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Interpretive Summary 1 

Title: Using eigenvalues as variance priors in the prediction of Genomic breeding values by 2 

principal component analysis By Macciotta et al. 3 

Principal component analysis with the use of eigenvalues as variance priors was effective in 4 

reducing the number of predictors up to 96% and saving computational resources for the prediction 5 

of individual genetic merit for a genome of 6 chromosomes and 6K SNP markers available. The 6 

same accuracy (0.76) was obtained when 279 principal components were used as predictors instead 7 

of 5,925 SNP markers. Moreover, one of the top principal components was able to depict the 8 

variation between individuals of different generations 9 
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ABSTRACT 28 

Genome wide selection aims at predicting genetic merit of individuals by estimating the 29 

effect of chromosome segments on phenotypes using dense SNP marker maps. In the present paper, 30 

principal component analysis was used to reduce the number of predictors in the estimation of 31 

genomic breeding values for a simulated population. Principal component extraction was carried 32 

out either using all markers available or separately for each chromosome. Priors of predictor 33 

variance were based on their contribution to the total SNP correlation structure. The principal 34 

component approach yielded the same accuracy of predicted genomic breeding values obtained with 35 

the regression using SNP genotypes directly, with a reduction in the number of predictors of about 36 

96% and computation time by 99%. Although these accuracies are lower than those currently 37 

achieved with Bayesian methods, at least for simulated data, the improved calculation speed 38 

together with the possibility of extracting principal components directly on individual chromosomes 39 

may represent an interesting option for predicting genomic breeding values in real data with a large 40 

number of SNPs. The use of phenotypes as dependent variable instead of conventional breeding 41 

values resulted in more reliable estimates, thus supporting the current strategies adopted in research 42 

programmes of genomic selection in livestock.  43 

 44 

Key words: SNPs, genomic selection, principal component analysis, eigenvalues. 45 

46 
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INTRODUCTION 47 

Marker Assisted Selection (MAS) programs have had limited commercial applications till 48 

early 2000’s due to the fact that most of reported marker-QTL associations had been found within 49 

families but were in linkage equilibrium across the population (Dekkers, 2004; Hayes and Goddard, 50 

2001; Khatkar et al., 2004). The availability of genome-wide dense marker maps for several animal 51 

species has recently allowed the prediction of genomic breeding values (GEBV) by estimating 52 

marker haplotype effects on phenotypes (Goddard and Hayes, 2007; Meuwissen et al., 2001). 53 

Genome wide selection relies on highly dense markers whose effects on phenotypes are estimated 54 

on a training population and then used to calculate GEBV both for training individuals and animals  55 

with only marker genotypes available (for example, young animals without phenotypes or estimated 56 

breeding values). A reduction in generation interval, an increase of accuracy in the cow side of the 57 

pedigree and a decrease of selection costs are the expected advantages of an efficient genome wide 58 

selection over traditional selection (Konig et al., 2009; Schaeffer, 2006).  59 

High density SNP maps fulfill the basic requirement of genome wide selection, i.e. the 60 

analysis of genome bits having large and persisting population-wide linkage disequilibrium (Muir, 61 

2007). However, the use of dense marker platforms results in a large number of effects to be 62 

estimated (many thousands) in comparison with the relatively small amount of phenotypes available 63 

(often just a few thousands). Such a data asymmetry raises several statistical issues, such as 64 

collinearity among predictors and multiple testing (Gianola and van Kaam, 2008). To cope with 65 

such a problem, several methods of reduction of the number of predictors without a large decrease 66 

in accuracy have been proposed. 67 

Selection of relevant SNP by single marker regression on phenotypes may improve results in 68 

genome-wide association studies (Aulchenko et al., 2007; Long et al., 2007), but it leads to a 69 

decrease of GEBV accuracy (Meuwissen et al., 2001). Bayesian methods that select SNP by 70 

evaluating their individual contribution to the variance of the trait, such Bayes B method 71 

(Meuwissen et al., 2001; Fernando et al., 2007; VanRaden, 2008), usually give best GEBV 72 
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accuracies when simulated data with few QTLs are modeled. However, results on actual data 73 

indicate that BLUP estimation, which assumes an equal contribution of all marker intervals to the 74 

genetic variance, performs only slightly worse than Bayesian methods in GEBV prediction (Hayes 75 

et al., 2009; VanRaden et al., 2009). Moreover in all the above mentioned techniques, markers are 76 

selected according to their relevance on the variability of the phenotype analyzed. Consequently, 77 

specific sets of markers may be required for different traits (Habier et al., 2009). 78 

Multivariate dimension-reduction techniques may offer an alternative approach based on the 79 

evaluation of the contribution of each marker locus to the total SNP (co)variance structure. 80 

Principal component analysis (PCA) has been used for analyzing complex genetic patterns in 81 

human genetics (Cavalli Sforza and Feldman, 2003; Paschou et al., 2007) and for selecting markers 82 

in genome-wide association studies. Solberg et al. (2009) used principal component analysis and 83 

partial least squares regression (PLSR) to reduce the dimensionality of predictors in genomic 84 

selection. Both principal component (PC) and PLSR showed comparable accuracies with Bayes B 85 

when lower marker densities were fitted, whereas the gap between methods increased with the 86 

number of markers used. Solberg et al. (2009) concluded that reduction in computational 87 

complexity provided by multivariate methods did not counterbalance their lower accuracy 88 

compared to Bayes B. Such considerations are justified by the low cost of calculation time and by 89 

the computational speed that can be provided by optimized techniques such as parallel computing. 90 

On the other hand, it is reasonable to expect that denser SNP platforms will be very soon available 91 

for livestock species and dimensionality will again represent a relevant problem. 92 

In their proposal, Solberg et al. (2009) regressed phenotypes on principal component scores 93 

extracted from the SNP matrix using the single value decomposition approach with an assumption 94 

of equal variance of each PC score. The choice of priors of marker effects represents a crucial point 95 

for genomic models (de Los Campos et al., 2009). On the other hand, the ordinary method for 96 

calculating PC relies on the eigenvalues of the correlation matrix of starting variables that measure 97 

the contribution of each PC to the original variance of predictors. Thus eigenvalues can be used as 98 
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priors of predictor effect for the calculation of GEBV. It is worth remembering that eigenvalues 99 

have been already incorporated in mixed model algorithms to optimize calculations for variance 100 

component estimation (Dempster et al., 1984; Taylor et al., 1985).  101 

In the present paper, principal component analysis is used to perform a BLUP prediction of GEBV 102 

in a simulated data set to test the ability of this technique to reduce the number of predictors without 103 

decreasing GEBV accuracy. Moreover, the feasibility of extracting PC from dense commercially 104 

available SNP platforms is tested.  105 

 106 

MATERIALS AND METHODS 107 

Data. The data set was generated for the XII QTLs – MAS workshop 108 

(http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html). The base population 109 

consisted of 100 individuals (50 males and 50 females). The genome had six chromosomes (total 110 

length 6 M), with 6,000 biallelic SNP, equally spaced at a distance of 0.1 cM. A total of 48 biallelic 111 

QTL were generated, with positions sampled from the genetic map of the mouse genome. QTL 112 

effects were sampled from a gamma distribution with parameters estimated by Hayes and Goddard 113 

(2002). Initial allelic frequencies of both SNP and QTL were set to 0.5. Then 50 generations of 114 

random mating followed. Generations 51 to 57 were used to create the experimental population of 115 

5,865 individuals. Generations 51 to 54 (4,665 individuals, TRAIN data set) had pedigree, 116 

phenotype, and marker information available. For the last three generations (1,200 individuals, 117 

PRED data set) only pedigree and marker information were available. True breeding values (TBV) 118 

were considered as the sum of all QTL effects across the entire genome. Phenotypes were generated 119 

by adding environmental noise to the TBV. Further details on the simulation can be found in Lund 120 

et al. (2009). 121 

Polygenic breeding values (EBV), being among the most frequently used dependent variable 122 

in GEBV prediction with real data, were also predicted. EBV, additive genetic (2
a) and residual 123 

(2
e) variance components were estimated with a single trait animal model that included the fixed 124 

http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html
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effects of sex and generation, and the random additive genetic effect of the animal. The pedigree 125 

relationship matrix included 5,939 animals. 126 

 127 

PCA analysis. Principal component analysis aims at synthesizing information contained in a 128 

set of n observed variables (M1, ..., Mn) by seeking a new set of k (k<n) orthogonal variables 129 

(PC1,…, PCk) named principal components. PC are calculated from the eigen decomposition of the 130 

covariance (or correlation) matrix of M. The jth PC is a linear combination of the observed 131 

variables: 132 

PCj = 1jM1  + … + njMn 133 

where coefficients ij are the elements of the eigenvector corresponding to jth eigenvalue. PC are 134 

usually extracted in a descending order of the corresponding eigenvalue that measures the quota of 135 

variance of original variables explained by each PC (Morrison, 1976; Krzanowsky, 2003). 136 

A SNP data matrix M with m rows (m=5,865, the number of individuals in the entire data 137 

set) and n columns (n=5,925, the number of SNP markers that were found to be polymorphic) was 138 

created. Each element (i,j) corresponded to the genotype at the the jth marker for the i th individual. 139 

Genotypes were coded as -1, 0 or 1, according to the notation used by Solberg et al. (2009). 140 

Data editing is usually recommended when handling dense marker maps (Wiggans et al., 141 

2009), either to correct for data quality (i.e. genotyping not successfully performed) or to avoid 142 

possible estimation biases due to a severe unbalancement of genotypes. However, considering that 143 

in the present simulated data only 288 markers had minor allele frequency (MAF) <0.05, while 47 144 

deviated significantly (P<0.01) from the Hardy-Weinberg equilibrium and this deviation may be 145 

attributable to drift, only the 75 monomorphic SNP were discarded from the analysis. Such a choice 146 

is, at least partially, supported by results of Chan et al (2008) that pointed out that SNP attributes 147 

commonly considered in SNP data editing, such as MAF or deviation from Hardy-Weinberg 148 

equilibrium, have actually a very small effect on overall false positive rate in genome-wide 149 

association studies. 150 
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  PCA was carried out on M and the number of PC (k) retained for further analysis was 151 

based  on both  the sum of their eigenvalues and the obtained GEBV accuracy. PC extraction was 152 

performed either on all SNP simultaneously (PC_SNP_ALL) or separately for each chromosome 153 

(PC_SNP_CHROM). Scores of the k selected PC were calculated for all individuals. Marker 154 

haplotypes may be more efficient than genotypes in capturing marker-QTL association, especially 155 

in outbred populations where it may differ between families (Calus et al., 2008). Thus, PCA was 156 

performed also on haplotypes constructed from pairs of adjacent marker loci, either using all loci 157 

together (PC_HAP_ALL) or separately per chromosome (PC_HAP_CHROM). 158 

 159 

Predictor effect estimation and GEBV calculations. Dependent variables used in the analysis were 160 

either phenotypes or polygenic EBV. For the estimation of the effects of predictors, records of the 161 

4,665 individuals of the TRAIN data set were analysed with the following mixed linear model: 162 

y = Xb + Zg + e 163 

where y is the vector of either phenotypes or EBV, X is the design matrix of fixed effects (mean, 164 

sex=1,2; generation=1,2,3,4 for phenotypes; only mean for EBV), b is the vector of solutions for 165 

fixed effects, Z is the (m x k) design matrix of random effects, where each element corresponds to 166 

the score of the kth component for the mth animal of the training generations, g is the vector of 167 

solution for random regression coefficients of PC scores, e is the random residual. Covariance 168 

matrices of random PC effects (G) and residuals (R) were modeled as diagonal I(2
ai) and I(2

e), 169 

respectively. BLUP methods used for estimating SNP effects usually assume an equal contribution 170 

of each SNP locus to the variance of the trait, sampled from the same normal distribution, i.e. 171 

2
aj=

2
a/n (Meuwissen et al.,2001; VanRaden et al., 2009). In the present work, two different 172 

options were compared. The first is the above mentioned equality of variances. The second starts 173 

from the consideration that PC scores were used as predictor variables and their contribution to the 174 

original SNP covariance structure is quantified by the corresponding eigenvalue (). Thus, 175 

variances of PC effects were calculated as 2
aj=(2

a/k) x j.   176 
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G matrix diagonality, commonly implemented in BLUP methodologies for estimating SNP 177 

marker effects (Meuwissen et al., 2001; VanRaden, 2008), relies on the assumption that marker 178 

effects in a large population are uncorrelated (VanRaden et al., 2009). With the use of PC scores, 179 

such an assumption is consistent with the orthogonality between PC (Morrison, 1976). BLUP 180 

solutions were estimated using Henderson’s normal equations (Henderson, 1985). 181 

In order to have a comparison with the most straightforward estimation method, SNP effects 182 

were estimated directly by using the same mixed linear model but with Z indicating the design 183 

matrix of the 5,925 polymorphic SNP genotypes (coded as 0, 1 and 2, i.e. on the basis of the 184 

number of alleles). Covariance matrix G was assumed to be diagonal as I(2
a/n). A Cholesky 185 

decomposition was used to solve mixed model equations (Harville, 1997). 186 

Overall mean and effects of PC scores or SNP genotypes ( g


) estimated on the TRAIN data 187 

set were then used to predict GEBV both in TRAIN and PRED individuals. as  188 

gZGEBV


+=   189 

where GEBV is the vector of predicted genomic breeding values and Z is the matrix of the PC 190 

scores or SNP genotypes of all individuals.  191 

Accuracies of prediction where evaluated by calculating Pearson correlations between 192 

GEBV and TBV for the PRED generations. Bias of prediction was assessed by examining the 193 

regression coefficient of TBV on GEBV (Meuwissen et al., 2001). Goodness of prediction was 194 

evaluated also by the mean squared error of prediction (MSEP) calculated as  195 

 

=

−
=

n

i

ii

n

GEBVTBV
MSEP

1

2

   196 

where n is the number of individuals in the PRED generations, and by its partition in different 197 

sources of variation related to systematic and random errors of prediction (Tedeschi, 2006). 198 

 199 

RESULTS  200 
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The pattern of eigenvalues of the correlation matrix of SNP genotypes obtained with PCA of 201 

all markers simultaneously is reported in Figure 1 (only the first 1,000 eigenvalues are plotted for 202 

brevity). A smooth decrease in the amount of variance explained by each successive PC can be 203 

observed, with a plateau between 250 and 300 PCs (about 84% of variance explained). A number of 204 

principal components between 200 and 300 could therefore be considered adequate for describing 205 

the original variance of the system.  206 

GEBV accuracies for different numbers of retained PC (from 50 to 600) using all SNP 207 

simultaneously and eigenvalues as variance priors are reported in Figure 2. Accuracy for both 208 

training and prediction generations increases till a plateau, reached at about 250-300 PC. Increasing 209 

further the number of retained PC does not result in an increase of accuracy, probably due to the 210 

small amount of variance explained by each additional variable. Similar results were obtained by 211 

Solberg et al. (2009) that report best accuracies when 350 PC were extracted from 8,080 biallelic 212 

markers distributed on 10 chromosomes. However, Solberg et al. (2009) found a rather decreasing 213 

trend of the correlation between GEBV and TBV for larger numbers of PC. Based on the accuracy 214 

of GEBV prediction, 279 PCs (83% of the original variance) were retained in the present work for 215 

PC_SNP_ALL and PC_HAP_ALL approaches. In the analysis carried out on individual 216 

chromosomes, to keep the same number of predictors of the previous approach, 46 and 47 PC for 217 

chromosomes 1-3 and 4-6 were retained, respectively. 218 

Average GEBV accuracies obtained using phenotypes are, for the three prediction 219 

generations, around 0.70 (Table 1) when an equal contribution of PC score on the variance of the 220 

trait is assumed, similar to those reported by Solberg et al. (2009). Accuracies increase by about 221 

10% (to an average of 0.75) when eigenvalues are used in the diagonal of the G-1 matrix of mixed 222 

model equations. In general, results are of the same order as in previous literature reports for BLUP 223 

estimation on simulated (Fernando et al., 2007; Meuwissen et al., 2001; Meuwissen, 2009) and real 224 

data (Hayes et al., 2009; VanRaden et al., 2009). Correlations obtained when all SNP were used as 225 

predictors are equal to those obtained with PC with eigenvalues as priors. On the other hand, a 226 
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remarkable difference in calculation speed between the two methods has been observed: about six 227 

hours for the SNP_ALL approach and 3 minutes for the principal components, using a computer 228 

with a dual core processor 2.33 GHz and 3.26 MB RAM. Slight differences can be observed 229 

between estimates of PC carried on all chromosomes or separately for each of them. Moreover, 230 

same results have been basically obtained when genotypes at single markers or haplotypes were 231 

used, in agreement with previous reports for high density markers (Calus et al., 2008; Hayes et al., 232 

2007).  233 

GEBV accuracies are larger when phenotypes instead of EBV are used as dependent 234 

variables (Table 1). This is particularly evident when all SNP are used as predictors (on average 235 

0.75 vs 0.39). Also the drop of accuracy between TRAINING and PRED generations is more 236 

evident for EBV-based predictions (Figures 3 and 4). These findings are confirmed by values of 237 

regression coefficients of TBV on GEBV (Table 2). Moreover, b values for methods based on PC 238 

are similar to those reported by Solberg et al. (2009) when equal variances were assumed whereas 239 

they are closer to one (about 0.85) when eigenvalues are used as variance priors.  240 

The decomposition of the mean squared error of prediction for some of the considered 241 

scenarios is reported in Table 3. MSEP is always smaller (about a half) when GEBV are calculated 242 

using phenotypes. Its partition highlights a great relevance of components related to the bias of 243 

prediction (i.e. mean bias, inequality of variances) in the approach that fits directly SNP genotypes 244 

(about 79%). Methods based on PC extraction are characterized by a prevalence (about 80%) of 245 

random terms, measured by the random error and by the incomplete covariation. The  use of 246 

eigenvalues as variance priors results in the lowest MSEP and, compared to the other PC-based 247 

method, in a reduction of the slope bias and the highest relevance of random variation. These 248 

differences can be clearly seen from the plots of TBV versus GEBV for the PC_SNP_ALL 249 

approach using equal (Figure 5a) or eigenvalue-based (figure 5b) variance. The latter shows a 250 

regression slope closer to the equivalence line (y=x) and  a smaller value for the intercept, that 251 

indicates a smaller systematic underestimation of TBV. The composition of MSEP becomes very 252 
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similar across the different methods when EBV are used as dependent variables, with a reduced 253 

incidence of random components and a larger relevance of unequal variances compared to the 254 

phenotype-based estimates (Table 3). Actually, the comparison of  plots of TBV versus GEBV 255 

estimated with the PC_SNP_ALL approach using phenotypes (Figure 5a) or EBV (Figure 5c), 256 

clearly shows a reduced range of variability and a higher underestimation (as evidenced by the 257 

larger value of the regression intercept) for EBV-based GEBV. 258 

An interesting feature of principal component analysis is the possible technical interpretation 259 

of extracted variables. Figure 6 reports score averages for the first two PC that together explain 260 

about 5% of the original variance of the system, calculated for each generation. Averages of the 261 

second PC ranged gradually from negative values for the first three generations to positive for the 262 

last three generations. A possible explanation of the ability of the second PC to distinguish 263 

individuals of different generations can be found in its negative correlation with the average 264 

observed heterozygosity per animal (-0.26) that tends to decrease from older to younger generations 265 

(Figure 7).  266 

 267 

DISCUSSION 268 

Main objectives of the work are to assess the effect of reducing predictor dimensionality in 269 

genomic breeding value estimation using PCA and to test the effect of structuring the variance 270 

contribution of PC with their eigenvalues  271 

PCA allows an efficient description of the correlation matrix of biallelic SNP with a 272 

markedly smaller number of new variables (4.7%) compared to the original dimension of the 273 

system. Such a huge decrease has a straightforward impact on the calculation speed of GEBV, with 274 

a reduction of more than 99% of computing time achieving the same accuracy of predicted GEBV 275 

using all SNP. Compared to other methods of reduction of predictors where SNP are selected based 276 

on their position along the chromosome (VanRaden et al., 2009) or their relevance with the trait 277 
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considered (Hayes et al., 2009), the multivariate reduction approach limits the loss of information 278 

because each SNP is involved in the composition of each PC. 279 

  GEBV accuracies obtained in the present work agree with a previous report on the use of 280 

PCA to estimate genomic breeding values (Solberg et al., 2009) when an equal contribution of each 281 

principal component to the variance of phenotypes is assumed. This approach follows the common 282 

BLUP assumption of equality of variance of predictors, usually criticized for its inadequacy to fit 283 

the widely assessed distribution of QTL i.e,. many loci with a small effect and very few with large 284 

effect (Hayes and Goddard, 2001). However, when eigenvalues are used as prior of PC variance, 285 

accuracies increase by about 10%. These figures highlight the importance of an accurate modeling 286 

of the variance structure of random effects in GEBV estimation. Bayesian methods estimate 287 

variances of different chromosome segments combining information from prior distribution and data 288 

(Meuwissen et al., 2001). These methods usually give the best performance (accuracies >80%) 289 

when simulated data are fitted, whereas results obtained on real data seem to indicate a substantial 290 

equivalence with the BLUP approach (Hayes et al., 2009; VanRaden et al., 2009). A common 291 

explanation is that, in Bayes method, assumptions on prior distributions of parameters are more 292 

difficult to infer when real data are handled. The use of eigenvalues as variance priors rely only on 293 

data, i.e. the SNPs correlation structure, and does not require assumptions on prior distribution.  294 

A potential drawback in the calculation of GEBV using PCA is represented by PC extraction. 295 

In the present work, about 40 minutes were needed to process a SNP data matrix of 5,865 rows and 296 

5,925 columns. The commercially available SNP panel for cattle has 54K marker loci, although 297 

about 40K are retained on average after editing (Hayes et al., 2009). Such a marked increase of 298 

columns, usually not accompanied by a comparable increase of rows (i.e. phenotypic records), may 299 

lead to statistical and computational problems if PC are extracted treating all SNP simultaneously. 300 

However, results of the present study indicate that PC may be calculated separately for each 301 

chromosome, keeping the same GEBV accuracy. It should be remembered that the number of SNP 302 

per chromosome is not far from current dairy data (on average 1,200-1,300) (Hayes et al., 2009; 303 
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Van raden et al., 2009; Wiggans et al., 2009). Thus PCA carried out on individual chromosomes 304 

may be of great interest for real data, also considering the substantial biological orthogonality 305 

among chromosomes. The availability of denser marker maps (i.e. 500K SNP) will represent a 306 

challenge for the method, although the number of PC to be retained does not seem to increase 307 

linearly with the number of original variables. Missing genotypes is a potential problem for 308 

computation of PCA, which requires data in each cell. Although edits that are normally carried out 309 

on SNP data leave only a few missing cells per animal, they are spread across different markers and 310 

this may lead to a severe reduction in the number of records. Missing data can be reconstructed 311 

using appropriate algorithms as those described by Gengler et al. (2007) or others implemented in 312 

softwares of common use such as PHASE or PLINK. 313 

Of particular interest is the difference in GEBV accuracy obtained when using phenotypes 314 

vs. polygenic EBV as dependent variable. Polygenic EBV are phenotypes corrected for additive 315 

relationships among animals based on pedigree information. On the other hand, in GEBV 316 

predictions the genetic similarity between animals is accounted for by the specific combination of 317 

marker genotypes possessed by each individual. Therefore, the use of EBV as dependent variable in 318 

GEBV prediction may be regarded as redundant in terms of exploitation of genetic relationships. 319 

This behavior is particularly evident for the regression using all SNP markers. In this form, the 320 

calculation of GEBVs is equivalent to the use of an animal model with the additive genetic effect 321 

structured by the genomic relationship matrix (Goddard, 2009). Such a double counting of genetic 322 

relationship resulted in a evident reduction of the variability of GEBV compared to true breeding 323 

values. From a statistical standpoint, EBV are model predicted values and may not be suitable as 324 

dependent variable in further analyses (Tedeschi, 2006). Results of the present study, although 325 

obtained on simulated data, may more accurately reflect the reality of genomic selection 326 

programmes in cattle. In previous studies, EBV were generally the dependent variable. This is 327 

because true breeding values are not available on real data and EBV estimated with a high accuracy 328 

(>0.90) may represent a sort of golden standard for cross validations. However, the tendency now 329 
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seems to move toward the use of partially corrected phenotypes such as de-regressed proofs or 330 

Daughter Yield Deviations (VanRaden et al., 2009; Hayes et al., 2009).  331 

Finally, an interesting side product of PCA used to reduce the dimensionality of predictors 332 

in genome wide selection is represented by the extraction of synthetic variables that can have a 333 

technical meaning. Researches in human and animal genetics have highlighted the role of PC as 334 

indicators of population genetic structure: for example, the top eigenvectors of the covariance 335 

matrix show often a geographic interpretation (Chessa et al., 2009; Price et al., 2006). Usually, the 336 

meaning of the ith PC in terms of relationship with the original variables is inferred from the 337 

structure of its eigenvector. In the present study, such an evaluation was not feasible, probably due 338 

to both the relatively small amount of variance explained by each PC and the large number of 339 

original variables considered (i.e. the 5,925 SNP). However, one of the top PC was able to reflect 340 

the genetic variation among generations, although the discrimination between individuals of 341 

different generations was rather fuzzy, as expected, given the small amount of variance explained. 342 

However, this last point deserves some additional consideration. An assessed criterion in choosing 343 

which PC to retain is to look at their eigenvalues. However, sometimes the PC associated  with the 344 

largest eigenvalue does not have a defined meaning whereas successive PC characterized by smaller 345 

eigenvalues may contain more relevant or biological information (Jombart et al., 2009). In the case 346 

of the present work, a meaning of the second PC as indicator of genetic drift, which should be the 347 

only reason of variation of genotypic frequencies in the simulated generations (Lund et al., 2009) 348 

could be hypothesized. 349 

 350 
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Table 1. Pearson correlations between predicted genomic breeding values and true breeding values, 448 

for different estimation methods, using either phenotypes or polygenic breeding values (EBV) for 449 

the PREDICTION generations and assuming either equal variance contribution for each PC or 450 

eigenvalues as variance priors. 451 

Method Phenotypes EBV 

SNP_ALL 0.76 0.41 

 Equal variance  

PC_SNP_ALL 0.69 0.53 

PC_SNP_CHROM  0.70 0.55 

PC_HAP_ALL 0.68 0.54 

PC_HAP_CHROM 0.71 0.56 

 Eigenvalues  

PC_SNP_ALL 0.76 0.57 

PC_SNP_CHROM  0.73 0.56 

PC_HAP_ALL 0.75 0.56 

PC_HAP_CHROM  0.73 0.55 

(SNP_ALL = all 5,925 SNPs; PC_SNP_ALL = principal components extracted from all SNP 452 

genotypes simultaneously; PC_SNP_CHROM = principal components extracted from SNP 453 

genotypes separately for each chromosome; PC_HAP_ALL  = principal components extracted from 454 

all SNP haplotypes simultaneously; PC_HAP_CHROM = principal components extracted from 455 

haplotypes separately for each chromosome) 456 

457 
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Table 2. Regression coefficients (bTBV,GEBV) of True breeding Value on Predicted Genomic 458 

Breeding Value (GEBV) for the different estimation methods using either phenotypes or polygenic 459 

breeding values (EBV) for the PREDICTION generations and assuming either equal variance 460 

contribution for each PC or eigenvalues as variance priors. 461 

 Trait    

Method Phenotypes  EBV  

 bTBV,GEBV s.e. bTBV,GEBV s.e. 

SNP_ALL 1.08 0.027 1.15 0.073 

  Equal variance   

PC_SNP_ALL 0.63 0.019 1.08 0.049 

PC_SNP_CHROM  0.67 0.019 1.13 0.048 

PC_HAP_ALL 0.61 0.019 1.08 0.049 

PC_HAP_CHROM  0.65 0.018 1.11 0.047 

  Eigenvalues   

PC_SNP_ALL 0.88 0.021 1.33 0.055 

PC_SNP_CHROM  0.84 0.022 1.28 0.055 

PC_HAP_ALL 0.88 0.022 1.32 0.056 

PC_HAP_CHROM  0.83 0.023 1.26 0.056 

(SNP_ALL = all 5,925 SNPs; PC_SNP_ALL = principal components extracted from all SNP 462 

genotypes simultaneously; PC_SNP_CHROM = principal components extracted from SNP 463 

genotypes separately for each chromosome; PC_HAP_ALL  = principal components extracted from 464 

all SNP haplotypes simultaneously; PC_HAP_CHROM = principal components extracted from 465 

haplotypes separately for each chromosome) 466 

 467 

 468 

 469 
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Table 3. Mean squared error of prediction (MSEP) decomposition (%) and coefficient of 470 

determination (r2) for the PREDICTION generations in some scenarios using either phenotypes or 471 

polygenic breeding values (EBV) .  472 

  Phenotype  

 SNP_ALL PC_SNP_ALL1 PC_SNP_ALL 2 

MSEP 1.55 1.48 1.02 

Mean Bias (UM) 72.2 53.5 56.9 

Unequal variances  (US) 6.9 0.6 1.9 

Incomplete covariation (UC) 21.9 45.9 41.2 

Slope bias (UR) 0.22 11.1 1.1 

Random errors (UD) 27.6 35.4 42.0 

r2 0.57 0.48 0.57 

  EBV  

MSEP 2.96 2.88 2.72 

Mean Bias (UM) 72.0 75.1 74.6 

Unequal variances  (US) 13.9 8.9 11.9 

Incomplete covariation (UC)   14.1 16.0 13.5 

Slope bias (UR) 0.01 0.00 0.7 

Random errors (UD) 27.9 24.9 24.7 

r2 0.17 0.28 0.33 

(SNP_ALL= all 5,925 SNPs; PC_SNP_ALL 1= principal components extracted from all SNP 473 

genotypes simultaneously and equal contribution of each SNP to the variance of the trait; 474 

PC_SNP_ALL 2 principal components extracted from all SNP genotypes simultaneously and 475 

contribution of each SNP to the variance of the trait proportional to the eigenvalue 476 

Note that UM+ US+ UC= UM+ UR+ UD=100% 

 477 
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Figure 1. Pattern of the eigenvalues of the correlation matrix of SNP markers.   479 
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Figure 2. Pattern of correlations between genomic breeding values (GEBV) and true breeding 492 

values (TBV) when principal components are extracted from all SNP genotypes simultaneously and 493 

eigenvalues are used as priors, for different number of retained PC (white bars = training 494 

individuals, black bars = prediction individuals). The continuous line represents the amount of 495 

variance explained by the corresponding number of PC. 496 
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 505 

Figure 3. Correlations between genomic breeding values (GEBV) and true breeding values (TBV) 506 

in the different approaches when phenotypes were used as dependent variables (SNP_ALL = all 507 

5,925 SNP; PC_SNP_ALL = principal components extracted from all SNP genotypes 508 

simultaneously; PCA_SNP_CHROM = principal components extracted from SNP genotypes 509 

separately for each chromosome; PCA_HAP_ALL = principal components extracted from all SNP 510 

haplotypes simultaneously; PCA_HAP_CHROM = principal components extracted from 511 

haplotypes separately for each chromosome). 512 
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Figure 4. Correlations between genomic breeding values (GEBV) and true breeding values (TBV) 516 

in the different approaches when EBV were used as dependent variables (SNP_ALL = all 5,925 517 

SNP; PC_SNP_ALL = principal components extracted from all SNP genotypes simultaneously; 518 

PCA_SNP_CHROM = principal components extracted from SNP genotypes separately for each 519 

chromosome; PCA_HAP_ALL = principal components extracted from all SNPS haplotypes 520 

simultaneously; PCA_HAP_CHROM = principal components extracted from haplotypes separately 521 

for each chromosome). 522 
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 526 

Figure 5a. Plot of true breding values versus genomic breeding values predicted using phenotypes 527 

when principal components are extracted from all SNP genotypes simultaneously and variance 528 

contribution of the PC scores in the estimation step is assumed equal (continuous line= regression 529 

line of TBV on GEBV; dotted line= equivalence line, y=x). 530 
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 Figure 5b. Plot of true breeding values versus genomic breeding values predicted using 533 

phenotypes when principal components are extracted from all SNP genotypes simultaneously and 534 

variance contribution of the PC scores in the estimation step is based on their eigenvalues 535 

(continuous line= regression line of TBV on GEBV; dotted line= equivalence line, y=x). 536 
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Figure 5c. Plot of true breeding values versus genomic breeding values predicted using phenotypes 542 

when all SNP genotypes are used as predictors (continuous line= regression line of TBVs on 543 

GEBVs; dotted line= equivalence line, y=x). 544 
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Figure 6. Plot of the average scores of the first two principal components for seven generations. 553 
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       562 

Figure 7. Pattern of the average observed heterozygosity in different generations. 563 
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