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Maximum difference analysis: a new empirical method for genome-wide
association studies

Massimo Cellesia , Corrado Dimauroa, Silvia Sorbolinia , Ezequiel Luis Nicolazzib, Giustino Gaspaa,
Paolo Ajmone-Marsanc and Nicol�o Pietro Paolo Macciottaa

aDipartimento di Agraria, University of Sassari, Sassari, Italy; bFondazione Parco Tecnologico Padano, Cascina Codazza, Lodi, Italy;
cIstituto di Zootecnica, Catholic University of Sacro Cuore, Piacenza, Italy

ABSTRACT
The availability of high-density single nucleotide polymorphism (SNPs) panels for humans and,
recently, for several livestock species has given a great impulse to genome-wide association
studies towards the identification of genes associated with complex traits and diseases. The fre-
quentist and the Bayesian approach are commonly used to investigate marker associations with
traits of interest. Briefly, the former is the most widely used method, being intuitive and easily
to apply, whereas the latter requires deeper statistical knowledge, but has the advantage to
include prior information to obtain a posterior probability of association. Both methods, how-
ever, require parameters or distributions to be set a priori by the researcher. In this work, we
suggest a new empirical method for genome-wide studies (GWAS), which verifies marker-trait
associations using the bootstrap resampling and Chebyshev’s inequality. This method, called
Maximum Difference Analysis (MDA), was tested on a real dataset of 2093 Italian Holstein bulls
with the objective of finding associations between SNPs and milk, fat and protein yield and fat
and protein percentage. Results of the MDA method were compared with those obtained to a
genome-wide association analysis performed using the R package GenABEL. In addition, we
assessed the bovine annotated genes related to the traits under study. The MDA method was
able to locate known important loci for milk productive traits, such as the DGAT1, PRLR, GHR and
SCD. Moreover, some new putative candidate genes were detected. The python script of MDA
procedure is available at www.animalbreeding.uniss.it.
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Introduction

The cost-effective availability of high-density single
nucleotide polymorphism (SNP) panels has boosted
studies for the identification of genomic regions asso-
ciated to complex traits and diseases in several live-
stock species (Hayes & Goddard 2010). SNP-markers
are usually not directly responsible for the observed
phenotypic variation. However, they are often
co-inherited together (i.e. in Linkage Disequilibrium;
LD) with an unknown causal variant and, in conse-
quence, the study of such markers in a particular
region of the genome can highlight the presence of
polymorphisms influencing traits or diseases. In cattle
breeds, the detection of such genetic differences is
particularly interesting due to the strong artificial
selection they have been subjected over the last
60 years (Qanbari et al. 2010). Many genome-wide

association studies (GWAS) identified associations
between markers and productive or functional traits in
dairy cattle breeds (Pryce et al. 2010; Hayes et al.
2010). Frequentist and Bayesian approach are two stat-
istical models commonly used in GWAS. Several issues,
however, undermine the effectiveness of these studies.
Both frequentist and Bayesian statistical models
require assumptions reflecting the putative genetic
architecture of the trait. However, different assump-
tions may lead to different results. In addition, stand-
ard linear models generally used in quantitative
genetics account only for additive effects, not consid-
ering interactions between genes. In this case, a trade-
off between either enhances the risk of obtaining large
false positive associations or over-parameterised model
structures could occur (Platt et al. 2010). The known
stratification in cattle populations, due to genetic drift
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or to artificial selection (Ma et al. 2012), adds more
complexity to the system and increases the risk of
finding spurious associations, or not finding true ones.
Actually, the genetic variance explained by markers is
usually low, despite the implementation of polygenic
effects that fit the genetic (co)variance between indi-
viduals using pedigree relationships (van Binsbergen
et al. 2012). Finally, the sampling effect is a major issue
in GWAS applied on livestock species. Consequently,
except for associations to genes that explain large pro-
portions of variance, such as the DGAT1 for milk pro-
duction traits (Grisart et al. 2002), significant SNPs
found in a particular sample of animals are often not
validated in other independent samples.

A key point in association studies is the criteria
used to declare a marker significantly associated to a
specific trait. Since the beginning of the use of gen-
ome scans to study QTLs in livestock, many research-
ers have pointed out the problem of assessing a
suitable threshold for statistical tests. The two main
issues are represented by the approximation of the
test statistics under the null hypothesis and by
the multiple hypothesis testing, i.e. several non-
independent tests performed over the same dataset
(Churchill & Doerge 1994).

In frequentist methods, the issue of multiple testing
is generally addressed applying a correction to the
p value by using the Bonferroni criteria or the permu-
tation test. The correction of Bonferroni is extremely
conservative (i.e. it considers all SNPs independent,
whereas most of them are really in LD), and usually
discards almost all detected associations (Baldin 2006).
On the other hand, the permutation test (Churchill &
Doerge 1994) is less stringent, but it is unable to
obtain a correct null hypothesis that takes into
account the population sub-structure. As a result, con-
sidering the large number of markers currently tested
in GWAS (tens of thousands), large number of false
positives is expected.

On the other hand, the Bayesian approach requires
several explicit assumptions about the prior probability
of association (p), the parameter/trait distribution and
the magnitude of the effects at the associated SNP.
These assumptions are also needed to calculate the
Bayes factor (BF). BF is similar to the likelihood-ratio
and it is the ratio between the probabilities of the
data under the alternative hypothesis (H1) and the
null hypothesis (H0) (Stephens & Balding 2009). Small
differences in p could lead to very different results
about the posterior probability of association
(Stephens & Balding 2009). Moreover, the BF evalu-
ation requires complex computational procedures

implementing the Markov chain Monte Carlo analysis
that is time expensive.

In this paper, a new empirical method to perform
genome-wide association test is proposed. The
method, called Maximum Difference Analysis (MDA), is
based on the comparison and the analysis of max-
imum differences between the genotypic frequencies
of the best and the worst individuals ranked respect
to a specific phenotype or trait. The use of only the
best and worst groups is a technique widely used. In
marketing research, maximum difference is a well-
known model of best-worst choice formalised by
Marley and Louviere (2005) that gave results most dis-
criminating in comparison with others methods of
choice (Cohen 2003). A common test of association,
where a population is split in two groups, is the case-
control association testing. In this latter analysis, the
frequency of single genotype or allele of the two
groups are compared and therefore, by using a statis-
tical test such as Pearson’s v2 or Cochran-Armitage
test, the association between a single SNP and a dis-
ease or phenotype is studied. Our proposed method
could be considered as a kind of case-control analysis
for quantitative traits where case-control groups were
replaced by best-worst samples and the test of associ-
ation is performed on all SNPs.

Beside frequentist and Bayesian methods, MDA can
be considered as a third approach. Its features are:
(i) it does not rely on any prior distributions of marker
effects; (ii) it is not characterised by a complex math-
ematical structure, and (iii) the significance of marker
association is retrieved from a posterior probability dis-
tribution obtained with a bootstrap resampling pro-
cedure. In this study, the MDA method was used to
detect associations between SNP-genotypes and five
productive traits of Italian Holstein bulls.

Milk production traits were considered in this study.
Lactation is a complex process that involves many cell
types and cell activities and, therefore, several genes.
These traits have been largely investigated in GWAS
and previous results were used to check the outcomes
of the present study.

Materials and methods

The data

Data consisted of SNP genotypes belonging to 2093
Italian Holstein bulls, born between 1979 and 2007
genotyped with the Illumina Infinium BovineSNP50
BeadChip v.1. All SNPs were aligned to the
Bos_taurus_UMD_3.1/bosTau6 reference assembly.
Only SNPs located in the 29 autosomes, with missing
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data lower than 2.5%, were retained for the analysis.
Monomorphic SNPs were not considered in the MDA
approach. At the end of editing 45,348 markers were
retained. Genotypes were coded as the number of
copies of one SNP allele it carries, i.e. 0 and 2 for alter-
native homozygous alleles, 1 for heterozygous alleles.
Phenotypes were deregressed proofs (Garrick et al.
2009) for milk yield (MY), protein yield (PY), fat yield
(FY), fat percentage (FP) and protein percentage (PP)
provided by the Italian Holstein Association (ANAFI).

Significant detected SNPs were used to define chro-
mosomic regions (0.25Mb upstream and 0.25Mb
downstream the significant marker) for performing
gene search. Specific functional analysis and biological
roles of the annotated genes were investigated by an
accurate literature search and databases consultation
such as GeneCards (www.genecards.org) and National
Centre for Biotechnology Information (www.ncbi.nml.
nih.gov).

The MDA method

The MDA is an empirical method able to detect com-
mon genotypic configurations shared by two different
groups of animals selected respect to a particular trait
T. Let nA be the total number of animals involved in
the study and S a subset containing nS individuals ran-
domly sampled from nA (nA*0.50� nS�nA*0.65: 0.50
for large nA, 0.65 for small nA). Animals in S are sorted
respect to T: animals with the highest values of T were
labelled as best (B) and animals with the lowest values
of T were flagged as worst (W). The assumption is that
that bulls in subsets B and W, each of size nBW
(nA*0.05� nBW�nA*0.10), should have different allele
combinations at loci affecting T. Indeed, B and W are
two disjoint sets where animals in B have the best per-
formances respect to the trait T. It is permissible to
think that this property will also share from a genetic
point of view. In particular, for loci that affect T, the
animals in B will share a common genotypic configur-
ation (i.e. AA) while a different genotypic configuration
will be show by animals in W (i.e. AB or BB). If the pre-
viously hypothesis is confirmed for the subsets B and
W of a large number of random sets S, then the con-
sidered loci detect genomic positions with a positive
effect on the trait T. Moreover, for each marker, it is
possible detect the desirable alleles for the considered
trait. Loci with a negative effect on the trait are
obtained when animals in W share a common geno-
typic configuration but different from that expressed
by animals in B. To evaluate which are the common
genotypic configurations in B, for each SNP, the geno-
type with the highest frequency (fB) in B is identified

and compared with the corresponding genotypic fre-
quency (fW) in W. The difference fB�fW is named max-
imum difference (MD). An example of MD calculation
is reported in Table 1. For SNP1, the most frequent
genotype in top ranked animals B is 2 (fB¼ 58). Its fre-
quency in bottom ranked animals W is fW¼ 26. The
maximum difference for SNP1 is therefore fB–fW¼ 32.

The larger is the MD, the greater is the likely that
the considered SNP influence the trait. Consequently,
markers with low or negative MD values are unin-
formative and then discarded. In order to obtain the
MD independent from the sample S and to reduce the
problem of a possible underlying population structure,
a resampling procedure is implemented. Ten thousand
different random subsamples S are generated, from
everyone, a couple of B and W groups are extracted
and the corresponding MD is calculated. The final
value of maximum difference MD for each SNP is
obtained as the mean of the 10,000 replicates (MMD).

To assess if a MMD value is significant, an empirical
threshold was set by using the Chebyshev’s inequality.
If lMMD and r2

MMD are the mean and the variance of all
MMDs evaluated across the entire genome, respect-
ively, then

Pr MMD� lMMDj j� krMMDð Þ � 1
k2

where k is an a priori fixed value. Since, the MMD
probability distribution is roughly symmetric (Figure 1),
the previous inequality can be rewritten as:

Pr MMD � lMMD þ KrMMDð Þ � 1
2k2

If the threshold for association is fixed to 0.95,
a marker is declared significantly associated with T if
its MMD value verifies the relation:

MMD � lMMD þ
ffiffiffiffiffi

10
p

rMMD (1)

In order to identify markers with positive and nega-
tive effect on the traits, the analysis was performed both
B vs W, where MD¼ fB–fW and W vs B where MD¼ fW–fB.

Table 1. Evaluation of maximum difference (MD) between
the best group B and the worst group W.
Subset Genotype Snp1 Snp2 Snp3 Snp4 . . .

B 0 12 78 20 40 . . .
1 30 20 65 38 . . .
2 58 2 15 22 . . .

W 0 20 40 25 75 . . .
1 54 51 65 15 . . .
2 26 9 10 10 . . .
MD 32 36 0 �35 . . .

B: individuals with the best performances respect to the considered trait;
W: individuals with the worst performances respect to the considered
trait; MD: maximum differences between B and W (MD¼ B�W) when
the numerousness of B and W is fixed at 100. Numbers in bold are the
highest genotype frequencies for the considered SNP.
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The size of datasets S, B and W (nS and nB,W) were
fixed in proportion to the number on animals in A
(nA). In this study, values were nA¼2093,
nS¼2093*0.55¼ 1151 and nB,W¼1151*0.09¼ 103.

The MDA method was developed using a Python
code (www.python.org) freely available at www.
animalbreeding.uniss.it

The GenABEL method

In order to compare the MDA method with a
‘traditional’ approach, a GWAS was developed, with
the same dataset, using the GenABEL R package
(Aulchenko et al. 2007). Trait records were pre-
corrected for polygenic effects that were included to
account for genetic sub-structures. Then, the random
residual of each individual from the polygenic model
was used as a pre-corrected phenotype. A significance
threshold, corrected for residual population inflation
(i.e. lambda) of p� 1� 10�06 was used to declare a
SNP significant.

Results

The MDA method detected a total of 479 significant
SNPs. Table 2 shows, for each trait, the distribution
of associated markers across the 29 autosomes.
More detailed information about such markers (i.e. name,

position on the genome and distance from the nearest
gene) are reported in (Supplementary Material S1).

Milk yield

The whole genome analysis for MY (Figure 2(a–b))
shows a homogeneous pattern across chromosomes.
One hundred twenty four SNPs were found to be over
the threshold for this trait. In particular, a strong associ-
ation was detected on BTA14 where DGAT1 locus maps
(Figure 2(a–b)). Chromosomes 7 and 10 showed the
higher number of significant SNPs (either with about
the 13% of the total detected SNPs, see Table 2). For
MY, the MDA analysis identified several members of the
solute carrier gene family, such as the solute carrier fam-
ily 33, member 1 (SLC33A1) on BTA1, solute carrier family
13, member 1 (SLC13A1) on BTA4, solute carrier family 5,
member 8 (SLC5A8) and solute carrier family 4, member 2
(SLC4A2) on BTA5, solute carrier family 22, member 7
(SLC22A7) on BTA23 and finally, in the telomeric region
of the BTA11, a gene named golgin A1 (GOLGA1)
(Supplementary Material S1).

Fat yield

The chromosomes with the highest number of signifi-
cant markers for FY (Table 2) were BTA2 and BTA5,

Figure 1. Genome wide distribution of mean of maximum difference (MMD) for milk yield in Best vs Worst (a) and Worst vs Best
(b). Dash line shoes the normal distribution with same mean and standard deviation of MMD. Genome wide distribution of means
of maximum difference (MMD) for other four traits (FY, PY, FP and PP) showed a similar pattern.
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with 13 and 19 SNPs, respectively. In BTA5, three SNPs
underline the apolipoprotein L, 3 (APOL3) gene at
75Mb while, on BTA7, the fatty acid binding protein 6,

ileal (FABP6) locus was detected. These two genes are
involved in the lipid metabolism. SNPs linked to the
aforementioned genes, represent 12% and 17% of the
total markers declared associated with the trait,
respectively. A strong signal was detected on BTA14,
in the region of DGAT1 when Worst-Best difference
was considered (Figure 3(b)). This association was char-
acterised by a low number of SNPs with high MMD
value.

Protein yield

The MDA analysis on PY showed a similar pattern of
the MDD values on all chromosomes (Figure 4(a–b)).
Seventeen out of 29 chromosomes, for this trait,
showed less than 4 significant associated SNPs
(Table 2), while in chromosomes 7, 9 and 20 an higher
number of significant markers were detected. On
BTA20, the ARS-BFGL-NGS18998 marker was found
within the growth hormone receptor (GHR) gene.

Fat percentage

Fifteen chromosomes had one or no SNP associated
with FP. However, around 54% of the significant SNPs
were located on BTA14 where DGAT1, cytochrome
P450, family 11, subfamily B, polypeptide 1 (CYP11B1)
and Thyroglobulin (TG) mapped (Table 2). Figure 5(a–b)
show a strong signal of association on the centromeric
region of the chromosome. Moreover, four SNPs were
associated with FP on BTA26. In this autosome, the
stearoyl-CoA desaturase (delta-9-desaturase) (SCD) gene
was located at 21,1Mb (Supplementary Material S1).
Furthermore, on BTA4, the Hapmap50070-BTA-70041

Table 2. Distribution of SNPs associated with the considered
five traits on the 29 autosomes (BTA).
BTA MYa FYb PYc FPd PPe

1 6 1 7 0 5
2 4 13 2 1 3
3 2 2 2 3 2
4 3 3 4 9 1
5 7 19 3 9 1
6 2 3 4 2 7
7 16 10 15 0 1
8 3 1 9 1 2
9 8 6 10 1 0
10 14 1 4 2 3
11 11 5 6 1 3
12 1 3 3 1 3
13 7 1 8 4 2
14 10 8 2 74 13
15 1 0 0 2 4
16 1 1 2 1 2
17 7 4 2 5 2
18 2 1 1 1 0
19 0 4 4 4 3
20 11 8 10 4 54
21 2 1 4 0 0
22 2 2 0 1 1
23 1 3 3 2 1
24 1 0 0 0 0
25 0 0 0 1 1
26 0 5 0 4 1
27 0 1 0 3 1
28 1 2 1 0 0
29 1 2 1 0 2
Total 124 110 107 136 118
aMilk yield.
bFat yield.
cProtein yield.
dFat percentage.
eProtein percentage.
Numbers in bold indicate the highest number of markers associated with
each trait. Total represents the genome-wide number of SNPs associated
to each trait when the threshold in the Chebyshev’s inequality is fixed
to 0.95.

Figure 2. Manhattan plot for milk yield with the mean of maximum differences (MMD) for all SNPs for Best vs Worst (a) and
Worst vs Best (b). The horizontal line corresponds to Chebyshev’s inequality value when a threshold of 0.95 is fixed.
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marker highlighted the CD36 locus the thrombospondin
receptor (CD36).

Protein percentage

The distribution of significant SNPs for the PP trait iden-
tified a strong association on BTA 14 (Figure 6(b)) and on
BTA 20 (Figure 6(a)). Nearly 46% of the associated signifi-
cant markers belonged to chromosomes 20 (Table 2).
On BTA2, the signal transducer and activator of transcrip-
tion 1 locus (STAT1) were highlighted by the ARS-BFGL-
NGS-38368 marker. On BTA6, the SNP named ARS-BFGL-
NGS12812 was near the leucine aminopeptidase 3 (LAP3)
locus, whereas on BTA14, the ARS-BFGL-NGS-4939
marker was located inside the DGAT1 gene. Moreover,

on BTA20, in an interval of 1Mb, six significant SNPs
strongly associated with PP were detected. In this
region, the prolactin hormone receptor (PRLR) locus, BRX1,
biogenesis of ribosomes, homologue (S. cerevisiae) (BRIX1)
and threonyl-tRNA synthetase (TARS) is mapped
(Supplementary Material S1).

MDA method vs GenABEL

The GWAS developed with a ‘traditional’ approach
using the GenABEL R package, yielded a total of 35
significant markers on four traits (PP, FP, MY and FY),
whereas no marker was found associated with PY. The
associated SNPs were distributed on four chromo-
somes: one SNP on BTA3 at 15.5Mb, three SNPs on

Figure 3. Manhattan plot for fat yield with the mean of maximum differences (MMD) for all SNPs for Best vs Worst (a) and Worst
vs Best (b). The horizontal line corresponds to Chebyshev’s inequality value when a threshold of 0.95 is fixed.

Figure 4. Manhattan plot for protein yield with the mean of maximum differences (MMD) for all SNPs for Best vs Worst (a) and
Worst vs Best (b). The horizontal line corresponds to Chebyshev’s inequality value when a threshold of 0.95 is fixed.

ITALIAN JOURNAL OF ANIMAL SCIENCE 401

http://dx.doi.org/10.1080/1828051X.2016.1216336


BTA5 between 94.5 and 94.6Mb, 29 SNPs on BTA14
between 1.4 and 4.4Mb and two SNPs on BTA20, one
at 32Mb and another at 33.5Mb. Among the 35 sig-
nificant SNPs, 15 were associated with a single trait, 6
with two traits, 8 with three traits and 6 with four
traits. The five SNPs associated with four traits (FY, MY,
FP, PP) were all located on BTA14 (Hapmap30383-BTC-
005848; ARS-BFGL-NGS-57820; ARS-BFGL-NGS-3949;
ARS-BFGL-NGS-103779; Hapmap25384-BTC-001997), in
the region of DGAT1.

Moreover, GenABEL identified two SNPs associated
with PP on BTA20, one at 32Mb and another at
33.5Mb, where receptor of growth hormone (GHR) gene

was located. All the significant markers identified by
using GenABEL were also found by MDA except a
significant SNP on BTA3 (ARS-BFGL-NGS-64215) at
15.5Mb (Supplementary Material S2).

Discussion

In the present work, a new empirical method named
Maximum Difference Analysis was developed and used
to detect associations between SNP markers and five
productive traits on 2093 Italian Holstein Frisian bulls.
The MDA approach was able to detect a total of 479
significant SNPs across the entire genome. A similar

Figure 5. Manhattan plot for fat percentage with the mean of maximum differences (MMD) for all SNPs for Best vs Worst (a) and
Worst vs Best (b). The horizontal line corresponds to Chebyshev’s inequality value when a threshold of 0.95 is fixed.

Figure 6. Manhattan plot for protein percentage with the mean of maximum differences (MMD) for all SNPs for Best vs Worst (a)
and Worst vs Best (b). The horizontal line corresponds to Chebyshev’s inequality value when a threshold of 0.95 is fixed.

402 M. CELLESI ET AL.

http://dx.doi.org/10.1080/1828051X.2016.1216336


number of associated SNPs was obtained in analogue
studies developed by using common GWAS
approaches (Pryce et al. 2010; Jiang et al. 2010; Mai
et al. 2010). The distribution of SNPs across the 29
autosomes and their positions was generally in agree-
ment with results reported in literature (Jiang et al.
2010; Meredith et al. 2012). The number of significant
markers detected for each trait seems to reflect the
known genetic architecture of traits: a higher number
of significant SNPs were found for yield compared to
composition traits. It is well known that the genetic
control of milk composition traits could be ascribed to
a relatively small number of genes with a large or
moderate effect (Grisart et al. 2002; Hayes et al. 2010),
whereas a stronger polygenic background is hypothes-
ised for yield traits (Hayes et al. 2010).

The study revealed a large number of SNPs associ-
ated with genes apparently not involved in a specific
biological pathway affecting milk production. Lactation
is a physiological process regulated by the interaction
between the endocrine system and various target
organs. During lactogenesis, tremendous functional
and metabolic changes concerning the mammary
gland are implemented. To support the production of
large amounts of milk, the activities of transport of
various nutrients and metabolites strongly increase in
the epithelial cells of the mammary gland. This rapid
increase in functional activities is primarily due to an
increased activity of cells rather than a variation in the
number of working cells (Finucane et al. 2008). Milk
composition is heavily affected by mammary genes.
However, variables as the nutritional status of lactating
animals or the duration of breastfeeding offspring are
important (Lemay et al. 2009).

In highly productive cattle breeds, as the breed
analysed in this study, the mammary gland takes more
than 80% of the metabolites produced by the digest-
ive system for milk yield. In addition to glucose, long-
chain fatty acids, acetate amino acids, high amounts of
sodium, calcium and phosphate are required (Baik
et al. 2009). In mammals, the transport of nutrients
inside and outside the cells is mainly carried out by a
class of molecules called solute carriers (Anderson &
Thawaiters 2010). Associated to milk traits, the gen-
ome-wide analysis developed in this research was able
to identify several members belonging to the large
gene family of solute carriers (SLC). On BTA1, the
SLC33A1 gene codes for a carrier of Acetyl-CoA, an
important precursor of lipids, on BTA4 the SLC13A1
gene encodes for a carrier of ions (Naþ/SO�

4 ) (He et al.
2009). On BTA5, the SLC5A8 gene codes for a carrier of
iodine in a passive manner and monocarboxilates and
fatty acids through the sodium pump and SLC4A2

protein is involved in the glucose transport. Finally, on
BTA23, the SLC22A7 is implicated on organic cations
transport (He et al. 2009) (Supplementary Material S1).
Solute carriers have already been reported by several
studies concerning lactating mammary gland in cattle
(Bionaz & Loor 2008).

The whole genome scan confirmed, as expected,
the important role of major QTLs for milk traits on
BTA14 (Grisart et al. 2002; Bennewitz et al. 2003),
BTA20 (Blott et al. 2003) and BTA26 (Mele et al. 2007).
Many association studies identified QTLs affecting FY
and FP in the centromeric region of BTA14 (Pryce
et al. 2010; Jiang et al. 2010; Meredith et al. 2012). The
DGAT1 locus is an enzyme that catalyses the synthesis
of diacylglycerols involved in several biological proc-
esses (Mai et al. 2010). The association between poly-
morphisms in the DGAT1 gene and milk fat content in
dairy cattle has been evidenced in several breeds
(Grisart et al. 2002). A non-conservative lysine to ala-
nine substitution has a major influence on milk pro-
duction traits and in particularly on fat and milk
content (Gautier et al. 2007). Allele K (lysine) has a
positive effect on the fat content in the milk while the
allele A (alanine) on milk yield. Recently, Minozzi et al
(2013) during a GWAS using GenABEL R package on
Italian Holstein cattle found the same associations
highlighted by MDA among markers near DGAT1 and
milk traits.

However, to explain the great genetic variability
presented by milk production traits Bennewitz et al.
(2003) hypothesised the existence of a ‘masked’ QTL,
in linkage with DGAT1, with a possible epistatic effect.
This second QTL should be located nearby the cyto-
chrome P450, family 11, subfamily B, polypeptide 1
(CYP11B1) gene (Mai et al. 2010). In cattle, this enzyme
is involved in the lipogenesis and lipolysis mediated
by corticosteroids. The MDA method identified both
DGAT1 and CYP11B1 as major QTL affecting milk traits,
since they are associated to four out of five traits ana-
lysed (MY, FY, FP and PP). On the same chromosome,
MDA also identified the TG gene. The thyroglobulin is
a glycoprotein precursor of hormones that influence
lipid metabolism. Polymorphism in the 5'- UTR region
of the TG locus has been suggested to affect intramus-
cular fat content and marbling traits in beef cattle
(Hayes et al. 2010).

Recently, in a GWAS on the Japanese Black cattle
breed, Ishii et al. (2013) identified a significant number
of SNPs affecting milk fatty acid composition in a
region between 49 and 52Mb of the BTA19. The fatty
acid synthase (FASN) locus, contained in this region,
was proposed as putative candidate gene affecting
milk fatty acid composition. In the present research,
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the marker ARS-BFGL-NGS-39328 was found associated
to FP, thus confirming the presence of a QTL for fat
traits on BTA19 as suggest by Ishii et al. (2013)
(Supplementary Material S1).

On BTA20, a polymorphism on GHR locus is already
reported by several authors as an important QTL
affecting milk, fat and protein yield in dairy cattle
(Blott et al. 2003).

Finally, on BTA26, a QTL for fat percentage was
found on a wide region between 21.3 and 22.8Mb.
The Stearoyl- Co-A desaturase (SCD) gene is involved in
the cellular biosynthesis of fatty acids and polymor-
phisms at this locus have already been proposed as
useful for the improvement of milk production traits in
gene assisted selection programmes (Macciotta et al.
2008).

Regarding PP, some significant SNPs were high-
lighted on chromosomes 2, 6, 14 and 20. The signal
transducer and activator of tanscription 1 (STAT1) gene
on BTA2 are involved in the development of mammary
gland. Cobanoglu et al. (2006) associated mutations in
this locus with an increase in milk production and in
fat and protein contents in Holstein cattle. On BTA6,
the LAP3 gene was found associated with PP. Recently
this locus was related to milk production by Zheng
et al. (2011). A significant marker, the BTA-92644-no-rs
was located on BTA20 at 38.9Mb, close to the prolac-
tin receptor (PRLR) gene was found. In mammary gland,
epithelial cells prolactin receptors are required for
the normal development of the gland and for the
milk protein gene expression (Kelly et al. 2002).
Polymorphisms at this locus have already been
reported as associated with protein yield in cattle
(Viitala et al. 2006). Our results about the PRLR gene
show that the B sample share the homozygote geno-
type in agreement with literature where the homozy-
gote genotype is associated with increased milk
performance (Supplementary Material S1).

Finally, the MDA method confirmed a significant
marker (Hapmap500070-BTA-70041) on BTA4 affecting
two milk content traits (FP and PP) previously reported
in literature using expression studies. This SNP is
linked to the CD36 molecule (thrombospondin receptor)
(CD36) locus already reported by several authors
(Bionaz & Loor 2008; Lemay et al. 2009) in an analysis
of genes expressed in cattle during lactation and invo-
lution of mammary gland.

As in other GWAS (Smaragdov 2006; Pryce et al.
2010; Mai et al. 2010), in this research, 89 SNPs with
significant effects on more than one trait were
detected. In particular, 65 markers were associated
with two traits while 21 with three traits and three
with four traits (Supplementary Material S1).

The genetic correlation can be the result of pleiotropic
effects of single QTL affecting more than one trait or
of linkage disequilibrium between two or more QTLs
each affecting one trait only (Bolormaa et al. 2010).
Therefore, the pleiotropic action of QTLs should be
considered when an animal is selected for a particular
breeding goal. More detailed investigations, such the
use of much denser marker maps or full genome re-
sequencing, would be necessary to identify causal
mutations underlying economically important traits in
dairy cattle.

The ‘traditional’ GWAS developed using the
GenAbel R package, confirmed results obtained using
the MDA method. A reduced subset of significantly
markers was shared between two methods since
GenAbel gave an emphasis almost exclusively to the
DGAT1 gene. This was in accordance to a number of
previous works since in different Holstein population
this gene causes up to 50% of the phenotypic variance
for milk yield, protein yield, fat yield, protein percent-
age and fat percentage (Smaragdov 2006).

Conclusions

MDA is a novel empirical method to perform genome-
wide association studies. The attractiveness of the
method lies on its simplicity and lack of assumptions.
This technique was applied to five production traits on
a population of Italian Holstein bulls, born between
1979 and 2007. Some selected SNPs were identified in
regions of well-known genes that affect milk produc-
tion traits. Moreover, the MDA detected several
markers in common with other genome wide associ-
ation studies and it was able to find markers located
in regions highlighted in researches regarding the
functional genomics field.

Generally, in GWAS studies, low numbers of markers
are found significantly associated with traits under
study. In dairy cattle, for example, a common outcome
is the detection of significant markers mainly located
on the BTA14, in the region of the DGAT1 locus. The
MDA method was able to indicate a larger number of
significant markers in comparison with one of the
most popular approaches used in GWAS study, the
GenAbel R package (Strucken et al. 2012; Minozzi et al.
2013). The reliability of the MDA, based on the resam-
pling procedure and on the use of the Chebyshev’s
inequality, together with the biological soundness of
the detected genes, suggests that the obtained results
should not be interpreted in terms of an increase of
false positives, but as an evidence of the larger power
of this method compared to more conservative
approaches.
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