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Abstract 

Vitamin D and TGF-β exert opposite effects on epithelial-mesenchymal EMT transition. Here we 

report a novel mechanism of action of TGF-β that promotes the counteracting activity of vitamin D; 

in two models of human epithelial-mesenchymal EMT transition we demonstrated for the first time 

that TGF-β strongly induced the expression of vitamin D receptor (VDR) and that 1,25(OH)2D3 was 

able to contrast the TGF-β-driven EMT transition by transcriptional modulation. In human 

bronchial epithelial cells the effects of TGF-β on EMT transition markers (E-Cadherin expression 

and cell motility) were reversed by pre-treatment and co-treatment with 1,25(OH)2D3, but not when 

the hormone was given later. Silencing experiments demonstrated that the inhibition of TGF-β 

activity was VDR-dependent. 1,25(OH)2D3 abrogated the mitochondrial stimulation triggered by 

TGF-β. In fact we showed that 1,25(OH)2D3 repressed the transcriptional induction of respiratory 

complex, limited the enhanced mitochondrial membrane potential and restrained the increased 

levels of mitochondrial ATP; 1,25(OH)2D3 also decreased the production of reactive oxygen species 

promoted by TGF-β. Overall, our study suggests that  the overexpression and activity of VDR may  

be a regulatory response to TGF-β signaling that could be exploited in clinical protocols, unraveling 

the therapeutic potentiality of 1,25(OH)2D3 in the prevention of cancer metastasis. 

 

Keywords: VDR; 1,25(OH)2D3; TGF-β; epithelial-mesenchymal EMT transition; mitochondrial 

respiratory activity 
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1. Introduction 

The epithelial-mesenchymal EMT transition (EMT) is a complex process in which the epithelial 

cells undergo multiple biochemical changes and assume a mesenchymal phenotype, which includes 

the loss of cell adhesion and polarity, the enhanced migratory capacity and invasiveness, and the 

elevated resistance to apoptosis. In epithelial tumor progression, EMT is subsequent to the localized 

cancer proliferation and it is considered one of the hallmarks of malignity [1,2]. Finding strategies 

able to contrast EMT and invasion should have high priority in the development of anti-metastatic 

protocols. TGF-β is one of the inflammatory cytokines that most potently trigger EMT. Its signaling 

is complex and mediated by the activation of several transcription factors such as Snail and the 

Smad family of proteins. The effects of TGF-β are multiple and vary from the regulation of 

proliferation to the increase of migration and even the control of apoptosis [3]. On the opposite, 

vitamin D is a negative modulator of EMT.  The active form of vitamin D (1,25(OH)2D3) inhibits 

proliferation, promotes differentiation and opposes EMT via the transcriptional activity of its 

receptor VDR, which controls the induction of several genes such as the invasion suppressor E-

Cadherin and the tumor suppressor cystatin D, and acts by antagonizing  the Wnt/β-catenin pathway 

[4,5 ]. Several studies in vitro demonstrated the efficacy of  1,25(OH)2D3 in contrasting the EMT 

triggered by TGF-β, due to  the inhibited expression of EMT markers and the decreased migration 

and invasion of epithelial and ovarian cancer cells[6-10]. The clinical studies that have evaluated 

the efficacy of vitamin D supplementation have described a role merely preventive in cancer 

formation and progression, whereas there are no evidences for curative properties on malignant 

tumors [11-13].  

The mechanisms responsible for the opposing activity of TGF-β and 1,25(OH)2D3 are not 

completely clear and mostly limited to the investigation of transcriptional antagonism or cross-talk, 

such as the cross-talk demonstrated for VDR and Smad3 signaling. This effector of the TGF-β–

Smad pathway is able to transactivate VDR [14] and it is consequently inhibited in its 

transcriptional activity [15]. In addition to the nuclear effects of 1,25(OH)2D3, recently some new 
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metabolic effects of the hormone have been described; in fact a novel mitochondrial localization 

and function of VDR has been elucidated by works on platelets [16], keratinocytes [17-19], cancer 

cell lines [18] and brown adipocytes [20], which have demonstrated that 1,25(OH)2D3 reduces 

mitochondrial respiration. Also few metabolic effects of TGF-β have been described. TGF-β alters 

cellular lipid metabolism [21], promotes metabolic reprogramming [22,23] and affects 

mitochondrial function, although with contrasting evidences that seem to depend on the cellular 

context analysed [22-25]. The effects of TGF-β on cellular functions are often mediated by the 

increased production of reactive oxygen species (ROS) triggered by the cytokine [21,24-27]. The 

outcome of ROS modulation is variable, since TGF-β can lead to apoptotic death [28,29] or can 

promote cell survival via the recruitment of the antiapoptotic PTEN-induced putative kinase 1 

(PINK1) protein, which supports the autophagic clearance of damaged mitochondria [24]. 

Interestingly, few reports have demonstrated that TGF-β can stimulate mitochondrial respiratory 

activity and oxidative phosphorylation [23,25]; the opposite effects of 1,25(OH)2D3 and TGF-β on 

mitochondrial activity prompted us to investigate whether the inhibitory effects of 1,25(OH)2D3  on 

TGF-β-driven EMT are partly mediated by a metabolic antagonism. In this work we evaluated the 

metabolic effects of TGF-β in the human bronchial epithelial cell line Beas-2B, which is a well 

characterized model of epithelium undergoing EMT as result of TGF-β activity [30,31] and is 

sensitive to EMT inhibition by 1,25(OH)2D3 [6]. The cross talk between the metabolic effects of 

VDR and TGF-β was evaluated by treating the cells with 1,25(OH)2D3 before (pre-treatment), 

together (co-treatment) or after (post-treatment) the exposure to TGF-β, in order to verify whether a 

timely administration of 1,25(OH)2D3  can make any difference on phenotype and metabolism of 

cells undergoing EMT. 

In this study we demonstrate for the first time that TGF-β strongly induces the expression of VDR 

in two human models of EMT and we show that the vitamin D/VDR activity counteracts the effects 

of TGF-β on EMT phenotype, mitochondrial metabolism and production of ROS.  
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2. Materials and methods 

2.1 Cell culture and treatments 

The human bronchial epithelial cells Beas-2B and the human pleural mesothelial cell line MeT-5A 

were purchased from American Type Culture Collection (ATCC), USA, and were cultured in RPMI 

medium supplemented with 10% fetal bovine serum  and 1% antibiotics [penicillin-streptomycin 

(Sigma-Aldrich)] at 37 °C in humidified 5% CO2 atmosphere. When treated, cells were kept in 

RPMI supplemented with 1% fetal bovine serum and were subjected to stimulation with either 0.1% 

ethanol (vehicle) as control or 100 nM 1,25(OH)2D3 (Sigma-Aldrich, St. Louis, MO) or TGF-β1 

(PeproTech, Rocky Hill, NJ). The treatments were carried out as shown by diagram in Fig. S1: 24 

hours of pre-treatment in the indicated conditions, followed by 48 hours of single treatments or co-

treatments. 

2.2 Extracts preparation and Western blotting analysis 

Subcellular fractionation and Western blotting analysis was carried out as previously described 

[16]. Lysates were subjected to differential centrifugation to isolate the nuclear and mitochondrial 

fraction. Proteins were extracted by incubation in boiling sample buffer followed by sonication. 

Fifty µg of total lysates or thirty µg of nuclear or mitochondrial fractions were separated by 10% 

SDS-PAGE and analysed by Western blotting. Mouse monoclonal antibodies anti-VDR (sc-13133), 

anti E-Cadherin (sc-21791) and goat antibody anti-UCP2 (sc-6525) were from Santa Cruz, CA, 

USA.  Rabbit anti-UCP1 was obtained from Sigma (U6382). Our previous works [17,18] have 

shown that the antibody against VDR gives some unspecific signal. The correct band was identified 

in past studies by molecular weight and silencing experiments in HaCaT, MCF7 and HeLa cells 

[17,18], and corresponds to the lower band when a doublet band is present. The signal that detects 

VDR is indicated in all figures. The loading controls were carried out on the same membranes and 
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detected by antibodies anti-VDAC (monoclonal anti-porin 31HL, Calbiochem), anti-actin (mouse 

monoclonal sc-8432 Santa Cruz) and rabbit antibody anti-PARP (sc-7150, Santa Cruz). 

2.3 Lentiviral-mediated shRNA targeting  

Silencing of VDR was carried out as previously described  [18]. Briefly, PLKO.1 lentiviral shRNA 

clone 3 targeting the human VDR and a scrambled non-targeting control were purchased from 

Sigma (Sigma Mission shRNA). Lentiviral transduction particles were delivered by overnight 

incubation and infected Beas-2B cells were selected by puromycin. Four days after infection, the 

cells were seeded for experimental assays and harvested for protein analyses. 

2.4 Cell proliferation assay, Migration assay, Wound healing assay, and Real-Time PCR 

analysis. 

The protocols used in this study are described in Supplementary Materials and Methods. 

2.5 Measurement of mitochondrial membrane potential (Δm) 

JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcarbocyanine iodide), a mitochondrial 

dye staining mitochondria in living cells in a membrane potential-dependent fashion, was used to 

determine ΔΨm, as previously reported [18]. JC-1 is a cationic dye that indicates mitochondrial 

polarization by shifting its fluorescence emission from green (530 nm) to red (590 nm). Briefly, 

cells were incubated with JC-1 (2 μg/ml final concentration) at 37°C for 30 minutes. The amount of 

JC-1 retained by 10,000 cells per sample was measured at 530 nm (FL-1 green fluorescence) and 

590 nm (FL-2 red fluorescence) with a flow cytometer and analyzed with Cell Quest Alias software. 

The ratio FL2/FL1 was evaluated to determine ΔΨm. Experiments were performed in triplicates and 

repeated three times. 

2.6 Evaluation of mitochondrial ATP levels 

After treatments, the amount of ATP in mitochondria, prepared by subcellular fractionation, was 

measured with the ATP Bioluminescent Assay Kit (FL-AA, Sigma), using a Synergy HT Multi-

Mode Microplate Reader (BioTek Instruments Inc., Winooski, VT, USA). ATP was quantified as 
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relative light units (RLU); data were converted into nmol ATP/mg mitochondrial proteins and were 

expressed in comparison to control values (relative ATP). Experiments were performed in 

triplicates and repeated three times. 

2.7 Measurement of intracellular ROS production 

After treatment, cells were harvested and were loaded for 15 min with 10 μM 2′,7′-

dichlorodihydrofluorescein diacetate (DCFH-DA, Sigma). DCFH-DA is a cell-permeable probe that 

is cleaved intracellularly by nonspecific esterases to form DCFH, which is further oxidized by ROS 

to form the fluorescent compound dichlorofluorescein (DCF) [32]. DCF fluorescence was 

determined at an excitation wavelength of 504 nm and an emission wavelength of 529 nm, using a 

Packard EL340 microplate reader (Bio-Tek Instruments, Winooski, VT). The fluorescence values 

were normalized to the protein content and expressed as values relative to control. Experiments 

were performed in triplicates and repeated three times. 

2.8 Bands quantification and statistical analysis 

Bands from protein electrophoresis were quantified by scanning digital densitometry using an 

ImageJ software analysis (ImageJ version 1.29, Sun Microsystems Inc., Palo Alto, CA). Statistical 

analysis of data was performed using ANOVA test with Tukey's post-hoc correction. p values <0.05 

were considered significant and indicated. All data were expressed as mean ± S.D of three 

independent experiments. 

 

3. Results 

 

3.1 TGF-β and 1,25(OH)2D3 exert opposite effects on proliferation and differentiation of 

human epithelial cells. 

With the aim of dissecting the metabolic effects of both 1,25(OH)2D3 and TGF-β on EMT, first of 

all we tested the responsiveness of our cellular model, the Beas-2B cell line, to the two agents. This 
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cell line is the epithelial model most utilized in studies of EMT [6,33,34]; the modulation of the 

markers of EMT transition by TGF-β and1,25(OH)2D3  has been extensively characterized in 

previous work [6]. The concentration of the two drugs is the standard dose employed in vitro when 

their effect is investigated in EMT [6,33,35]. As expected, the treatment with 1,25(OH)2D3 reduced  

the proliferation rate (Fig. 1A) and increased the expression of the epithelial marker E-Cadherin 

(Fig. 1B, quantified in Fig. 1C).  TGF-β apparently had no significant effect on proliferation, and in 

co-treatment the inhibitory effect of vitamin D prevailed. The EMT transition toward a 

mesenchymal phenotype in Beas-2B incubated with TGF-β was demonstrated by the suppressed 

expression of E-Cadherin (Fig. 1B, quantified in Fig. 1C). Surprisingly, we found that TGF-β 

promoted a remarkable induction of VDR, since VDR levels were strikingly higher in whole lysates 

of TGF-β treated cells compared to the modest expression detected in control cells; the increase 

triggered by TGF-β was much more intense than the effect exerted by vitamin D on its own receptor 

(Fig. 1B and 1C). VDR can be up-regulated at both the transcriptional and post-translational levels, 

the latter through a ligand-dependent stabilization [38-40]. We measured the VDR transcript in 

untreated and treated cells (Fig. 1D) by real time PCR analysis and we found a two-fold induction 

of VDR messenger by its ligand, and a much stronger transcriptional induction exerted by TGF-β 

on VDR, which accounted for the observed sharp increase in protein expression. The induction of 

VDR was evident also in another human lung cell line, the mesothelial cells MeT-5A. Also in this 

model TGF-β was able to modulate the epithelial marker E-Cadherin and was effective in 

upregulating VDR expression (Fig. 1E), demonstrating that this effect was not cell-specific. We 

decided to inquire into this novel consequence of TGF-β activity and we set forth to investigate the 

influence of 1,25(OH)2D3, TGF-β and their possible synergic action on VDR expression in Beas-2B 

cells, the best characterized model of EMT. 
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Fig. 1. The effects of TGF-β and 1,25(OH)2D3 on proliferation and differentiation of human 

epithelial cells. (A) After five days of treatment with1,25(OH)2D3 (D),  TGF-β (T) or both (T+D), 

Beas-2B cell growth was evaluated by crystal violet staining and values expressed as percentage of 

the untreated cells (control, C). (B) After 48 hours of incubation the expression of E-Cadherin, 

VDR, and the loading control actin was analysed by Western blotting in whole lysates from Beas-

2B cells. VDR protein is indicated as the lowest band of the double band, as explained in Methods. 

(C) Bands from three independent experiments were quantified, normalized for loading as a ratio to 
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actin expression and data plotted on graph relative to control. (D) At the end of the same incubation 

mRNAs from Beas-2B cells were purified and assayed by real time PCR for VDR transcript 

expression. The values plotted on the graph represent the fold change in transcript expression in 

treated versus untreated cells. (E) The same protein analysis was carried out on MeT-5A cells 

treated as in (B). In all graphs data are displayed as the means ± SD of three independent 

experiments. * P<0.05 compared to the untreated cells. 
§
 P<0.05 compared to the cells treated with 

TGF-β (T). 

 

3.2 The expression of both nuclear and mitochondrial VDR is induced by TGF-β and this 

modulation is not affected by the addition of 1,25(OH)2D3. 

Our previous studies described the intracellular distribution of VDR [16-18] and demonstrated that 

the receptor is abundant in the mitochondrial compartment of several cell lines [16-18]. In this work 

by Western blot analysis we investigated the induction of VDR in total extracts, mitochondrial and 

nuclear fractions of cells treated with the two molecules alone or in combination. The increased 

expression of VDR was evident in all fractions when the cells were treated with TGF-β alone, and 

the co-treatment did not change the effect (Fig. 2A). Also when the co-treatment was preceded by 

the incubation with 1,25(OH)2D3 or TGF-β the levels of VDR remained very high (Fig. 2B). 

Representative blots of these experiments are shown in Fig. 2C. Based on these observations we 

concluded that TGF-β was able to enhance the expression of the receptor in all the subcellular 

compartments, independently from its ligand, and the induction was particularly evident in 

mitochondrial VDR. With the aim of investigating whether the stimulation was exerted both on 

VDR expression and VDR activity on gene targets, we tested the mRNA levels of CYP24A1 as a 

read-out of the transcriptional activity of the induced VDR. As expected, the elevated amount of 

VDR produced by TGF-β signaling potently induced the transcription of the CYP24A1enzyme in a 

ligand-dependent modality; interestingly, the addition of 1,25(OH)2D3 before or after TGF-β 
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treatment made no difference on the high VDR transcriptional activity (Fig. 2D). We concluded that 

TGF-β induced the expression of a vitamin D receptor sensitive to ligand activation. The reported 

efficacy of 1,25(OH)2D3  in reducing EMT triggered by the cytokine could be mediated by the 

increase of VDR expression and activity. Therefore we evaluated the effect of 1,25(OH)2D3 and 

TGF-β alone or in combination on the EMT phenotype and on metabolism of cells undergoing 

EMT. 

 

Fig. 2. Analysis of VDR expression in subcellular fractions and VDR activity in Beas-2B cells 

treated with different combinations of TGF-β and 1,25(OH)2D3. (A) The cells were subjected 

for 48 hour to single (D, 1,25(OH)2D3; T, TGF-β) or combined treatment (T+D). (B) In a second 

experimental setting  the cells were pre-treated for 24 hours with 1,25(OH)2D3 (preD-T+D) or  

TGF-β (preT-T+D) before 48 hours of co-treatment, and for 72 hours with TGF-β alone. VDR 

expression was evaluated by Western blotting on total lysates (VDR TOT), nuclear fractions (VDR 

N) and mitochondrial extracts (VDR MIT). Bands were quantified and normalized to loading 
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control bands on the same blot (actin, PARP, VDAC for total, nuclear and mitochondrial extracts 

respectively); data were expressed relative to control. (C) The blots are representative of the 

experiments quantified in (A) and (B). VDR protein is indicated as the lowest band of the double 

band, as explained in Methods. (D) Under the same experimental conditions the transcriptional 

activity of VDR was evaluated as modulation of CYP24A1 mRNA by real time PCR. The graphs 

display the means ± SD of three independent experiments. * P<0.05 compared to the untreated 

cells. 

 

3.3 1,25(OH)2D3  is efficient in opposing EMT phenotype only when administered together 

with TGF-β, but not when its activity is exerted at a later stage.  

We expected that the increased expression of VDR could mediate the activity of vitamin D and 

could inhibit the EMT transition, but we wondered whether vitamin D/VDR could hamper EMT not 

only in pre-treatment or co-treatment with TGF-β, but also when administered later on. This 

different protocol of incubation in vitro could give contrasting results and could mimic two different 

clinical situations: the case in which the oncologic patient shows adequate levels of vitamin D or the 

condition found in a subject where the insufficiency of vitamin D is corrected when EMT has 

already developed.   

To settle this issue, we propose the same experimental paradigm throughout our analysis of 

phenotype and metabolic assessment of EMT. The experimental protocol of exposure is shown in 

supplementary Fig. S1. First, we tested two hallmarks of EMT: the expression of the epithelial 

marker E-Cadherin (Fig. 3A) and the migrating potential of the cells (Fig. 3B and 3C).  

The expression of E-Cadherin was repressed by TGF-β but it was partially restored by 1,25(OH)2D3   

in co-treatment and reverted to control levels when vitamin D was administered before and together 

TGF-β (preD-T+D). On the opposite, the treatment with 1,25(OH)2D3 was not effective when was 

initiated after TGF-β (preT-T+D) (Fig. 3A). Representative blots of these experiments are shown in 
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supplementary Fig. S2. Cellular movement typically increasing during EMT was investigated by 

migration tests (Fig. 3B) and wound healing assays (Fig. 3C). In both the analysis, cell motility was 

enhanced by TGF-β, and 1,25(OH)2D3 reverted the effect when the treatment started before or 

together with TGF-β, but not later (preT-T+D). These data consistently demonstrated that 

1,25(OH)2D3 must be present before or at the beginning of TGF-β signaling to be effective in 

reverting the EMT phenotype. On the opposite, the pre-treatment with TGF-β elicits a cellular 

response that is not suppressible by 1,25(OH)2D3. 

 

Fig. 3. The effects of 1,25(OH)2D3 on EMT phenotype. Beas-2B cells were treated as schematized 

in fig. S1 and the markers of EMT were tested. (A) The expression of E-Cadherin was evaluated in 

whole lysates by Western blotting, bands were quantified, normalized for loading and data 

expressed relative to control. (B) The effects of 1,25(OH)2D3 on the TGF-β-induced cell motility of 

Beas-2B cells at 24 hours were quantified using a transwell assay. Data are expressed relative to 

control. (C) The effects on cell migration at 0 and 24 hours were evaluated using a wound-closure 

assay. The figure presents the empty areas in the wound-closure assay under different experimental 
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conditions; these areas were measured and expressed on graph as percentage of wound closure as 

described in methods. The graphs display the means ± SD of three independent experiments. * 

P<0.05 compared to the untreated cells; § P<0.05 compared to the cells treated with TGF-β alone. 

 

3.4 The inhibition exerted by 1,25(OH)2D3 on TGF-β activity is VDR-dependent. 

In order to verify the most reasonable assumption of our work, that the increased expression of 

VDR could mediate the effects of vitamin D on EMT transition, we suppressed the receptor by 

genetic silencing and we tested the effects of TGF-β and 1,25(OH)2D3 on wild type and silenced 

Beas-2B cells. The results of this approach are shown in Fig. 4. As previously published [18] our 

silencing tools were very effective in abating VDR expression; as expected, also the levels of E-

Cadherin were very low in VDR KO cells and the protein expression did not increase after 

treatment with 1,25(OH)2D3. When we investigated the EMT transition phenotype, we found that in 

silenced cells TGF-β retained the ability of repressing E-Cadherin and inducing cell motility, but the 

pre-treatment with1,25(OH)2D3 could no longer revert the effects of the cytokine. We therefore 

demonstrated that the influence of vitamin D activity on EMT and its antagonism with TGF-β 

described in our experiments were mediated by the increased expression of VDR. 
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Figure 4. VDR silencing abolishes the effects of 1,25(OH)2D3 on EMT transition markers. (A) 

Beas-2B cells were infected with lentiviral VDR shRNA (shRNA VDR) or shRNA control (shRNA 

ctrl) and then subjected for 48 hour to single (D, 1,25(OH)2D3; T, TGF-β) or combined treatment 

(T+D); the silencing efficacy was examined in the total extracts by Western blotting. The identity of 

VDR protein indicated as the lowest band of the double band was confirmed by its disappearance in 

silenced cells. On the same blot the expression of the EMT transition marker E-Cadherin was 

investigated, and actin was detected as internal control for protein loading. (B) The effect of 

silencing on cell migration was evaluated by a wound-closure assay under the different 

experimental conditions. The data plotted on graph display the means ± SD of three independent 

experiments. * P<0.05 compared to the untreated cells. 
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3.5 1,25(OH)2D3 and TGF-β modulate the mitochondrial respiratory chain with opposite 

effects. 

After the analysis of the phenotype switch triggered by TGF-β and modulated by vitamin D, we set 

forth to evaluate the outcome of the contrasting effects of 1,25(OH)2D3 and TGF-β on 

mitochondrial respiration. We measured the mitochondrial transcript of one of the respiratory 

complexes, the subunit 2 of cytochrome C oxidase (COX2) (Fig. 5A), and we tested the respiratory 

activity as mitochondrial membrane potential (Fig. 5B). TGF-β induced the transcription and 

activity of the respiratory chain and 1,25(OH)2D3   reverted the effect, both in co-treatment and 

when the incubation started 24 hours before TGF-β (preD-T+D). However, in line with the 

observations made on EMT markers, also the experiments on respiratory modulation demonstrated 

that the administration of vitamin D in a later phase (preT-T+D) lost its efficacy in contrasting the 

effects of TGF-β. 1,25(OH)2D3 alone had no effect on mitochondrial respiration, probably because 

of the very low levels of VDR found in control cells, which are enhanced only by TGF-β treatment. 

 

3.6 The results of metabolic control affect coupled respiration and not UCP-mediated 

uncoupling. 

The augmented proton gradient created by an increased respiratory chain activity can be coupled 

with oxidative phosphorylation and can result in a boosted ATP synthesis and partial dispersion of 

the gradient. Alternatively, protons can cross back the mitochondrial inner membrane via leakage or 

uncoupling proteins. We evaluated these two possible routes of utilization of that mitochondrial 

gradient we found increased upon TGF-β treatment. We carried out the analysis of mitochondrial 

ATP synthesis (Fig. 5C) and we found that TGF-β augmented the mitochondrial ATP levels; the 

effect was reverted by the treatment with 1,25(OH)2D3, both in co-treatment and pre-treatment. 

Again, after a pre-incubation with TGF-β, vitamin D was not able to oppose the effects of the 

cytokine. The treatment with 1,25(OH)2D3 alone did not change the synthesis of ATP, as observed 

for respiratory activity, due to the low levels of VDR found in these cells. On the other hand, we 
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found no differences in the mitochondrial levels of the two most commonly expressed uncoupling 

proteins, UCP1 and UCP2 (Fig. 5D), which suggested that the uncoupling process was not 

modulated by TGF-β, although we cannot rule out the involvement of other minor uncoupling 

processes such as proton leak.  

 

 Fig. 5. 1,25(OH)2D3 and TGF-β exert opposite effects on mitochondrial respiratory chain of 

Beas-2B cells. (A) After the indicated treatments, mRNAs were purified and assayed by real time 

PCR for cytochrome C oxidase subunit 2 (COX2) transcript expression. (B) The mitochondrial 

membrane potential was examined using JC-1 cytofluorimetric evaluation. For each experimental 

condition the FL-2/FL-1 ratio was calculated and expressed as a percentage of the value obtained 

for untreated cells. 

 (C)  After the indicated treatments the levels of mitochondrial ATP were measured by a 

chemiluminescence-based assay. (D) The expression of the two main uncoupling proteins (UCP1 

and UCP2) was analysed in mitochondrial fractions by Western blotting, and VDAC was used as 
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loading control. The blots are representative of three independent experiments. The values plotted 

on the graphs represent the fold change in treated versus untreated cells and are displayed as the 

means ± SD of three independent experiments. * P<0.05 compared to the untreated cells. § P<0.05 

compared to TGF-β treated cells. 

 

3.7 The treatment with 1,25(OH)2D3 counteracts the intracellular production of ROS 

triggered by TGF-β. 

Many effects of TGF-β activity are mediated by ROS. In particular, in Beas-2B cells TGF-β is able 

to stimulate the production of ROS [24]. We measured the intracellular levels of ROS in cells 

treated for 24 hours with TGF-β and we evaluated the effect of 1,25(OH)2D3 on this signaling 

pathway (Fig. 6). We found that the increase of ROS caused by TGF-β activity was reversed by the 

presence of 1,25(OH)2D3, in all experimental conditions. 

 

 

Fig. 6. 1,25(OH)2D3 and TGF-β  control intracellular ROS formation. After 24 hours of single 

treatments or pre-treatments followed by 24 hours of co-treatments, the levels of intracellular ROS 

in Beas-2B cells were evaluated by fluorescence assay and the results expressed relative to control. 

Values are reported as means  ± SD of three independent experiments. * P<0.05 compared to the 

untreated cells. § P<0.05 compared to TGF-β treated cells. 
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4. Discussion 

In this work we describe a new mechanism by which TGF-β operates during EMT. For the first 

time we demonstrated in two human models of EMT that the cytokine induces a massive expression 

of VDR that mediates the opposing effects of 1,25(OH)2D3 on EMT transition, measured as 

epithelial E-Cadherin expression and cellular migration. The effects  of 1,25(OH)2D3 are mediated 

by VDR, as demonstated by silencing experiments. Past studies demonstrated a link between 

vitamin D and TGF-β signaling via Smad3 [14,15]. In this work we unveil a novel molecular detail 

of this cross-talk that doubles the effect of TGF-β on vitamin D signaling: TGF-β induces the 

expression of VDR and through Smad3 enhances VDR activity [14]. The mechanism responsible 

for the increased levels of VDR requires further investigation. However, our findings are in line 

with the observations made in a human colon cancer cell line, which show the involvement of the 

TGF-β signaling pathway in the induction of VDR expression in response to butyrate [41]. In 

CaCo-2 cells the increase of VDR induced by butyrate is mediated by Smad3 phosphorylation [41]; 

a similar signaling can be envisaged in our model of EMT and will be the subject of future studies. 

An interesting observation emerging from this study is that 1,25(OH)2D3 becomes ineffective if its 

activity starts after the commitment of epithelial cells into the EMT program evoked by TGF-β 

signaling. We tested the transcriptional activity of VDR and we found a ligand-dependent strong 

induction of CYP24A1 messenger, but no difference was found whether 1,25(OH)2D3 was added 

prior to or after TGF-β treatment. Because CYP24A1 is both a transcriptional target of VDR and a 

catabolic enzyme of 1,25(OH)2D3, our data suggest that the levels of active hormone must be 

similar in all experimental conditions, notwithstanding the contrasting effects of pre and post-

treatment with1,25(OH)2D3 on EMT transition phenotype. Based on these considerations we 

exclude that the inefficacy of post-treatment can be due to some inhibitory mechanism exerted on 

vitamin D levels or transcriptional activity of its receptor; rather, one could hypothesize that the 

EMT process is irreversible and thus 1,25(OH)2D3 cannot undo TGF-β's effects. This time-
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dependent efficacy of 1,25(OH)2D3 in contrasting the EMT transition could be crucial if vitamin D 

was proposed as anti-metastatic agent and brings forth at least two considerations. First, the 

individual levels of 1,25(OH)2D3  or the functionality of its receptor (for example due to 

polymorphisms) could be among the factors that protect some subjects in those categories exposed 

to cancer risk. Several epidemiologic investigations [42-48] suggest a protective effect for vitamin 

D against cancer. Few recent studies have reported the association between plasma 25(OH)D3 and 

risk of colorectal cancer [49] and breast cancer [50] and several published or ongoing studies have 

considered or are testing the efficacy of vitamin D supplementation in cancer prevention [51,52]. 

Second, based on our experimental data we suggest that vitamin D supplementation can represent a 

good preventive approach in subjects exposed to the risk of EMT, but it is not useful when the 

invasion process has started. The discrepant properties of vitamin D dietary intake in prevention and 

cure of cancer have been debated in several studies, and in this work we found the experimental 

evidences of a temporal window of efficacy in using vitamin D against cancer EMT. 

The other important findings of this study emerge from the analysis of the metabolic switch 

promoted by TGF-β and reverted by 1,25(OH)2D3. In fact we demonstrated that in our model of 

EMT TGF-β potentiates the respiratory activity coupled to ATP synthesis, thus it favors the 

oxidative catabolism and the production of the energy currency of the cell. Our results are in 

agreement with the data described in recent studies, which show the increase in intracellular ATP 

content and oxygen consumption in TGF-β-treated A549 non-small cell lung cancer cells [23]. 

Moreover, it has been reported that TGF-β increases mitochondrial membrane potential, 

mitochondrial oxygen consumption and ATP generation in cultured mouse podocytes [25]. In 

addition to these experimental studies, the analysis of the free energy changes during the TGF-β–

induced EMT for lung cancer cells demonstrated the metabolic shift resulting in increased cytosolic 

ATP levels [53]. The increased ATP synthesis is of paramount importance for migration taking 

place in EMT, actually several studies have demonstrated that mitochondrial ATP production is 

crucial for cancer cell motility [54-56]. In this study we described for the first time in human 
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bronchial epithelial cells a metabolic effect of TGF-β that supports the cellular invasion seen in 

EMT transition; 1,25(OH)2D3 exerts the opposite effect on mitochondrial respiration and is able to 

prevent the surplus production of ATP triggered by TGF-β. Therefore we identified a novel 

signaling pathway by which 1,25(OH)2D3 opposes the effect of TGF-β in EMT: in addition to the 

previously described transcriptional activity such as the induction of E-Cadherin, 1,25(OH)2D3 

restrains mitochondrial respiration and reduces the production of energy required for cell motility.  

Taken together our observations suggest that the increased expression of VDR might represent a 

regulatory negative feedback exerted by TGF-β on its own signaling. Negative regulation plays an 

important role in restriction and termination of TGF-β signaling; for example, the occurrence of a 

transcriptional negative feedback loops has been demonstrated for SnoN and Smad7 [57-58], which 

are targets of TGF-β activity and  act in a negative feedback loop to inhibit TGF-β transcriptional 

effects. Interestingly the work by Ding and coll. has shown that TGF-β modifies VDR cistrome and 

facilitates the binding of VDR to SMAD3-targeted genes [59]. The resultant genomic antagonism 

attenuates TGF-β nuclear signaling and leads to the reduction of fibrosis. In other words, the study 

has provided the evidences of the negative feedback exerted by VDR on TGF-β activity at the 

cistromic level. Our  is the first report of a negative feedback on TGF-β signaling mediated by a 

metabolic antagonism and our non-genomic mitochondrial data complete the paradigm of the 

regulatory feedback that controls the activity of TGF-β.  

Moreover, the results of many studies [60] have suggested the existence of a double negative 

feedback loop operating between 1,25(OH)2D3 and EMT inducers, which may contribute to the 

acquisition of the epithelial versus mesothelial phenotype dictated by the extracellular cues. Among 

the transcription factors involved is such loops, SNAIL and ZEB are the most investigated; we 

believe that in our experimental setting ZEB could mediate the transcriptional cross-talk between 

Vitamin D and TGF-β, because it has been described as a cell- and context-dependent positive 

regulator of VDR [61], whereas SNAIL proteins seem to be generally negative modulators of VDR 

levels, thus more involved in those cancer models where the expression of the receptor is silenced.  
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It is reasonable to suppose that the metabolic negative feedback regulation demonstrated in our 

study could be necessary to balance the excess of mitochondrial stimulation that could lead to stress 

and apoptosis. This hypothesis led us to investigate the effect of 1,25(OH)2D3 on the intracellular 

production of reactive oxygen species. ROS are often elevated in inflammation and cancer 

microenvironment [62]. It has been established that ROS may regulate TGF-  expression in 

epithelial cells [63] and increment TGF-  bioavailability [64]. In turn, TGF-  regulates ROS levels, 

not only by inducing their production, but also by downregulating the expression of antioxidant 

enzymes. [65,66]. Several studies have demonstrated that ROS mediate many effects of TGF-  

during tumorigenesis, since they regulate the effectors of TGF  signal transduction, such as Smads, 

MAPKs and NF- B, and they modulate the increase of cell motility [65,67,68]. In this study we 

show that the intracellular production of ROS triggered by TGF  was hampered by the co-treatment 

with 1,25(OH)2D3. This observation suggests that the negative feedback exerted by 1,25(OH)2D3 

could be  mediated at least in part by the control over ROS production.  ROS can induce cell 

damage and lead to apoptosis, therefore a strict regulation of this positive feedback between TGF-  

and oxidative stress/ROS must be established in order to favor tumor progression without damaging 

the cell. The negative feedback exerted by 1,25(OH)2D3    could be necessary to maintain a balance 

in metabolism and avoid the excessive production of ROS. A local controlled biosynthesis of 

1,25(OH)2D3   could produce an alternance of opposed metabolic signaling that could be optimal for 

cancer cell survival and spreading; intriguingly, this mechanism could be exploited for therapeutic 

benefit, because the elevated levels of 1,25(OH)2D3   could restrain the metabolic shift evoked by 

TGF-β and could limit or even prevent cancer migration and metastasis, as schematically depicted 

in Figure 7. 
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5 Conclusions 

In conclusion, in this study we identified a novel signaling pathway by which 1,25(OH)2D3 opposes 

the effects of TGF-β in EMT; we found that in human bronchial epithelial cells TGF-β induces the 

expression of VDR, which opposes EMT via a transcriptional and metabolic signaling. The 

metabolic control is exerted by 1,25(OH)2D3 on mitochondrial respiration, synthesis of ATP and on 

the production of intracellular ROS. Vitamin D/VDR activity serves as a negative control 

mechanism to curb the effects of TGF-  and probably aims to avoid the excessive stimulation that 

could lead to cellular damage. The preventive treatment with 1,25(OH)2D3 could be effective in 

reducing the undesirable effects of TGF  activity, such as the induction of EMT found in cancer. 

 

 

 

Fig. 7. A working model of the molecular mechanisms underlying the effects of 1,25(OH)2D3 

on TGF-β signaling. The induction of VDR promoted by TGF-β potentiates the regulatory effects 

of 1,25(OH)2D3; the negative feedback is exerted on mitochondrial energy metabolism 
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(mitochondrial ATP, mATP), cell migration is inhibited also by the transcriptional induction of E-

Cadherin (E-Cad), and the autocrine loop of ROS production is curtailed. 
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Supplementary Materials and Methods 

Cell proliferation assay 

2000cells were seeded on 96-multiwell plates and cultured for 5 days with 100 nM 1,25(OH)2D3 or 

10 ng/ml TGF-β, alone or in combination. At the end of this period, cells were fixed for 15 min 

with 11% glutaraldehyde, plates were washed three times, air-dried and stained for 20 min with 

0.1% crystal violet solution. The plates were then extensively washed and air-dried prior to 

solubilization of the bound dye with 10% acetic acid solution. Absorbance was determined at 595 

nm. Data from twelve wells were averaged for each experimental condition and the experiment was 

repeated three times. 

Migration assay  

The migration assay was performed with 24 well trans-well filters with 8.0um pores (Corning, 

USA) as described previously [36]. Cells were pre-treated for 24 hours, resuspended in 100ul serum 

free medium, added to the upper chamber and incubated for 24 hours with co-treatment. RPMI 

medium with 10% FBS was added to the lower chamber. The cells that migrated to the opposite 

side of the membrane were fixed and stained with crystal violet, the bound dye was solubilized with 

10% acetic acid solution and absorbance was determined at 595 nm. Data from three wells were 
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averaged for each experimental condition and expressed relative to control. The experiment was 

repeated three times.  

Wound healing assay 

The assay was carried out as previously described [37]. Cells were seeded in a 24 well plate and 

when they reached 80% confluency they were starved over night and then incubated in pre-

treatment for 24 hours. A wound line was generated with a sterile pipette tip, followed by co-

treatment for 24 hours. Images were obtained at 0 and 24 hours using a light microscope at 20x 

magnification with a digital camera under bright field illumination.  The area of the wound was 

measured in the central part of each well using ImageJ software. The measurements were then 

converted into a percentage of wound closure: 100-[(area at t24/area at t0)x100]. 

RNA Extraction and Real-Time PCR 

RNA was extracted using TRIzol (Invitrogen) and then 1 μg of total RNA, treated with DNase 

(Roche), was used for reverse transcription with iScript cDNA Synthesis Kit (Bio-Rad) according to 

the manufacturer’s protocol. Real-time PCR was performed with iQ SYBR Green (Bio-Rad) with 

the following primers:  

VDR fwd 5′-ACTTGTGGGGTGTGTGGAGAC-3′, rev 5′-GGCGTCGGTTGTCCTTCG-3′,  

COX2 fwd 5′-CGACTACGGCGGACTAATCT-3′, rev 5′-TCGATTGTCAACGTCAAGGA-3′,  

CYP24, fwd 5’- CGTTTGGACGATGATGGTCAC, rev 5’-TTTCTTGAAGCCGATTCTGGTG; 

S14 fwd 5′-AGGTGCAAGGAGCTGGGTAT-3′; rev 5′-TCCAGGGGTCTTGGTCCTATTT-3′. 

The housekeeping gene ribosomal subunit protein S14 was used as internal control. Real-time PCR 

parameters were as follows: cycle 1, 50°C for 2 minutes; cycle 2, 95°C for 10 minutes, followed by 

45 cycles at 95°C 15 seconds and then 60°C for 1 minute. The 2-ΔΔCT method was used to analyze 

the data. 
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Supplementary Figure legends 

Fig. S1. Design of treatments. The figure schematizes the protocol of incubation: 24 hours of pre-

treatment in the indicated conditions, followed by 48 hours of single treatments or co-treatments. 

Empty boxes represent the incubation medium with vehicle . 

Fig. S2. Analysis of E-Cadherin expression in whole lysates. The blots are representative of three 

independent experiments quantified in figure 3A. Actin was used as loading control. 


