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Abstract. The extent of drought inMediterranean streams has been intensifying recently, and themean annual discharge
is expected to experience a decreasing trend in coming years, with significant effects on aquatic ecosystems. The aim of
this studywas to analyse colonisation patterns of diatom communities that differed in terms of taxonomic composition and

percentage of endangered taxa exploring the possible development of resistance mechanisms. To this end, we selected
5 three Mediterranean streams comparable in terms of water quality, but different in terms of surrounding land use, and we

performed two experimental treatments. The first treatment consisted in artificially drying and cleaning of substrates
(cobbles) to analyse the post-drought recolonisation process that is only driven by drift and immigration. In the second

treatment cobbles coming from a site experiencing a seasonal drought were transplanted upstream in a perennial stretch to
explore the possible development of resistance mechanisms within diatom communities periodically exposed to droughts.

10 We observed that stream identity played an important role in determining diatom assemblage composition. Highly natural

stretches had a high abundance of endangered species, which were less resilient to drought than assemblages composed of
general and widespread taxa. Moreover, according to our results, resistance mechanisms did not play a significant role in
recovery patterns. Improving our knowledge of diatom resiliencemechanisms is very important in a global climate change

scenario, especially in Mediterranean streams.
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Introduction

Seasonal droughts in Mediterranean intermittent streams rep-

resent a natural part of their hydrological cycle; the survival of
benthic organisms inhabiting these ecosystems is mainly related

5 to the evolution of resistance and resilience strategies.

Resistance is the ability of organisms to exploit potential
refuges during dry periods, or their capacity to produce resistant
forms. For example, isolated pools, which form during the final
phases of the lentification process, can be considered important

10 refuges for aquatic biota (Robson and Matthews 2004; Falasco
et al. 2016). Moreover, when sufficient humidity is retained,
biofilm on cobbles is also an important shelter for benthic

primary producers (Chester and Robson 2014; Sabater et al.
2016), because the extracellular polymeric substances (EPS)

15 represent a layer for protection against desiccation (Gorbushina

2007; Sabater et al. 2016). When there is very severe drought,
the formation of resting cells could also be a suitable mechanism
for survival (McQuoid andHobson 1996; Souffreau et al. 2013).

Resilience is the ability of organisms to reorganise pre-
20 existing steady states (Acuña et al. 2015; Barthès et al. 2015).

In general, changes in diatom community composition during a

succession can be summarised as follows (McCormick and Jan
Stevenson 1991): (1) facilitation (pioneer species dominate

cobbles and produce autogenic habitat changes that favour
secondary colonisers); (2) inhibition (the initial dominance of

5early colonisers inhibits late successional species colonisation

and growth); (3) passive tolerance (interaction between early
and secondary colonisers); and (4) active tolerance (increasing
abundance of late successional species reduces the growth rate
of early colonisers due to decreased availability of resources).

10Biofilm recovery after droughts strongly depends on several
factors, such as predrought flow velocity, the speed of water
retreat and the presence of refuges during the dry phase. In

addition, river habitat integrity seems to be a key feature that
affects the recovery of benthic communities (Calapez et al.

152014). However, one of the most important factors affecting

biofilm recovery is the composition of algal assemblages during
the predrought phase (Robson et al. 2008; Chester and Robson
2014). In this context, we should consider that Mediterranean

streams are characterised by peculiar heterogeneous habitats
20that host unique and diverse biological assemblages. It has

been observed previously that the stream identity in these
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hydro-ecoregions strongly affects the composition of diatom
assemblages, which can be very different even in streams that

are close together (Falasco et al. 2016). This also highlights the
distinctiveness of the Mediterranean diatom communities, which

5 are often characterised by the presence of rare or endangered taxa

(Novais et al. 2014; Falasco et al. 2016). Starting from these
considerations, we addressed the following question in this study:
do endangered species that colonise Mediterranean streams have

the same resilience capacity as widespread species? It has been
10 observed previously that diatoms are probably the most sensitive

component of the autotrophic biofilm, because groups such as
cyanobacteria and green algae cope better with droughts (Piano

et al. 2016). Moreover, diatom species classified as threatened
(according to Lange-Bertalot and Steindorf 1996) were shown to

15 be highly sensitive to drought because their percentages

decreased significantly with drought progression (Falasco et al.

2016). Indeed, Falasco et al. (2016) highlighted that the percent-
age of endangered species in a community should be considered

as an important metric for evaluating hydrological disturbances.
20 Despite this, to our knowledge no studies have investigated the

resilience capacity of endangered species during drought, or their
role in the recolonisation process.

Few studies have been performed with the aim of exploring
recolonisation patterns in intermittent streams, especially in the

25 Mediterranean hydro-ecoregion (Artigas et al. 2012; Calapez

et al. 2014), despite the fact that improving our knowledge of
diatom resilience and resistance after droughts is very important
in a global climate change scenario. In recent years, several

factors have exacerbated the extent of droughts in terms of
30 frequency, duration and affected areas (Dudgeon et al. 2006;

Fenoglio et al. 2010; Garcia et al. 2017). Moreover, hydrologi-

cal models show a general decreasing trend of stream mean
annual discharges, with an expected reduction of up to 30%
during the 21st century (Schewe et al. 2014 cited in Garcia et al.

35 2017). Headwater stretches, characterised by perennial flow

during the year, cannot be excluded from this forecast. Indeed, a
significant negative decrease in stream discharge of perennial
streams and springs has already been observed in Spain

(Lorenzo-Lacruz et al. 2012; Martı́nez-Fernández et al. 2013).
40 According to Deitch et al. (2017), the Ligurian region (north-

west Italy) is classified as moderately dry in terms of annual

precipitation (700–1300 mm), and shows weak seasonality (i.e.
12–20% of the annual precipitation falls during the summer
months). However, analysing summer precipitation patterns in

45 Liguria indicates a downward trend, suggesting that this region

is becoming drier (Deitch et al. 2017). Indeed, the stretches
affected by droughts are increasingly extending and, in recent
years, flow has retreated, even reaching mountain sites (F.Bona

and E. Falasco, pers. obs.).
50 The main aim of the present study was to analyse colonisa-

tion patterns of diatom communities that differ in terms of

taxonomic composition and percentage of endangered taxa. To
address this aim, we selected three streams based on results
obtained in a previous study conducted in spring 2014 (Falasco

55 et al. 2016); sampling sites were comparable in terms of water
quality, but different in terms of surrounding land use. In each
stream, we chose a sampling site with permanent flow through-
out the whole year (hereinafter referred to as the ‘experimental

section’) in which we performed two experimental treatments.

The first treatment analysed the post-drought recolonisation
process that is driven only by drift and immigration rates

(hereinafter referred to as ‘bare substrates [BS] treatment’).
We hypothesised that differences in the starting community

5composition would lead to different colonisation patterns;

moreover, communities with higher percentages of threatened
species would be less resilient than those composed of wide-
spread taxa. The second experimental treatment explored the

possible contribution of potential resistance mechanisms within
10diatom communities (hereinafter referred to as ‘transplanted

substrates [TS] treatment’). To address this aim, cobbles were
transplanted from a downstream section regularly affected by

summer droughts and placed in the experimental section. We
hypothesised that resistant forms should enhance the recovery of

15diatom communities, with significant differences in the coloni-

sation patterns between BS and TS treatments.
Owing to the high and unpredictable hydrological variability

of the stretches affected by droughts, we decided to perform the

experiment in a section characterised by permanent flow during
20the whole year. The experimental sections in the study are the

last sections of the streams characterised by permanent flow,
which serve as a source of diatoms during the recolonisation

process that takes place in the downstream sections (after water
resumption). On the one hand, BS treatment simulates recolo-

25nisation on cobbles generally unaffected by drought, where

diatom communities do not develop resistance mechanisms,
whereas on the other hand TS treatment mimics recolonisation
on substrates regularly affected by drought, where diatom

communities probably develop resistance mechanisms.
30Overall, the purpose of the present study was to mimic future

possible scenarios in areas currently experiencing global cli-

matic changes due to the rapid andmarked extension of stretches
affected by summer droughts. In this context, the results of this
study will shed light on the resilience capacity of diatom species

35colonising Mediterranean streams, with a special focus on the

role of endangered taxa on the recovery of communities.

Materials and methods

Sampling sites

Three Mediterranean streams (Arrestra, Quiliano and Sansobbia

40in Liguria, north-west Italy) characterised by summer flow inter-
mittency in their downstream stretches were sampled in the
present study. Streams were chosen using a selection process
based on chemical data (historical series provided by the Envi-

ronmental Agency of Liguria, ARPAL, see http://www.ambien-
45teinliguria.it, accessed 13 July 2015) and the percentage of natural

land use derived fromananalysis of theCorineLandCover (http://

www.cartografia.regione.liguria.it/, accessed 16 July 2015).
We focused on streams located close to each other (within

20 km) with good water quality in order to avoid possible

50confounding effects due to differences in bed width, water
chemistry, geology or climate. These three streams differed
only in terms of surrounding natural land use, which was

calculated within a 1-km buffer around each sampling site,
and local human alterations (Fig. 1; see Table S1, available as

55Supplementary material to this paper). Arrestra can be consid-
ered as the most pristine stream, located in natural surroundings

with almost no local human alterations (only 4% occupied by

2 Marine and Freshwater Research E. Falasco et al.
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crops). The total percentage of natural land use was 94%, which
consisted primarily of transitional woodland shrub, moors and

heathlands. The riverbanks and streambed were both natural,
and had large rocks and cobbles as the main mineral substrates.

5 Quiliano represented a stream with an intermediate condition.

The land use on the right riverbank consisted primarily of a
continuous coniferous forest, with the exception of a small area
with complex cultivation patterns. Human effects were limited

to the left riverbank, on which small villages were located (2.6%
10 of the buffer area), together with local agricultural activities, in

particular olive groves (21% of the buffer area). The streambed
was natural, with cobbles and gravel as the main substrates. The

sampling stretch in Sansobbia was surrounded by natural land
use in 44.2% of the buffer area. The streamwas characterised by

15 seminatural riverbanks and a natural riverbed, with cobbles and

rocks as the main substrates. The sampling station was located
just downstream of the village Ellera, whose urban fabric
represented 10.1%of the buffer area. Themain local agricultural

activities (in total 42.2% of the buffer area) were complex
20 cultivation patterns, vineyards and olive groves. Local human

effects can still be considered limited in this stretch.

Experimental design

In each of the three streams, we chose one stretch characterised
by permanent flow during the whole year. Experiments were

25 performed with weekly samplings from October (t0, experiment

set-up) to December 2015 (t42, i.e. 6 weeks after the experiment
started). A final sampling campaign was conducted in January

2016 (t91, 13 weeks after the experiment started). In all, there
were seven sampling campaigns and 189 diatom samples were

5collected. At each site, diatom communities were sampled from

both control and treated cobbles. Control communities (here-
inafter referred to as ‘C’) were collected on completely sub-
merged streambed cobbles, whereas two different treatments

were tested in order to study the colonisation patterns of diatom
10communities.

BS treatment

The aim of the BS treatment was to investigate colonisation on

completely bare substrates. With this treatment, we wanted to
analyse what happens when the post-drought recolonisation

15process is driven only by drift and immigration rates. To this end,

in each of the three streams, 30 cobbles were chosen from
riverbanks in completely dry areas (n¼ 21þ 9 extra cobbles kept
as spare substrates in case of loss). To ensure the total absence of

diatoms, the cobbles were scraped with a metal brush and, at the
20same time, washed with 90% ethanol. At t0, these 30 treated

cobbles per site were marked and placed on the streambed.

TS treatment

The TS treatment was performed to assess the recolonisation
patterns of diatom communities on cobbles regularly affected by

Quiliano Sansobbia Arrestra

CLC

(a) (b)

(e)

10 0 10 20 30 40 km

(d)(c)

1111
1112
1121
1122
2211
223
241
242
243
3112
3113
3115
3117
312
322
323
324
5111
5114

Fig. 1. (a, b) Sampling site locations and land use within a 1-km buffer around (c) Quiliano, (d) Sansobbia and (e) Arrestra stations. The different shades of

grey used in the buffer are shown in the legend column and represent the Corine Land Cover (CLC) codes (for further details, see Table S1).
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summer droughts. In each of the three streams, the closest
sampling site that was affected by drought during the preceding

months was identified. At time t0, 30 cobbles from each of these
downstream sites (n ¼ 21 þ 9 extra cobbles kept as spare sub-

5 strates in case of loss) were marked and transplanted in their

respective experimental sections in order to analyse diatom
recolonisation patterns. The aim of the TS treatment was to
determine whether diatom communities constantly subjected to

harsh droughts are somehow adapted to this kind of stress and
10 recover in a shorter time than communities developing on bare

substrates. For this part of the study, we hypothesised that, if the
colonisation process was completed in a shorter time on trans-

planted compared with bare cobbles, then we could confirm a
significant role of resistant diatom forms during the recovery

15 process on cobbles regularly affected by drought.

In order to guarantee comparable environmental conditions,
cobbles belonging to the control, BS and TS samples were
interspersed on the streambed within a 10-m stretch.

Environmental variables

20 In each sampling stretch and during all sampling campaigns, we
monitored water temperature, conductivity, dissolved oxygen
and pH using a multiparametric probe (mod. Quanta,Hydrolab,

Loveland, CO, USA). On each cobble selected for diatom
analysis, water depth and flow velocity were measured using a

25 current meter (Mod RHCM, Idromarambiente, Genova, Italy),

positioned 0.05 m from the bottom.
Soluble reactive phosphorous (SRP) and nitrates (N-NO3)

were monitored at t21, t35 and t42 in order to detect possible

variations in nutrient content in the water column.

30 Diatom communities: sampling procedure and analyses

Benthic diatom communities were collected by brushing the
biofilm from the upper surface of both control and experimental

cobbles, following the same standard procedure (European
Committee for Standardization 2003). During each sampling

35 campaign and in each stream, three replicates of biofilm were

collected from three different cobbles for each treatment (C, BS
and TS). Samples were kept separately for subsequent com-
munity analysis. Thus, a total of nine samples was collected in

each of the three streams (9 � 3 ¼ 27) during each sampling
40 campaign (27� 7¼ 189 diatom samples in total). After diatom

collection, marks were removed from the cobbles and the cob-
bles were replaced on the riverbanks. Samples were preserved in

ethanol and treated in the laboratory with hydrogen peroxide
(30%) and HCl, following a standardised method (European

45 Committee for Standardization 2003). Light microscope slides

were mounted with Naphrax (Brunel Microscopes, Chippen-
ham, UK). Diatom identification was based on several diatom
floras and monographs, as well as recent taxonomic papers

(Krammer and Lange-Bertalot 1986, 1988, 1991a, 1991b;
50 Lange-Bertalot 1996, 2001, 2004; Krammer 1997a, 1997b,

2002, 2003; Reichardt 1999; Blanco et al. 2010; Hofmann et al.

2011; Bey and Ector 2013; Falasco et al. 2013; Ector et al.
2015). For each slide, we identified at least 200 valves. We
chose to identify 200 and not 400 valves as suggested by the

55 standard procedure for diatom enumeration because we did not

want to assess the water quality of the sampling sites in this

study. In the present study we performed a manipulative
experiment under strictly controlled environmental conditions,

and the three samples collected from the three different cobbles
were, de facto, three replicates of the same treatment. We

5decided to follow this procedure primarily to satisfy the

requirements of the principal response curve (PRC) analysis (for
which at least three replicates for each treatment are needed to
test for statistical significance). Diatom communities were

analysed in terms of biodiversity, taxonomic composition and
10ecological guilds (Rimet and Bouchez 2012). In addition, the

presence and relative abundance of endangered species (here-
inafter RL_species) were evaluated based on the Red List drawn

up by Lange-Bertalot and Steindorf (1996).

Statistical analyses

15To explore potential effects of environmental parameters on

diatom communities, we performed canonical correspondence
analysis (CCA) using flow velocity, water depth, conductivity,
pH, dissolved oxygen and temperature in the environmental

matrix.
20Differences in terms of RL_species abundance between the

control communities of the three streams were investigated

using analysis of variance (ANOVA). Given the high diversity
observed between the three streams in terms of community
composition and percentage of RL_species, subsequent analy-

25ses were performed by keeping the samples obtained from the

three different streams completely separate. Moreover, the
biological dataset coming from each stream was reduced,
maintaining only the most frequent and abundant diatom taxa

(e.g. recorded in at least 50% of the samples and representing at
30least 2% abundance within the communities).

Changes in the relative abundances of diatom species during

the entire experiment were analysed using the PRC (van den
Brink et al. 2009). Significance was tested by means of a Monte
Carlo test with 999 permutations.

35Finally, a two-way ANOVA was performed for each stream

in order to verify the role of treatment (C v. BS) and time on the
abundance of RL_species.

All analyses were performed using R software AQ1(R Foundation

for Statistical Computing, Vienna, Austria, http://www.
40r-project.org, accessed 15 June 2016) and two-sided P , 0.05

was considered as the threshold for statistical significance. CCA

and PRC were performed using the package vegan (ver. 2.3–5,
J. F. Oksanen, G. Blanchet, R. Kindt, P. Legendre, P. R.
Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H.

45Stevens, and H. Wagner, Oulu, Finland, see https://CRAN.
R-project.org/package=vegan).

Results

Environmental variables

The three streams were comparable in terms of physical and
50chemical features during the entire course of the experiment

(Table 1).Water flow velocity was slightly different from site to

site, reflecting a more lotic character in Sansobbia than in
Arrestra. Depth was comparable between stretches: water was
deeper during the first weeks of the experiment, being shallower

55between t21 and t35 in all streams and deeper again at the end of

the study. Conductivity was slightly (but not significantly)

4 Marine and Freshwater Research E. Falasco et al.
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higher in Sansobbia than in the other two streams, and pH was
neutral in both Quiliano and Arrestra and slightly alkaline in
Sansobbia.Wet streambedwidth was almost constant during the

entire experiment in Sansobbia and Quiliano, but varied more in
5 Arrestra. Nutrient concentrations confirmed the good ecological

status of the three streams: SRP levels fell into the highest
quality class in all stretches and in all surveys; values of nitrates

corresponded to the second highest class (Italian Legislative
Decree 152/2006 ‘Norms concerning the Environment’).

10 Diatom community composition

The first three axes of the CCA explained 82% of the total
variance in the environmental variables across all streams and at
all time points (Fig. 2; Table 2). The first axis alone accounted

for 55% of the total variance and represented a slight gradient of
15 eutrophication, being negatively correlated with conductivity,

pH and flow velocity. The second axis (accounting for 15% of
total variance) was negatively correlated with temperature,

whereas the third axis (accounting 12% of total variance) was
negatively correlated with dissolved oxygen and saturation.

20 Visual inspection of the ordination shows a clear difference in

the three streams, with higher values of conductivity, pH, dis-
solved oxygen and flow velocity in Sansobbia, higher water
depth in Quiliano and higher temperature in Arrestra. The clear

distinction of the three streams in terms of diatom species

composition underlies the key role of stream identity. According
to temporal variability, there was no clear trend evident
throughout the sampling season. Considering this, any changes

observed in the community composition from t7 to t91 could be
5possibly ascribed to the different treatments.

Table 1. Physical and chemical parameters of the three streams during the study period

Data are given as themean� s.e.m for flow velocity andwater depth. Experiments were performedwith weekly sampling fromOctober (t0, experiment set-up)

to December 2015 (t42, i.e. 6 weeks after the experiment started), with a final sampling in January 2016 (t91, 13 weeks after the experiment started). DO,

dissolved oxygen; SRP, soluble reactive phosphorous; N-NO3, nitrates; –, not detected, BDL, below detection limit (values ,0.001 mg L�1)

Stream and sam-

pling day

Flow velocity

(m s�1)

Water depth

(cm)

Temperature

(8C)

Conductivity

(mS cm�1)

DO pH SRP

(mgL�1)

N-NO3

(mgL�1)

Streambed

width (m)(mgL�1) (%)

Arrestra

t7 0.06� 0.06 19.7� 4.4 11.4 180 9.66 88.3 7.45 – – 7.0

t14 0.02� 0.03 12.4� 3.6 12.6 186 n.d. n.d. 7.45 – – 5.5

t21 0.00� 0.00 11.0� 3.3 12.9 221 7.68 72.8 7.31 0.021 0.78 7.0

t28 0.03� 0.02 15.0� 3.3 11.8 232 8.93 82.1 7.24 – – 4.8

t35 0.00� 0.00 13.2� 3.4 11.1 236 9.60 87.1 7.23 BDL 0.75 4.6

t42 0.21� 0.10 25.8� 1.4 9.88 150 10.10 89.9 7.41 BDL 1.10 6.3

t91 0.01� 0.02 17.7� 2.7 5.00 168 11.10 86.8 6.80 – – 6.0

Quiliano

t7 0.12� 0.13 15.0� 3.5 12.9 173 9.59 90.9 7.59 – – 4.0

t14 0.12� 0.06 15.6� 2.7 14.0 179 9.75 94.5 7.52 – – 4.0

t21 0.15� 0.09 11.9� 2.9 14.1 180 10.30 100 7.75 0.094 0.65 4.2

t28 0.16� 0.07 14.6� 5.2 10.5 182 9.98 89.3 7.57 – – 4.0

t35 0.14� 0.09 13.8� 3.2 11.2 178 9.95 90.0 7.56 BDL 0.69 3.9

t42 0.12� 0.01 13.6� 3.3 10.4 179 9.83 88.0 7.41 BDL 1.23 4.1

t91 0.10� 0.08 16.1� 2.4 8.03 168 11.20 94.6 7.18 – – 4.4

Sansobbia

t7 0.39� 0.19 15.4� 5.8 12.1 267 9.04 82.1 8.19 – – 4.2

t14 0.36� 0.19 16.2� 4.9 13.4 294 11.20 107.0 8.15 – – 4.2

t21 0.31� 0.18 13.2� 5.2 14.0 321 11.90 115.0 7.79 0.008 1.48 4.3

t28 0.36� 0.20 13.2� 5.9 9.00 322 12.20 105.0 8.25 – – 4.3

t35 0.39� 0.24 11.2� 2.9 9.84 321 8.29 73.8 8.4 0.015 1.37 4.0

t42 0.44� 0.20 18.3� 3.7 8.87 234 9.02 78.2 8.07 0.012 1.49 4.6

t91 0.30� 0.19 15.9� 4.2 5.89 272 19.10 151.0 7.67 – – 4.6

Arrestra

Conductivity

Velocity

Temperature
pH

4

2

0

0

0

t07t14t21t28t35

t91

t42

2

CCA1

C
C

A
2

4 6�6 �4 �2

�2

% DO

Depth

Sansobbia
Quiliano

DO

Fig. 2. Canonical correspondence analysis (CCA) diagram showing envi-

ronmental parameters and sampling sites in the ordination space. Shades of

grey represent the sampling sessions during the experiment, with each

stream allocated a different shape. DO, dissolved oxygen.
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The complete list of diatom species detected during the entire

experiment is presented in Table S2, whereas results concerning
the number of genera and species identified, Shannon diversity
index and evenness are given in Table 3. Overall, 91 species

5 were detected in Arrestra, the most pristine stream. In terms of
ecological guilds, approximately 40% of species were classified
as low profile (i.e. prostrate, adnate and erect diatoms resistant to

physical disturbances but sensitive to nutrient enrichment), 34%
were classified as high profile (i.e. large and colony-forming

10 diatoms that are not resistant to physical disturbance but are

stimulated by nutrient enrichment), 22% were classified as
motile (i.e. fast-moving species adapted to both physical distur-
bance and nutrient enrichment) and approximately 4% were
classified as planktonic (i.e. adapted to lentic environments).

15 Themost frequent and abundant low-profile species belonged to
the genera Achnanthidium (A. affine, Achnanthidium sp., A.
gracillimum, A. lineare and A. minutissimum) and Encyonopsis

(E. minuta and E. subminuta. Several high-profile taxa (Dia-
toma ehrenbergii,Encyonema ventricosum,Fragilaria rumpens

20 and Ulnaria biceps) were detected in considerable proportions,

whereas only one motile species was included among the most
frequent and abundant taxa (Nitzschia fonticola). In total, 94
species were detected in the Quiliano stream, of which 35%
were classified as low profile, 22% as high profile, and 43% as

25 motile. Among the low-profile species, the most frequent and
abundant species were Achnanthidium sp., A. minutissimum,
Achnanthidium pyrenaicum, Amphora pediculus, Cocconeis

lineata, Planothidium lanceolatum and Reimeria sinuata.

Among the high-profile species, we frequently detected
30 E. ventricosum andGomphonema parvulum, whereas the motile

species were primarily Navicula gregaria, Nitzschia dissipata

and Nitzschia fonticola. In all, 104 species were detected in
Sansobbia, of which 33% were classified as low profile, 22% as

high profile, 42% as motile and 3% as planktonic. Among the
35 low-profile species, the most frequent and abundant taxa

belonged to the genera Achnanthidium (A. eutrophilum,
A. minutissimum and A. pyrenaicum), Amphora (A. pediculus),

Cocconeis (C. euglypta, C. pediculus and C. placentula terato-
logical form) and Reimeria (R. sinuata). The most frequent and

40 abundant motile taxa were Fistulifera saprophila, Geissleria

decussis, Mayamaea permitis, Navicula antonii, Navicula

cryptotenella, N. gregaria, Navicula reichardtiana, N. dissi-
pata, N. fonticola, Nitzschia inconspicua and Sellaphora nigri.

Even though sites were specifically selected because they had
low human disturbance, these species are known for their low

5sensitivity to anthropogenic pressures. According to the CCA

results, these taxa (in particular Craticula subminuscula, F.
saprophila, M. permitis and Nitzschia tabellaria) were posi-
tively correlated with conductivity, flow velocity and pH.

The results of the one-way ANOVA showed that the relative
10abundance of RL_species was highly stream dependent

(F2,60 ¼ 100; P, 0.001) and these differences were significant
between all three streams (Tukey post hoc test, P , 0.001).

Arrestra showed the highest RL_species abundance during the
entire survey (median value 17.0%). The most frequently

15detected RL_species were: A. gracillimum (found in 100% of

samples analysed, with a mean relative abundance of 12%),
U. biceps (detected in ,70% of samples, with a mean relative
abundance of 1.4%) and A. lineare (found in half the samples,

with a mean relative abundance of 1.1%). In Quiliano, median
20RL_species abundance during the entire survey was 3.8%. The

most frequent RL_species were A. lineare (observed in ,43%
of samples, with a mean relative abundance of 1.4%), followed

by Nitzschia oligotraphenta (in,40% of samples, with a mean
relative abundance of 1%) and A. gracillimum (detected in

25,37% of samples, with a mean relative abundance of

,0.5%). Very few endangered species were detected in San-
sobbia (median value 0.5%); these species were A. gracillimum
and A. lineare (found in 16 and 14% of samples analysed

respectively, with a mean relative abundance of 0.1 and 0.2%
30respectively) and N. oligotraphenta (detected in ,13% of

samples, but with a very low relative abundance (mean 0.1%)).

Colonisation pattern and recovery

For each of the streams investigated, a PRC analysis was per-
formed to explore differences in the pattern of diatom coloni-

35sation between the three groups (C, BS, TS) over time (Fig. 3).

This analysis allowed graphical visualisation of the recovery (if
present) of diatom communities on the treated compared with
control cobbles; moreover, the comparison between BS and TS

patterns of colonisation gave us the possibility to highlight the
40possible role (if present) of resistant forms in the recolonisation

process. Comparing the BS and TS results with C data showed

highly significant differences for all three streams, with variable
patterns.

In the Arrestra stream, despite a very simple and homoge-

45neous species composition, the diatom communities were dif-
ferent on the treated compared with control cobbles throughout
the entire experiment (Fig. 3). These differences were still
evident at t91. In terms of diatom species composition, this

was due primarily to the relative abundance of just a few species:
50A. gracillimum andE.minutawere the key species on the control

cobbles. If we focus on the conservation status of diatom

species, we can highlight that endangered species, such as
A. gracillimum and A. lineare, were the most affected by the
treatments, and their absence from BS and TS cobbles strongly

55contributed to differences with control samples. Treated com-
munities were generally dominated by A. minutissimum,
a cosmopolitan species with a low conservation value

Table 2. Canonical correspondence analysis (CCA): axes summary

statistics

DO, dissolved oxygen

CCA1 CCA2 CCA3

Eigenvalue 0.421 0.1172 0.08719

Proportion explained 0.5554 0.1546 0.11503

Cumulative proportion 0.5554 0.71 0.82505

Velocity �0.7265 �0.1575 0.17245

Depth �0.01059 0.1814 �0.1532

Temperature 0.16703 �0.63992 0.31198

Conductivity �0.83699 0.15428 �0.05575

DO �0.31619 �0.05432 �0.68916

%DO �0.30957 �0.26572 �0.60524

pH �0.81042 �0.50469 0.15826

6 Marine and Freshwater Research E. Falasco et al.
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(Falasco et al. 2013). Compared with Arrestra, the initial diatom

communities in the Quiliano stream were more diverse in terms
of both ecological guilds and species composition. This proba-
bly contributed to the recovery of the treated communities,

5 whichwere very similar to the control at t91. It seems thatmost of
the species found in the control samples started to colonise
treated cobbles after just 1 week (t7). Subsequently, it is possible

that several factors, such as inter- and intraspecific competition
dynamics, contributed to shaping the treated communities. The

10 main difference between the control and treated communities
was again due to just a few species: A. pyrenaicum primarily

dominated in C, whereas A. minutissimum was typical of the
treated assemblages. Diatom communities in the Sansobbia
stream were the most efficient in terms of recovery (Fig. 3).

15 Already at t28, no significant differences between the treated and
control communities were observed, and this similarity was
maintained throughout the remaining experimental period.

Diatom communities in the Sansobbia stream were the most
diverse in terms of species composition. The differences

20 between the control and treated samples at t7 were due primarily

to motile taxa belonging to the genera Nitzschia (N. fonticola
andN. dissipata) andNavicula (N. reichardtiana) onBS and TS.
Conversely, control assemblages were dominated by A. pedicu-
lus, A. minutissimum and C. euglypta.

25 Results of PRC analysis showed an almost identical pattern
between communities colonising BS or TS throughout the entire
experiment. Based on this finding, we can deduce that TS did not

offer a more suitable substrate for diatom colonisation than BS.
Because we could assume that the communities developing on

30 BS and TS were comparable, the following analyses were

performed comparing only C and BS treatment.
In the Arrestra stream, two-way ANOVA (Table 4) detected

significant differences in the abundance of endangered taxa

during the entire experiment, with percentages of RL_species
35 consistently much higher in C than BS (see also Fig. 4). Con-

cerning time, the test highlighted significantly lower values of
RL_species at t91 than at t7 and t21 (Tukey post hoc test,

P , 0.045). Again, in Quiliano, the percentage of RL_species
was consistently much higher in C than BS. However, in this

40 case we noticed a significant progressive decreasing trend from

t7–t14 towards t21–t28 and then from t21–t28 towards t35, but there
was then a significant increase from t42 towards t91 (Tukey post

hoc test, P , 0.041) in both C and BS. Differences in the
percentage of RL_species between C and BS were not signifi-

5cant at t91, when the abundance of endangered species was

comparable to that at the beginning of the experiment. In
Sansobbia, as expected, two-way ANOVA did not reveal any
significant difference in terms of RL_species abundance
between C and BS; indeed, in both cases, the percentages were

10very low.

Discussion

The present study highlighted significant differences in terms of
diatom community recovery depending on the assemblage

composition. Despite the geographical closeness of the three
15systems studied, stream identity had a strong effect on diatom

community assemblages, in accordance with our previous
results obtained in the same area (Falasco et al. 2016). In that

study, differences in terms of compositionwere driven primarily
by conductivity (with 400 mS cm�1 as the threshold level;

20Falasco et al. 2016). In the present study, conductivity was

always lower than 350 mS cm�1; despite this, the results of the
CCA showed a strong effect of conductivity on diatom com-
munities, together with pH and flow velocity.

CCA also provided information concerning the ecological
25preferences of some species. Among the most interesting

results, we observed that C. subminuscula, F. saprophila,

M. permitis and N. tabellariawere favoured by higher conductiv-
ity, pH and flow velocity. Moreover, Fragilaria neointermedia,
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Fig. 3. Principal response curves diagram of the diatom communities exposed to different kinds of treatment in the (a) Arrestra, (b) Quiliano and

(c) Sansobbia streams. Dashed lines represent the community composition of the control (C) from Day 7 (t7) to Day 91 (t91). Grey (bare substrates (BS)

treatment) and black (transplanted substrates (TS) treatment) lines represent the patterns of treated diatom community composition compared with controls.

Species weights (on the right) indicate the relative contribution of individual species to the community response. For definitions of codes on the right-hand

side of each graph, see Table S2.

Table 4. Results of the two-way analysis of variance (ANOVA) per-

formed to detect significant differences in terms of abundance of

endangered species between treatments and time points

Treatment Day

Arrestra F1,34¼ 13.8; P, 0.001 F6,34¼ 2.94; P¼ 0.020

Quiliano F1,34¼ 5.38; P¼ 0.026 F6,34¼ 17.7; P, 0.001

Sansobbia F1,34¼ 0.568; P¼ 0.456 F6,34¼ 1.27; P¼ 0.295
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Gomphonema italicum, Nitzschia heufleriana, Staurosira bino-
dis and Rhoicosphenia abbreviata were more abundant in
stretches characterised by high levels of dissolved oxygen.

In the present study, we chose to sample stretches charac-
5 terised by comparable physical and chemical features, but with

different levels of surrounding natural land use in order to assess

whether diatom communities, notably different in terms of
taxonomic composition, ecological guilds and percentage of
endangered species, showed differences in recolonisation pat-

10 terns. As already highlighted in previous studies, the Mediterra-
nean streams selected in this study shelter many species
considered as threatened to different degrees and, of the dia-

toms, these taxamust be considered as themost sensitive species
to hydrological alterations (Falasco et al. 2016).

15 In general, we found that the early stage of diatom recolo-
nisation took just 1 week, and many different species were

already collected from the treated cobbles at t7. This finding can
be interpreted as an adaptive mechanism of communities living
in Mediterranean intermittent streams, and is comparable with

20 the results reported by Artigas et al. (2012). In that study, the
authors observed a faster recolonisation on BS in a Mediterra-
nean intermittent stream compared with a slow, gradual recov-

ery in a Central European river, the Walzbach.
In particular, inArrestra, themost abundant species belonged

25 to the low-profile guild; these species were A. minutissimum and

A. gracillimum. This latter species is included in the diatom Red
List as ‘endangered’ (Lange-Bertalot and Steindorf 1996), and is
considered a sensitive species typical of calcareous rivers with
low organic matter and nutrient content (Ponader and Potapova

30 2007; Hofmann et al. 2011; Bey and Ector 2013). A. gracilli-
mum is primarily associated with shallow standing or flowing
waters with the main substrate being microlithal (Falasco et al.

2016). In the present study, A. gracillimum represented the key
species that exhibited differences between control and treated

35 communities, showing a consistent and significant decrease in

treated communities. The same pattern was evident for A.

lineare, but to a lesser degree. A. lineare is also classified as
‘endangered’ by Lange-Bertalot and Steindorf (1996) and is
typical of oligotrophic streams with circumneutral-to-alkaline

40 pH and low–moderate conductivity values (Van de Vijver et al.
2011). The first 2 weeks of the recolonisation on treated cobbles
were dominated primarily by A. minutissimum. Indeed, this is

generally recognised as a pioneer species, with high growth rates
(Rimet and Bouchez 2012). A. minutissimum showed early
colonisation on BS and TS and, after just 1 week, already

represented more than 50% of the diatom communities. Other
5taxa also seemed to characterise these first stages of the

colonisation process, but with significantly lower abundances.

Species belonging to the genus Fragilaria, for example, were
more abundant on treated than control cobbles, confirming the
observations of Sabater et al. (2016). In our case, Arrestra

10diatom communities of the treated cobbles were still signifi-
cantly different from control cobbles at t91, with an important
loss of endangered species. The two-wayANOVA highlighted a

general decrease in endangered species from t7 to t91 in control
communities as well.

15Diatom assemblages in Quiliano and Sansobbia were more
heterogeneous in terms of both taxonomic and functional

composition. The recolonisation in Quiliano seemed to be very
rapid, and communities were completely able to recover at t91.
Indeed, at t7 we already observed the presence of ‘S’ selected

20taxa (for further details, see Grime 1977; Morin et al. 2008),
such asN. gregaria, P. lanceolatum andG. parvulum. These are
considered slow colonisers with intermediate growth rates, and

should arrive in a second phase of recolonisation. In Quiliano, at
t7, the percentage relative abundance of ‘R’ selected taxa on the

25BS cobbles were comparable to those seen on C cobbles,

highlighting the end of the first colonisation stage. We can
therefore hypothesise that, in Quiliano, the communities were
able to recover in just 1 week. Despite this, at t14, this trend
inverted and the pioneer taxa again dominated the samples,

30leading to the considerable deviation seen in Fig. 3. We can
hypothesise that possible interspecific competition favoured the
presence of more tolerant taxa (e.g. ‘S’ selected) during the first

days of the experiment, to the detriment of the most sensitive
ones (e.g. species belonging to the genus Achnanthidium). The

35two-way ANOVA highlighted a general decrease in endangered

species in December (t14–t35) in both C and BS groups; this was
due primarily to the progressive reduction in the relative
abundance of N. oligotraphenta and Navicula splendicula (both
classified as ‘declining’). Conversely, we did not detect a

40significant difference in the percentage of RL_species among
C and BS groups during the final sampling campaign, with the
percentage at this time being comparable to that recorded at t7.
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In this case, the trend was driven primarily by A. lineare

(classified as ‘endangered’). This species appeared in the stretch

during winter, at the end of the experiment, and did not show
preferences in terms of substrate, being able to colonise both C

5 and BS to the same extent. In both Arrestra and Quiliano, we

observed a decreasing and increasing trend respectively in
RL_species during the experiment, as well as on C cobbles.
The factors driving this trend are unclear. We first hypothesised

a seasonal preference of some RL_species, but finally excluded
10 this possibility after checking the single species trends in the two

streams. For example, we observed a marked decrease in
A. gracillimum abundance from October to January in Arrestra,

but the inverse tendency in Quiliano, where the species doubled
at the end of the experiment. At the same time, A. lineare

15 increased from0%at t7 up to 7%at t91 in Quiliano, but decreased

gradually in Arrestra during winter. From our results, we cannot
exclude the role of interspecific competition or of stochastic
events to explain the trends in RL_species. It is clear that further

information on species autecology could provide important
20 insights to interpret these results.

The recovery was even more efficient and fast in Sansobbia
(,t28–t35). The communities on the C cobbles were highly

heterogeneous, in terms of both taxonomic composition and
ecological guild. A significant percentage of these communities

25 comprised pioneer taxa, such as A. minutissimum and A. pedi-

culus, which probably competed for space and resources on BS
and TS. In this case, we did not observe a strong dominance ofA.
minutissimum on the treated cobbles, and this probably repre-

sented an advantage for late successional species, such as the
30 motile taxa N. dissipata, N. fonticola and N. reichardtiana.

These diatom assemblages, highly heterogeneous in terms of

growth forms, probably produced thickened mats of cells and
mucilage, which contributed to the entrapment of other algae
and acted as a basal layer (Morin et al. 2008). At the same time,

35 the upper layers probably limited the growth of the low-profile

early colonisers due to the decrease in internal nutrient recycling
(Jan Stevenson and Glover 1993). In this case, we did not detect
significant percentages of RL_species, and this was probably

why we observed such fast and total recovery.
40 The results on this study contrast, in part, with those reported

by Calapez et al. (2014), who showed that communities of

highly natural stretches recovered faster than assemblages of
disturbed areas. In the present study, sites were selected among
the least affected streams of the Ligurian region, and differences

45 between the streams were due primarily to the percentage of

natural land use. Despite this, local human effects characterising
our stretches can be considered as very limited. The differences
we found in the recovery patterns were probably only related to

the initial composition of assemblages and abundance of endan-
50 gered species.

The similarity of diatom composition in the BS and TS

groups during the entire experiment (Fig. 2) confirmed the
results obtained in previous studies. According to these studies,
the main source of diatoms during the post-drought process is

55 thought to be drift and migration from colonised areas, more
than from dry biofilm (Chester and Robson 2014; Barthès et al.
2015). The present study did not aim to highlight the possible
presence of resistant forms in the dry biofilm, only their possible

positive role during the recolonisation process. However,

contrary to our hypothesis, through PRC analysis we were able
to show that, even if present, resistant forms did not enhance the

recovery ability of the biofilm, because colonisation patterns
between bare and transplanted substrates were almost identical.

5Conclusion

The growing extent of the hydrological intermittency in Medi-
terranean areas is worrying, as are the consequences on benthic
biological communities, especially those at the base of the food

web. Droughts affect diatom primary production (Piano et al.

102016) and modify community composition with a significant
loss of unusual endangered species (Falasco et al. 2016). Simple

communities, such as those colonising the most pristine envir-
onments, which comprise a significant percentage of endan-
gered species, are potentially the most affected by water

15absence. Based on our results, if subjected to extreme drought,
these assemblages do not show complete recovery in terms of
species composition, even 3 months after the water returns.
Conversely, more heterogeneous communities composed of

widespread taxa showed higher resilience and were able to
20completely recover after just a few weeks.

Management of aquatic resources in areas characterised by

high interannual variability in the amount of water is very
difficult but, at the same time, is very important because these
systems can be important refuges for biodiversity (Ros et al.

252009). In this context, management plans that consider the
possibility of facing long periods of dry are needed. Perennial
headwater streams cannot be excluded from these plans, and
further research on the effects of hydrological intermittency in

these stretches is required.
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45Recent trends in rivers with near-natural flow regime: the case of the

river headwaters in Spain.Progress in Physical Geography 37, 685–700.

doi:10.1177/0309133313496834

McCormick, P. V., and Jan Stevenson, R. (1991). Mechanisms of benthic

algal succession in lotic environments. Ecology 72, 1835–1848. doi:10.

502307/1940982

McQuoid, M. R., and Hobson, L. A. (1996). Diatom resting stages. Journal

of Phycology 32, 889–902. doi:10.1111/J.0022-3646.1996.00889.X

Morin, S., Coste, M., and Delmas, F. (2008). A comparison of specific

growth rates of periphytic diatoms of varying cell size under laboratory

55and field conditions.Hydrobiologia 614, 285–297. doi:10.1007/S10750-

008-9513-Y

Novais, M. H., Morais, M. M., Rosado, J., Dias, L. S., Hoffmann, H., and

Ector, L. (2014). Diatoms of temporary and permanent watercourses in

Southern Europe (Portugal). River Research and Applications 30, 1216–

601232. doi:10.1002/RRA.2818

Piano, E., Falasco, E., and Bona, F. (2016). Mediterranean rivers: con-

sequences of water scarcity on benthic algal chlorophyll-a content.

Journal of Limnology 76(s1), 39–48. doi:10.4081/JLIMNOL.2016.

1503

12 Marine and Freshwater Research E. Falasco et al.



PR
OO

F
ON

LY
Ponader, K. C., and Potapova, M. G. (2007). Diatoms from the genus

Achnanthidium in flowing waters of the Appalachian Mountains (North

America): ecology, distribution and taxonomic notes. Limnologica 37,

227–241. doi:10.1016/J.LIMNO.2007.01.004

5 Reichardt, E. (1999). Iconographia Diatomologica 8. Zur Revision der

Gattung Gomphonema. Die Arten um G. affine/insigne, G. angustum/

micropus, G. acuminatum sowie gomphonemoide Diatomeen aus dem
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