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 16 

Summary 17 

 Selection is the major force affecting local levels of genetic variation in species. The 18 

availability  of dense marker maps offers new opportunities for a detailed understanding of genetic 19 

diversity distribution across the animal genome. Over the last fifty years, cattle breeds have been 20 

subjected to intense artificial selection. Consequently, regions controlling traits of economic 21 

importance are expected to exhibit selection signatures. The fixation index (Fst) is an estimate of 22 

population differentiation, based on genetic polymorphism data and it is calculated using the 23 

relationship between inbreeding and heterozygosity. In the present study, the locally weighted 24 
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scatterplot smoothing regression (LOWESS) and a Control Chart approach were used to investigate 25 

selection signatures in two cattle breeds with different production aptitude (dairy and beef).  26 

 Fst was calculated for 42,514 SNPs marker loci  distributed across the genome in 749 Italian Brown 27 

and 364 Piedmontese bulls respectively. The statistical significance of Fst values was assessed using 28 

a Control Chart. The LOWESS technique was efficient in removing noise from the raw data and 29 

was able to highlight selection signatures in chromosomes known to harbour genes affecting dairy 30 

and beef traits. Examples are, the peaks detected for BTA2 in the region where the myostatin gene is 31 

located and for BTA6 in the region harbouring the ABCG2 locus. Moreover, several loci not 32 

previously reported in cattle studies were detected.  33 

Key words: SNPs, Fst,  LOWESS, cattle breeds 34 

 35 

Introduction 36 

 The study of the genetic basis of differences among animal populations is a hot topic of 37 

animal genetics. The quantification of allelic richness and the evaluation of their association with 38 

phenotypes represent tools for the safeguard and the management of local populations. Moreover, 39 

identification of genomic regions involved in phenotypic differences between individuals provide 40 

useful knowledge for gene assisted selection programmes. 41 

Specialized breeds have been subjected to intense selection. A main consequence has been 42 

the progressive erosion of local levels of genetic variation that may have compromised the ability to 43 

challenge environmental factors (Mäki-Tanila et al. 2010). Thus a genetic comparison between 44 

selected and autochthonous populations may allow for the identification of genomic regions 45 

involved in the control of fitness traits. On the other hand, studies involving highly selected breeds 46 

with different production aptitudes, as the case of dairy and beef cattle, can provide an exciting 47 

opportunity for studying signatures of selective breeding (Hayes et al. 2008a;  Qanbari et al. 2010). 48 
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Actually, little is known about the effects of intensive, directional and prolonged selection on 49 

genome sub-structure of domestics species.  50 

In population genetics, the identification of a locus target of selection is based on the 51 

existence of a reduction in nucleotidic diversity, or on an increase linkage disequilibrium (LD) 52 

and/or a changed allele frequency (Doebley et al. 2006). Currently, different statistical methods are 53 

used for the detection of selection signatures. Many of them are based on the comparison of allele 54 

frequencies or haplotype structure (for a review see Biswas and Akey 2006). The most commonly 55 

used metrics are the r2 for measuring LD and the fixation index Fst (Weir and Cockerham, 1984). A 56 

quite recent approach, extensively studied  in human populations, is based on the  detection of runs 57 

of homozygosity (ROH),  defined as uninterrupted stretch of homozygous genotypes (Gibson et al., 58 

2006). The extent and frequency of ROHs can be used as an indication of past or recent inbreeding 59 

(Khatkar et al., 2010; Purfield et al., 2012;  Ferencakovic et al., 2012). However, for many of these 60 

methods it is difficult to develop a proper statistical test. This is particularly true when searching for 61 

selective signatures within a single population. 62 

 High throughput platforms able to simultaneously genotype for many thousands of SNP 63 

offer a powerful tool for the assessment of the genetic diversity across the genome (Andersson and 64 

Georges 2004). Genome Wide Analysis (GWA) have been performed to clarify the role of selection 65 

and drift in the evolutionary processes (Biswas and Akey 2006). Several recent studies have 66 

proposed the hitch-hiking mapping approach for identification of target of positive selection. The 67 

basic assumption is that the substitution of favourable allele at one site results in a reduction of 68 

variability at closely linked sites and lead to the allele fixation in a population (Przeworski et al. 69 

2005). Actually, the abundance of SNP throughout the genome makes them particularly suitable in 70 

the detection of such selective sweeps (Andersson and Georges 2004). 71 

However, such a huge amount of information has become rather problematic to interpret. A 72 
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major issue is represented by the great variability of the signal pattern (for example heterozygosity 73 

or other related statistics as Fst) along the chromosome. An usual empirical practice to smooth data 74 

is to work on average values of sliding windows of predetermined size (Weir et al. 2005; Barendse 75 

et al. 2009). A common problem is represented by the development of a suitable statistical test able 76 

to assess whether an index of the genetic difference between two populations can be considered 77 

significant. Different approaches have been proposed to assess Fst statistical significance, as the 78 

calculation of q-values for Kernel-smoothed values (Flori et al., 2009),  permutation test based on 79 

binomial distribution of the SNP allelic frequencies (Stella et al., 2010) or the setting of a threshold 80 

of one standard deviation from the mean for smoothed Fst values (Kijas et al., 2012).  81 

In the present work, an approach for studying selection signatures in two Italian cattle breeds 82 

with different production aptitude, Italian Brown and Piedmontese (dairy and beef, respectively), is 83 

proposed. In particular, a local regression is used to smooth raw Fst data and a Control Chart is 84 

applied to predicted data for identifying significant values. The method is challenged to identify 85 

genes that have been reported to be involved in the genetic determinism of dairy and beef traits in 86 

cattle.  87 

 88 

Materials and Methods 89 

A sample of 749 Italian Brown and 364 Piedmontese bulls was considered in the study. 90 

Animals were genotyped with the Illumina Bovine bead-chip containing 54,001 SNP 91 

(http://www.illumina.com). Only SNP located on the 29 autosomes in the Btau4.0 build of the 92 

Bovine Genome assembly were considered. Quality control was performed on the genotypes. SNP 93 

were removed if: monomorphic in both breeds; had a percentage of missing data higher than  2.5% 94 

had a minor allele frequency lower than 1%. After data editing, 42,514 markers were retained for 95 

the study. Missing data were replaced with the most frequent allele at that specific locus for each 96 

http://www.illumina.com/
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breed.  97 

Allele frequencies, observed and expected heterozygosity were calculated for each breed. 98 

Total allelic frequencies for each locus, fp and fq, considering all animals as a single population were 99 

calculated as: 100 

fp  =  [fB ·(2·nB)+fP·(2·nP)]/(nB+nP); 101 

Where fB and nB  are frequencies of alleles  and number of individuals in Brown, and fP and 102 

nP  are frequencies of alleles  and number of individuals in Piedmontese. 103 

fq  = 1-fp 104 

Then, expected heterozygosity in populations (Hs) and overall (Ht) were calculated. Finally, 105 

Fst was calculated according to Weir and Cockerham (1984) as: 106 

Fst  =Ht-Hs/Ht 107 

In order to smooth Fst  pattern, data were fitted with a Locally Weighted Scatterplot 108 

Smoothing (LOWESS) regression  using the PROC LOWESS of  SAS/STAT software version  9.2  109 

(SAS Institute, Inc; Cary NC) (Cleveland 1979). The LOWESS has been used in genetics for 110 

smoothing model R2 in the statistical analysis of molecular marker data (Questa-Marcos et al., 111 

2010). In the LOWESS, the space of the independent variable is fragmented into different intervals 112 

for which separate regressions are fitted. The aim of the method is to remove noise from raw data 113 

and to clarify graphical presentations. A critical point in fitting LOWESS is the identification of a 114 

suitable dimension of the data interval to be included in the analysis. In other words, if x is the 115 

number of adjacent points to be used in the estimation procedure of a set of n data, each region 116 

contains a fraction of points given by x/n. This ratio is defined as the smoothing parameter S of the 117 

LOWESS regression. As S  increases, the fitted line will be smoother until S  = 1 that corresponds to 118 

a single line (i.e. the standard linear regression). Consequently, the goodness of fit depends strongly 119 

on the smoothing parameter used (Cohen 1999).  120 
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In general, the number of markers considered in the local regression was different across 121 

chromosomes, being directly related to their length. Therefore the use of the same S parameter in all 122 

chromosomes could not be feasible. In the present work, a smoothing parameter corresponding to 123 

an interval of 20 SNPs for each separated regression gave the best results. The different smoothing 124 

parameters used for each chromosome are reported in Table 1 (supplemental material). 125 

In order to identify Fst values different from the average pattern that could be evidence of 126 

selection signatures, LOWESS smoothed Fst were analysed with a Control Chart approach. This 127 

methodology aims at checking a process and its variability and it can be used to identify sources of 128 

variation. In the specific case of the present study, the goal was to partition Fst variation into a 129 

component due to selection, that causes a drop of heterozygosity, and a remaining random variation 130 

along the chromosome. Control Charts are graphically displayed as stream of data falling within 131 

control limits. Data exceeding these limits are flagged as outlier signals. A similar approach has 132 

been used by Kijas et al. (2012) for identifying selection signatures in sheep breeds. A Control Chart 133 

approach has been recently used to identify sites of preferential location of genetic variation in 134 

Mycobacterium tuberculosis  (Das et al., 2012). In the present study, smoothed Fst values were 135 

plotted against their position along the chromosome. Limits of the Control Chart were set at 3 136 

standard deviations from the mean. 137 

 In order to compare the results with an assessed methodology for studying selection 138 

signatures, Fst values were also smoothed with a sliding windows approach. The genome was 139 

divided into windows and average Fst values for each interval were calculated. Sliding windows are 140 

a graphical method widely used for detect genomic regions under positive or balancing selection 141 

(Hayes et al., 2008a; Stella et al., 2010). In the present study, the size of the window was fixed at 20 142 

SNP each (i.e. of the same size of those used in the LOWESS smoothing). The two methods were 143 

compared by examining patterns of smoothed Fst signals.  144 
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 Annotated genes in genomic regions corresponding to peaks exceeding Control Chart limits 145 

were derived from the UCSC Genome Broswer Gateway (http://genome.ucsc.edu/). Intervals of 146 

500Kbp (0,25 Mbp upstream and downstream the significant region) were considered. 147 

 148 

Results and Discussion 149 

The comparison of chromosome average heterozygosity (Hobs) between the two breeds 150 

highlights lower values for the Italian Brown (average difference of 0.04) (Figure 1). The largest 151 

difference was found for BTA6 (0.07) the smallest for BTA2 (0.02).  Differences in heterozygosity 152 

between cattle breeds have been reported by other authors (Ciampolini et al. 1995; Cañón et al. 153 

2001).  154 

 In general, non smoothed SNP Fst values were characterized by some well defined peaks that 155 

could be evidence of divergent selection, and by a large background of low to moderate values 156 

indicating random noise. The largest number of high raw Fst values (n= 17, between 0.4 and 0.9) 157 

was detected on BTA6, the smallest (n= 1 with Fst value= 0.26) on BTA23 (Figures 2a and b, 158 

respectively). Few raw Fst signals (both in frequency and magnitude) were also detected on BTA28 159 

and 29 (supplemental material). The pattern of raw Fst data for BTA6 was more regular compared to 160 

BTA23. This result may be interpreted as a consequence of the hitchhiking effect, because a 161 

reduction of heterozygosity (selective sweep) affect polymorphism of both individual and 162 

associated loci (Stephan et al., 2006). 163 

The LOWESS correction resulted in a better definition of highest peaks, even if with an 164 

expected reduction in scale due to the regression (supplemental material). Moreover, other peaks of 165 

moderate height have been disentangled from the background noise of raw Fst data. As an example, 166 

LOWESS corrected Fst values for BTA6 and BTA23 are reported in Figures 2c and d, respectively. 167 

It can be clearly seen that the smoothing procedure enhanced clustered peaks whereas isolated 168 

http://genome.ucsc.edu/
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signals were regressed towards lower values. This behaviour was observed for the whole genome 169 

(supplemental material). 170 

Compared to other methods currently used for studying selection signatures, such a relative 171 

simplicity could be interpreted as a sign of weakness. Actually, the LOWESS regression is a robust 172 

non parametric method, does not relies on strong assumptions on data distribution and it could be 173 

considered as a sort “of vertical sliding windows” (Jacoby, 2000). Such a property was evident also 174 

in the comparison with the sliding windows approach performed in this study (Figure 3): the 175 

LOWESS was actually able to yield more defined and clear signals. The enhancement of cluster of 176 

peaks and the lowering of isolated signals are evidence of robustness of the method that is not 177 

affected by the variation of a single marker. This feature is particularly useful for fitting the hitch-178 

hiking effect that occurs in the surroundings of a selectively favourable mutation (Maynard Smith 179 

and Haigh, 1974).  180 

The control chart analysis detected a total of 98 outliers on the whole genome. BTA6, 8 and 181 

15 showed the largest number of signals (8, 8 and 7 respectively). On BTA11, 12, 17 and 22 a 182 

single signal was detected, whereas no peaks were found on BTA23, 25 and 29. These figures are 183 

lower than those reported by Stella et al. (2010) that, on a large number of breeds, found 699 184 

different putative selection signatures on the whole genome. However, Flori et al. (2009) using 185 

smoothed Fst  across three different dairy or dual purpose breeds identified a total of 13 significative 186 

regions under selection distributed on seven distinct chromosomes. Some of these regions 187 

correspond to those detected in the present work. An example are peaks of smoothed Fst that have 188 

been found on BTA6 regions where LAP3 (leucine aminopeptidase 3 at 37,871,423-37,896,860 bp)  189 

and LCORL (ligand dependent nuclear receptor corepressor-like  at 38,137,617-38,288,047 bp) loci 190 

map.  191 

Five peaks distributed throughout the chromosome were detected BTA19. A total of 66 192 
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different annotated  loci for the corresponding genomic regions were retrieved from UCSC Genome 193 

Browser Gateway data base. This is the highest number of genes  per chromosome found in the 194 

present analysis. This result is in agreement with the study of Band et al. (2000), that reported  a 195 

significantly larger number of mapped genes for BTA19 compared to the other autosomes. 196 

As far as the use of the Control Chart for testing outliers is concerned, the way confidence 197 

limits are set implies an assumption of normality for data distribution. Actually Fst often shows a 198 

heavily skewed distribution (Deng et al., 2007). However, a way to deal with this problem is to 199 

divide data into subgroups and then use their averages which could be considered approximately 200 

normally distributed (Morrison, 2008). Such an approach is similar to what has been done in the 201 

present work, where actually intervals of Fst data were considered for the LOWESS smoothing. 202 

Recently, to investigate levels of genetic diversity and to characterise the role of domestication and 203 

selection on the sheep genome,  Kijas and co-workers (2012) performed a genome-wide analysis 204 

using  smoothed SNP-specific Fst   plotted for values on excess of one standard deviation from the 205 

mean. In any case, being straightforward to interpret without specific statistical background and 206 

simple to update, the Control Chart approach has been widely used in genetics, medicine and other 207 

fields of applied biology (Westgard et al., 1981;  Coskun et al., 2008; Das et al., 2012). 208 

The reliability of the proposed method was confirmed by smoothed Fst values that exceeded 209 

Control Chart limits in regions of the genome where genes known to affect productive  traits are 210 

located.  An evident example was the highest peak detected at about 37 Mbp  on BTA6 (Figure 2e). 211 

It was the largest smoothed Fst  predicted value (0.30) observed across the whole genome in the 212 

present study. Some genes known to affect milk production traits have been mapped in this region. 213 

Examples are Family with sequence similarity 13 member A (FAM13A1) (36,740,247-36,843,133 214 

bp) (Cohen et al. 2004), ATP-binding Cassette, sub-family G (WHITE), member 2 (ABCG2) 215 

(37,342,201-37,433,870 bp), secreted phosphoprotein 1 (SPP1) (37,511,672-37,511,830 bp) and 216 
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peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PPARGC1A) (44,797,216-217 

44,935,623 bp) (Cohen-Zinder et al. 2005;  Ron and Weller 2007; Sheehy et al. 2009). On the other 218 

hand, no LOWESS predicted Fst peaks were detected on BTA23 (Figure 2f).  219 

A further example is represented by a peak  exceeding the chart limits that  was detected 220 

between 6,5-7,5 Mbp on BTA2. It is well known that myostatin (MSTN) locus that controls double 221 

muscling phenotype in cattle is located in position 2q14-q15 between 6,532,697 and 6,539,265 bp. 222 

Actually this gene is reported to be fixed for the p.Cys313Tyr variant in the Piedmontese breed 223 

(Casas et al. 1999). Even though this causative mutation is not present in the SNP chip, the signal 224 

has been detected in the adjacent markers.  225 

A rather unexpected result has been obtained on BTA14, where no relevant signals in the 226 

region where the DGAT1 locus (dyacylglycerol O-acyltransferase 1) maps were found. However, it 227 

should be remembered that some studies have reported the fixation of the p.Lys232Ala variant both 228 

for the Italian Brown and Piedmontese  breeds (Kaupe et al., 2004).  229 

Other detected genomic regions, in agreement with previous researches on selection  230 

signatures in cattle, were those harbouring genes affecting coat colour. These loci have been under 231 

strong selection considering the importance of this trait in defining cattle breeds (Flori et al., 2009; 232 

Wiener and Wilkinson 2011). In the present study, two selection signatures were observed on 233 

BTA18 (12-13Mbp) and  between 72-73 Mbp still on BTA6. In these chromosomic regions are 234 

located the Melanocortin 1 receptor (MC1R) and  the Kit (V-kit Hardy-Zuckerman 4 feline sarcoma  235 

viral oncogene homolog), loci respectively. The Extension locus controls melanine synthesis. The 236 

presence of three different alleles (E, E1 and e) in both cattle breeds considered in this study has 237 

been reported (Russo et al., 2007). The Kit locus is responsible for the “Piebald” spotted coat-colour 238 

pattern in  cattle and other species. This is interesting because Brown Swiss and Piedmontese breeds 239 

did not show Piebald phenotype (Stella et al. 2010), confirming the complex genetic architecture of 240 
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coat colour in mammals. 241 

 In the present study, strong selection signals have been identified also in  genomic regions 242 

not previously associated to traits of economic importance. 243 

Several genes related to calcium homeostasis and metabolism were found. Osteocrin 244 

(OSTN) on BTA1, the calcitonin receptor (CALCR) and calmodulin 2 (CAM2) on BTA4  encode for 245 

bone specific proteins that appears to act as  soluble osteoblast/osteoclast regulators (Thomas et al., 246 

2003). The analysis of BTA10 outliers has revealed the presence of one interesting gene, the 247 

GREM1 that encode for  the gremlin 1, a protein required for the osteoblastic activity and mineral 248 

apposition (Canalis et al. 2012). Moreover, on BTA15 STIM1 (Stromal interaction molecule 1,  was 249 

highlighted. It is expressed in mammary gland and it is essential for the cellular storage of calcium 250 

and the activation of the calcium influx pathway (Li et al., 2012). Actually, milk production is a 251 

complex biological process involving different tissues and governed by many genes (Finucane et 252 

al., 2007; Lemay et al., 2009). Bone and mammary tissues are related via the same signalling 253 

pathways (Cohen at al., 2004). Bone is a dynamic tissue continually modelled through the 254 

coordinate actions of the bone forming osteoblast and  resorbing osteoclast (Budayr et al., 1989). 255 

Lactation is considered one of the most important events that determine bone remodelling due to the  256 

relevant calcium mobilization (Qing et al., 2012).  During the production of milk,  plasmatic Ca+2 257 

entries into the mammary epithelial cells  through a phenomenon called calcium influx pathway 258 

(McAndrew et al., 2011).  259 

A further set of highlighted genomic regions are those were genes related to  epithelial cell 260 

proliferation, skeletal muscle and bone morphogenesis map. As reported in the previous section, a 261 

selection signature in a large region spanning between 7 and 10 Mbp was found on BTA2.  Several 262 

genes involved in the biology of muscular apparatus have been mapped in this region. Examples are 263 

the Bridging integrator 1 (BIN1), that plays an important role in muscle cell biology (Sedwick 264 
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2010), and the  Solute Carrier  family 40 (iron regulated transporter), member1 (SLC40A1) locus, 265 

that codes for the ferroportin 1 (FPN1) a protein with an essential role in the regulation of iron 266 

levels on the body.   267 

On BTA11 the Bone morphogenetic protein 10 (BMP10) a  growth factor belonging to the 268 

TGF-ß superfamily known for its ability to induce bone and cartilage development (Groenveld and 269 

Burger, 2000) was found. Moreover, SNAI3 (Snail homolog 3) and CDH15 (cadeherin 15, type1, M-270 

cadherin (myotubule) were highlighted on BTA18 (12,908,122-13,260,964 bp). They are  involved 271 

in the skeletal morphogenesis and myoblast differentiation (Moran et al., 2002; Zhuge et al. 2005).  272 

An evident peak around 26-27 Mbp was observed on BTA20. In this genomic region is annotated 273 

the Follistatin (FST) locus. This protein acts blocking the binding of Myostatin to its receptor and 274 

causing an abnormal muscle development (McPherron and Lee, 2001).  Table 2 reports other 275 

regions identified by peaks exceeding Control Chart limits and the annotated genes involved in 276 

skeletal muscle development and metabolism. Strong selection signatures observed in regions of 277 

genes related to muscle development, differentiation and metabolism  could be interpreted as signs 278 

of selection within the Piedmontese. However, it should be remembered that the Brown Swiss was 279 

originally a dual purpose breed. Thus some of these genes might have also contributed to determine 280 

the Brown's phenotype. A deeper knowledge of the role of these genes in muscular cells could be of 281 

help for selecting markers useful for beef cattle breeding. 282 

In this study few putative candidate genes were detected for lipid metabolism (Table 2). This 283 

is probably due to the fact that intramuscular fat deposition not only depends on the genetic 284 

background but also  by other factors such as age, sex, nutrition and farm conditions.  285 

An interesting  result  was the  identification of  numerous putative candidate genes involved   286 

in the reproductive function (Table 2). Among them, the specific  ligand (KITLG) for the Kit 287 

receptor was  identified on BTA5.  Actually the interaction between kit and its ligand is crucial for 288 
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fertility (Mithraprabhn and Loveland, 2009). Such results suggest a further deepening of the genetic 289 

basis of relationships between production and fertility traits (Bello et al., 2012). 290 

Finally, this genome wide analysis highlighted the presence of selection signatures for a 291 

group of similar genes. Six genes belonging to the Calpains gene family were detected in four 292 

different chromosomes: CAPN 7 on BTA1, CAPN 13 and 14 on BTA11, CAPN 5 on BTA15, and 293 

CAPN 2 and  8 on BTA16, respectively. Several studies indicate calpains as regulators of apoptosis 294 

and suggest an involvement of the calpain system during the muscle postmortem apoptotic pathway 295 

(Mohanty et al., 2010). The interaction among calpains and other proteases is considered a 296 

foundamental step for after slaughtering meat tenderization (Koohmaraie, 1992). A multi gene 297 

family is  formed by duplication of a single original gene. In cattle, 3.1% of the genome is 298 

composed of duplicated genes, most of which encoding proteins involved in innate immunity, 299 

sensory receptors and reproduction (Elsik et al., 2009). Generally, the expansion or contraction of 300 

gene families can be due to chance or is the result of natural selection. Gene gain or loss are so 301 

considered to be an incentive for evolutionary change and as a common advantageous response to 302 

selective regimes (Demuth et al., 2006).  303 

A detailed list of putative genes for all 29  bovine chromosomes highlighted by the Control 304 

Chart outliers values is  summarized in Table 2. All gene content information presented was derived 305 

from the UCSC Genome Broswer Gateway (http://genome.ucsc.edu/) using the fourth draft of 306 

bovine genome sequence assembly (Btau 4.0) and from NCBI or Swiss ProtK Source consultation. 307 

 Results obtained in this study on the comparison between two cattle breeds with different 308 

production aptitude, beef and dairy, agree with previous report on milk QTL (Cohen et al., 2004) 309 

and transcriptome analysis (Bionaz and Loor,  2008; Lemay et al., 2009). Moreover it confirmed    310 

what observed in previous comparisons between cattle breeds (Flori et al., 2009; Stella et al., 2010;  311 

Qanbari et al. 2011). Differences have been found with the QTL analysis carried out by Prasad et al. 312 

http://genome.ucsc.edu/
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(2008) on BTA19 and 29, where selection signatures in different chromosomal regions were found. 313 

A possible explanation could be represented in the different genomic assemblies used.       314 

  315 

Conclusions  316 

 The combined use of a LOWESS regression and a Control Chart approach here proposed 317 

was effective in studying the genetic differences between the Piedmontese and the Italian Brown 318 

cattle breeds. In particular, the local regression was able to yield a smooth Fst pattern, easy to 319 

interpret compared to raw data. The Control Chart allowed for a quite simple detection of 320 

significant Fst values that may indicate selection signatures. The method was validated by 321 

comparing results obtained on several chromosomes with previous reports in cattle (Hayes et al. 322 

2008a and b;  Flori et al., 2009; Stella et al 2010; Qanbari et al. 2011). Moreover, some regions 323 

harboring genes not yet associated to traits of economic importance for livestock have been 324 

detected. In particular, genes involved in the calcium metabolism and muscle biology have been 325 

highlighted. The methodology could be proposed as an easy approach for performing a whole 326 

genome scan in studies aimed at identifying selection signatures by using high throughput SNP 327 

maps. 328 
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Table 2 List of putative candidate genes obtained on the basis of Control Chart outliers 521 

Biological Function BTA Position Mbp Gene name  

Immune Response 5 81,763,516-81,779,866 USP18 ubiquitin specific peptidase 18  

 16 23,622,572-23,625,154 TLR5 toll-like receptor 5  

 17 57,084,217-57,115,368 HVCN1 hydrogen voltage-gated channel 1  

 18 1,880,236-12,887,173 CYBA cytochrome b-245, alpha 

polypeptide 

 

 19 21,395,686-21,409,196 TMIGD1 transmembrane and 

immunoglobulin domain containing 1 

 

 26 23,471,864-23,478,382 NFKB2 nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 2 

(p49/p100) 

 

Reproduction 1 155,943,716-155,956,150 EAF1 ELL-associated factor 1  

 3 86,007,282-86,200,728 AK4  Adenylate kinase 4  

 5 20,587,724-20,612,963 KITLG Kit ligand  

 6 37,961,724-37,987,164; 

38,153,046-38,199,153; 

38,227,954-38,378,385 

LAP3 leucine aminopeptidase 3; 

NCAPG non-SMC condensing I complex, 

subunit G; 

LCORL  ligand dependent nuclear 

receptor corepressor-like 

 

 8 104,876,401-104,908,801 TXNDC8 Thioredoxin domain containing 

8 (spermatozoa) 

 

 9 41,225,543-41,246,855 AMD1 adenosylmehtionine decarboxylase 

1 

 

 10 36,873,000-36,890,219 TYRO3 TYRO3 protein tyrosine kinase   

 11 70,119,086-70,174,863 GMCL1 germ cell-less, spermatogenesis 

associated 1 

 

 14 60,023,782-60,033,403 ODF1 outer dense fiber of sperm tails 1  

 15 18,520,179-18,520,292;  

24,046,636-24,397,152 

FDX1 ferredoxin 1; 

CADM1 cell adhesion molecule 1 

 

 18 13,648,996-13,652,641 SPATA2L spermatogenesis associated 2-

like 

 

 19 24,498,808-24,501,792; 

24,628,862-24,646,107; 

 

50,216,969-50,223,538 

 

GSG2 germ cell associated 2 (haspin);  

P2RX1 purinergic receptor P2X, ligand-

gated ion channel,1 ; 

DDX5 DEAD (Asp-Glu-Ala-Asp) box 

helicase 5 

 

 

Cell growth, 

proliferation and 

differentiation 

1 76,216,039-76,832,685 FGF12 fibroblast growth factor 12  

 12 70,974,850-71,682,818 HS6ST3 heparan-sulfate 6-O-

sulfotransferase 3 

 

 13 47,627,052-47,683,993 

 

48,488,115-48,536,904 

CDS2 CDP-diacylglycerol synthase 

(phosphatidate cytydyltransferase) 2 ; 

FERMT1 fermitin family member1 

 

 14 60,169,396-60,307,900 UBR5 ubiquitin protein ligase E3  
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component n-recognin 5 

 16 20,839,081-20,931,656 

 

26,878,683-26,905,046 

 

TGFB2 transforming growth factor, beta2; 

PSEN2 presenilin 2 (Alzheimer disease 4) 

 

 17 57,146,787-57,165,849 PPP1CC protein phosphatase 1, catalytic 

subunit, gamma isozyme 

 

 19 35,124,710-35,129,750 

 

35,535,495-35,544,295 

 

35,953,771-35,969,817 

45,567,703-45,574,688 

 

MAPK7 mitogen- activated protein kinase 

7; 

DRG2 developmentally regulated GTP 

binding protein 2; 

FLCN folliculin; 

GRN granulin 

 

 

 

Ions metabolism 1 78,466,667-78,488,928 CLDN16 claudin 16  

 2 9,451,265-9,580,452 CALCRL calcitonin receptor- like  

 4 11,016,143-11,126,171 

 

 

CALCR calcitonin receptor  

 5 81,136,111-81,146,812 KCTD17 potassium  channel 

tetramerisation domain containing 17 

 

 8 11,700,825-11,763.811 ACO1 aconitase 1,  soluble  

 17 56,466,582-56,498,348,; 

 

56,790,348-56,488,450 

CAMKK2 calcium/calmodulin-dependent 

protein kinase kinase 2, beta; 

ATP2A2 ATPase, Ca++ transporting, 

cardiac muscle, slow twitch 2 

 

 18 47,597,196-47,605,452 KCNK6 potassium channel, subfamily 

k,member 6 

 

 19 56,790,348-56,844,450; 

 

24,594,778-24,623,204 

ATP2A3 ATPase, Ca++ transporting, 

ubiquitous; 

CAMKK1 calcium/calmodulin-

dependent protein kinase kinase 1, alpha 

 

 24 31,254,115-31,532,051 KCTD1 potassium channel tetramerisation 

domain containing 1 

 

 26 22,854,587-22,857,882; 

 

24,558,695-24,564,440 

 

KCNIP2 Kv channel interacting protein 2; 

CALHM3 calcium homeostasis modulator 

3 

 

Lipid metabolism 2 6,192,072-6,348,621 HIBCH  3 hydroxibutirril o idrolase  

 5 53,700,174-53,700,270 ACAT2 AcetylCoA acetyltransferase 2  

 10 59,440,432-59,504,627 CYP19A1 cytochrome P450, family 19, 

subfamily A, polypeptide1  

 

 13 48,423,438-48,446,513 CRLS1 cardiolipin synthase 1  

 15 55,827,654-56,160,380 ACER3 alkaline ceramidase 3  

 18 13,212,190-13,250,827 ACSF3 Acyl-CoA synthase family member 

3 

 

 19 35,671,152-35,687,188 SREFB1 sterol regulatory element  
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bibdingtranscription factor 1 

mammary gland 

metabolism 

2 10,226,975-10,322,817 ITGA V  integrin alpha V  

 6 37,351,167-37,421,683 

 

37,431,966-37,490,645 

37,511,673-37,518,636 

72,298,906-72,346,677 

 

72,741,252-72,828,528 

 

ABCG2 ATP-binding cassette, sub-family 

G, (WHIT), member 2; 

PKD2 polycistic kidney disease 2; 

SPP1 secreted phosphoprotein 1; 

PDGFRA platlet-derived growth factor 

receptor, alpha poypetide; 

KIT V-kit Hardy-Zuckerman 4 feline 

sarcoma viral oncogene homolog 

 

 7 62,635,246-62,657,995 SPARC secreted protein,acidic, cysteine-

rich (osteonectin) 

 

 10 29,529,387-29,541,874 

 

36,595,794-36,596,071 

GREM1 gremlin1, DAN family BMP 

antagonist; 

IGFBP3 insulin-like growth factor binding 

protein 3 

 

 14 12,506,878-12,583,201 

 

MTMR2 myotubularin related protin 2; 

 

 

 

 15 20,478,802-20,482,029 

50,442,087-50,753,021 

CRYAB crystalline alpha B; 

STIM1 stromal interaction molecule 1 

 

 18 14,699,407-14,998,970 ITGF1 integrin alpha FG-GAP repeat 

containing 1 

 

 19 35,122,081-35,124,619 

 

35,823,315-35,854,048 

MFAP4 microfibrillar associated protein 

4; 

PEMT phosphatidylethanolamine N-

methyltransferase 

 

     

 24 30,845,569-30,860,104 AQP4 aquaporin 4  

 27 48,475,540-48,478,931 OXSM 3-oxyacyl-ACP synthase, 

mitochondrial 

 

bone and muscle 

metabolism 

1 77,682,355-77,718,578 

155,717,664-155,777,449 

OSTN osteocrin; 

CAPN7 calpain 7 

 

 2 5,595,799-5,652,801 

6,532,697-6,539,265 

7,066,569-7,148,685 

 

7,740,061-7,779,695 

 

BIN1 bridging integrator1; 

MSTN myostatin; 

SLC40A1 solute carrier family 40(iron 

regulated transporter) member1; 

COL3A1 collagen type (III) alpha 1 

 

 

 7 5,824,715-5,935,402 MYO9B myosin IXB  

 8 11,291,512-11,308,875 

105,221,050-105,315,564 

CLU clusterin 

MUSK muscle, skeletal, receptor tyrosine 

kinase 

 

 10 19,387,377-19,414,041 PKM pyruvate kinase, muscle  

 11 69,145,567-69,152,285 

70,648,036-70,648,340 

71,029,777-71,105,164 

BMP10 bone morphogenetic protein 10; 

CAPN14 calpain 14; 

CAPN13 calpain 13 

 



 

 

27 / 28 

 13 48,488,115-48,536,904 FERMT1 fermitin family member 1;  

 15 11,852,140-11,854,278 

 

56,045,818-56,103,271 

PPP1R14C protein phosphatase 1, 

regulatory (inhibitor) subunit 14C ; 

CAPN5 calpain 5 

 

 

 16 24,021,217-24,065,788 

24,108,032-24,166,355 

CAPN8 calpain 8; 

CAPN2 calpain 2 

 

 17 56,905,068-56,915,878 

 

57,330,762-57,338,500 

 

ARPC3 actin related protein 2/3 complex, 

subunit3 21kDa; 

MYL2 myosin light chain 2,regulatory, 

cardiac, slow 

 

 18 12,908,122-12,913,750 

13,260,964-13,279,948 

 

47,527,738-47,531,970 

 

47,701,775-47,875,177 

SNAI3 snail homolog 3; 

CDH15 cadherin 15, type1,M-cadherin 

(myotubule); 

PPP1R14A protein phosphatase 1, 

regulatory (inhibitor) subunit 14A; 

RYR1ryanodine receptor 1(skeletal) 

 

 20 23,624,160-23,688,918 

 

27,297,146-27,302,564 

GPBP1 GC-rich promoter binding protein 

1; 

FST follistatin 

 

 21 45,895,690-45,898,343 CFL2 cofilin 2 (muscle)  

 26 12,908,235-12,917,607 

 

23,540,685-23,557,026 

ANKRD1 ankyrin repeat domain 1 

(cardiac muscle); 

ACTR1A ARP1 actinn related protein 1 

homolog a, centractyn alpha (yeast) 

 

others 10 19,817,179-19,849,769 ADPGK ADP-dependent glukonidase  

 11 68,612,764-68,639,385 

 

69,642,777-69,707,857 

CNRIP1 cannabinoid receptor interacting 

protein 1; 

GFTP1 glutamine-fructose-6 phosphate 

transaminase 1 

 

 15 20,576,533-20,611,864 DLAT dihydrolipoamide S-

acetyltransferase 

 

 18 13,776,888-13,778,639 MC1R melanocortin 1 receptor (alpha 

melanocyte stimulating hormone receptor) 

 

 19 45,226,420-45,227,150 

45,325,106-45,329,822 

PPY pancreatic polypeptide 

G6PC3 glucose 6 phosphatase, catalytic, 3 
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Captions to figures: 528 

Figure 1 Comparison of average heterozygosity (Hobs) per chromosome between the two breeds 529 

(black = Piedmontese, grey =  Italian Brown). 530 

Figures 2. Pattern of raw  Fst  data calculated for SNP located along the BTA 6 (a) and 23 (b); 531 

predicted Fst  values for the SNP located along BTA6  (c) and 23 (d) using the LOWESS regression 532 

with a smoothing parameter of 0.009 and 0,021 respectively; Control Chart of predicted  Fst  values 533 

for BTA6 (e) and 23 (f). Solid line: Mean, dotted lines are: upper control limit (UCLI) and lower 534 

control limit (LCLI).  535 

Figure 3 Plot of comparison between Sliding Windows versus  LOWESS on BTA6. Solid line: 536 

Sliding Windows method, dotted line:  LOWESS methodology 537 
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