performance374

obtained using quantreg might be partly explained by the fact that is not possible to constrain375

the seasonal component to be cyclic.376

To assess how good the approximation that the proposed method makes is (Equation (6)),377

we compared the following quantity for both approaches:378

Rn(β) =
1

n

n∑
i=1

ρτ (yi − ŷi)

where ρτ is the check function in Equation (1), yi are the (noisy) simulated values, ŷi are the379
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fitted values and n is the total number of observations. As can be seen in Figure 10, there are380

no differences in Rn(β) between the two approaches, suggesting very good agreement between381

the original check function and its approximated version.382

For the more complex model including the interaction terms, it is not possible to compare383

the performance of the proposed method with quantreg as the latter does not allow inclusion of384

smooth functions of dimension greater than two.385

6 Discussion386

Environmental processes are highly variable in both space and time and, as such, investigation387

of trends in their means may not be sufficiently informative, especially when the interest is388

in extreme values. On the other hand, river flow records tend to be relatively short, usually389

spanning about 20-30 years of data; modelling extremes, such as the 1 in 100 year design event,390

from such short records using the classical extreme value theory approach can be problematic, as391

the number of observations is dramatically reduced when considering the annual maxima series392

or only the peaks above a certain threshold. This paper proposes a spatio-temporal quantile393

regression approach for modelling extreme river flow values. Although the work was motivated394

by a case study on river flow in Scotland, the proposed model is applicable to other areas where395

quantiles might be of interest, e.g. air pollution. The model is built in a generalized additive396

model framework that allows inclusion of three-variate smooth functions to account for space-397

time interaction effects. The number of observations is crucial for reliable estimation in a quantile398

regression setting, especially when building models for very high (or very low) quantiles. Rather399

than modelling one river at a time, we use a single model for the whole dataset; this way we400

borrow information across locations, particularly important when dealing with short records.401

Despite quantile regression being increasingly popular in environmental applications (see402

e.g. Weerts et al. (2011); Reich (2012); Planque and Buffaz (2008)), applications on spatio-403

temporal data are still very limited. We propose a flexible spatio-temporal model that takes into404
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account potential space-time interactions with the novelty that model parameters are estimated405

via penalized iterative re-weighted least squares. We believe this has two main advantages with406

respect to using linear programming methods; first, it is a more intuitive way of thinking about407

parameter estimation for those familiar with classic regression and least squares estimation.408

Second, this regression-like framework can be easily extended to incorporate covariates or to409

build more complex models, e.g. varying coefficient models. Further, estimating such a complex410

model is not possible using the classical quantile regression approach as currently implemented in411

the R package quantreg, where neither smooth functions depending on more than two covariates412

nor periodicity constraints can be included in the model. For a simpler spatio-temporal model413

with no interaction terms, results from a simulation study showed that our proposed method414

outperforms the standard quantile regression approach.415

The focus of this work is on extreme values and hence we have only considered modelling416

single quantiles high up in the tail of the distribution (e.g. 90th, 95th quantile) separately. Even417

though the modelling approach used here does not allow fitting various quantiles simultaneously,418

it is easy to implement and therefore can be fitted for a range of quantiles independently to419

investigate, for instance, how the spatial distribution of extreme values changes with respect to420

the mean. Nevertheless, the issue of quantile crossing was not investigated and is left for further421

research. Schnabel and Eilers (2013) proposed the so-called “quantile sheets” to estimate a422

range of quantiles simultaneously by means of a bivariate smooth function of a covariate and the423

probability τ using P-splines; non-crossing of quantile curves is ensured by forcing monotonicity424

in the τ direction in the penalty. Finally, assessing goodness of fit for quantile models remains425

an area of open research; usual indices of performance such as the root mean square error or the426

correlation coefficient between observed and predicted values are of no use here. In this paper,427

goodness of fit was informally assessed based on the expected and observed proportion of positive428

and negative residuals. For linear quantile regression models, an equivalent to the coefficient of429

determination R2 was proposed by Koenker and Machado (1999).430

The proposed model was applied to a set of Scottish rivers spanning 18 years of data. In431
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Scotland, studies assessing changes in extreme river flows have been carried out mostly in the time432

domain. Spatially, differences in frequency and magnitude of river flow extreme events have been433

found between the East and the West (Black and Burns, 2002; Black, 1996), as well as in trends434

in annual maxima series (Black, 1996). In particular, two ‘micro-climates’ have been identified435

over 1980-2000, wetter in the North-West, with significant spring and autumn increases in the436

West and winter increases in the North, and drier in the South-East, especially in the summer437

months (Jenkins et al., 2009; Werritty, 2002). Even though we only have data for years 1996-2000438

within the time frame 1980-2000, our results (partially shown in Figure 6) also support a clear439

East/West gradient in the 95th quantile. Downscaled projections from global circulation models440

for the 2050s predict that observed trends are to continue in the near future (Fowler and Wilby,441

2010; Werritty, 2002); however, while estimates over the winter months are fairly reliable there is442

great uncertainty over the summer. Regional climate models predict increases in winter extreme443

rainfall (Fowler and Kilsby, 2003) and an increase of annual runoff of 5-15% across the country444

for the 2050s but that could locally exceed 25% (Werritty, 2002). Given the uncertainty of the445

predictions and the heterogeneity of the observed changes over time and space, it is important to446

gain a better understanding of the spatio-temporal pattern of extreme river flows and we believe447

that the model proposed in this paper could prove useful in doing so. Given the observed and448

projected seasonal differences in river flow, it is common practice to divide the year into seasons449

to then model each season independently, see e.g. Hannaford and Buys (2012), where seasonal450

quantiles were calculated to investigate the presence of trends in the quantiles. Our approach451

avoids this division of the years into seasons, for which there is no general agreement (and hence452

a different division of the year may yield different results) and which may be changing due to453

climate change, and directly models the quantile of interest across time so that the temporal454

evolution of the spatial trend in extremes can be assessed.455

Since estimates of flood risk derived from river flow data are usually based on relatively short456

records, the current procedure recommends adding a safety margin of 20% of the expected flow457

level to ensure that design infrastructure (e.g. flood barriers) can cope with an unexpected458
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extreme flow (HM Government, 2016). On the other side, after the 2007 UK floods (Pitt, 2008),459

action was taken and the plan was to lower the threshold at which alarms were issued. The results460

from the Scottish data presented in this paper suggest that neither of these adjustments may461

be sufficient to provide accurate flood warning as trends for high quantiles have not changed in462

a homogeneous way spatially. These spatial differences have potentially important implications463

for decision making, where optimizing the balance between expenditure and risk reduction is a464

critical part of the decision process.465

Additional information and supporting material for this article is available online at the466

journal’s website.467
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River Catchment Max elevation Mean flow Q95a Q99b mean flow/
area (km2) (mAOD) (m3/s) (m3/s) (m3/s) catchment area

Inver 137.5 1108.6 8.182 20.500 28.852 0.060
Clyde 1903.1 745.2 49.362 159.710 263.334 0.026

Carron 122.3 561.9 3.664 13.821 28.569 0.030
Deveron 954.9 754.2 18.605 50.921 107.931 0.019

a 95th quantile of river flow, b 99th quantile of river flow

Table 1: Main characteristics of rivers Inver, Clyde, Carron and Deveron.

Scenario Time Space n SNR
2 4

A 5 years 20 locations 36500 A2 A4
B 10 years 20 locations 73000 B2 B4
C 5 years 50 locations 91250 C2 C4
D 10 years 50 locations 182500 D2 D4

Table 2: Scenarios considered in the simulation study.
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