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THE GABOR WAVE FRONT SET IN SPACES OF
ULTRADIFFERENTIABLE FUNCTIONS

CHIARA BOITI, DAVID JORNET, AND ALESSANDRO OLIARO

Abstract. We consider the spaces of ultradifferentiable functions Sω as introduced by Björck
(and its dual S ′

ω) and we use time-frequency analysis to define a suitable wave front set in
this setting and obtain several applications: global regularity properties of pseudodifferential
operators of infinite order and the micro-pseudolocal behaviour of partial differential operators
with polynomial coefficients and of localization operators with symbols of exponential growth.
Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can
be described using only Gabor frames. Finally, some examples show the convenience of the use
of weight functions to describe more precisely the global regularity of (ultra)distributions.

1. Introduction

The wave front set is a basic concept in the local theory of linear partial differential operators
and it extends the one of singular support of a distribution. It deals with the analysis of the
singularities of a function (or distribution) and, at the same time, describes the directions along
which the high frequencies (in terms of the Fourier transform) responsible for those singularities
propagate. In the classical context of Schwartz distributions theory it was originally defined by
Hörmander [21]. There is a huge literature on wave front sets for the study of the regularity
of linear partial differential operators in spaces of distributions or ultradistributions in a local
sense; see, for instance, [21, 23, 24, 25, 34, 15, 1, 2, 35, 7, 6] and the references therein.

In global classes of functions and distributions (like the Schwartz class S and its dual) the
concept of singular support does not make sense, since we require the information on the whole
Rd. However, we still can define a global wave front set to describe the micro-regularity of a
distribution, where the cones are taken with respect to the whole of the phase space variables.
In fact, in [22] Hörmander introduced two different types of global wave front sets: the C∞

wave font set, in the Beurling setting, for temperate distributions u ∈ S ′, and the analytic wave
front set, in the Roumieu setting, for ultradistributions S ′

A of Gelfand-Shilov type, addressed
to the study of quadratic hyperbolic operators. Unfortunately, these global versions of wave
front set have been almost ignored in the literature, whereas they will represent the key point
of our discussion. Only very recently, Rodino and Wahlberg [35] recovered the concept of
C∞ wave front set of [22] and showed that it can be reformulated in terms of the short-time
Fourier transform, which treats simultaneously the variables and covariables of a function (or
distribution) in order to quantify the energy of a signal at some time x0 and some frequency
ξ0. Since the wave front set has to do with a simultaneous analysis of points (variables) and
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2 The Gabor wave front set in spaces of ultradifferentiable functions

directions (covariables), it is very natural to try to apply methods of time-frequency analysis
in connection with the wave front set. Indeed, in [35] the authors use this advantage to show
also that the original wave front set introduced by Hörmander can be described merely with
the information given by a Gabor frame, which is a fundamental tool in the theory of time-
frequency analysis with applications in signal processing and related issues in function space
theory and numerical analysis. Besides, recent applications of Gabor frames concern also the
analysis of partial differential equations and pseudodifferential equations (see the references
quoted in the introduction of [35] for more information). On the other hand, Nakamura [29]
introduces the homogenous wave front set for the study of propagation of micro-singularities for
Schrödinger equations, and it turns out to be equal to the Gabor wave front set [37]. Cappiello
and Schulz [12] recover the analytic wave front set of [22], defined in terms of a very general
known version of the FBI transform as introduced originally by Sjöstrand [39], show that it
can be written using the Gabor transform (with Gaussian window) and study some cases not
treated by Hörmander for Gelfand-Shilov ultradistributions of Gevrey type.

The modern theory of general linear PDEs has been largely addressed to local problems, i.e.,
to the study of solutions in a suitable small neighbourhood of a point in Rd. More recently,
several authors have considered the study of (pseudo)differential operators from a global point
of view; see, for example [22, 30, 29, 37]. The Fourier transform and pseudo-differential cal-
culus find in Rd their natural setting. In fact, some problems in Quantum Mechanics, Signal
Analysis and other applications in Physics and Engineering are represented by the study of
solutions in the whole Euclidean space Rd. Motivated by these connections, the theory of time-
frequency analysis has become a very suitable tool for a better understanding of the study of
(pseudo)differential operators in the global setting and, in particular, in the Schwartz class S
(see [35]) or in Gelfand-Shilov spaces of Gevrey type (see [12]).

In the present paper we work in the classes of ultradifferentiable functions Sω(Rd), where
ω is a weight function in the sense of Braun, Meise and Taylor [11], which we assume to
be also subadditive, in order to have a consistent definition of modulation spaces given by
exponential weights. Hence, we recover in particular the classes as introduced by Björck [3],
with the difference that we impose that the composition of the weight and the exponential is
convex, which allows the use of convex analysis techniques. The classes under consideration are
suitable for our purposes, since they are invariant under Fourier transform and provide a big
scale of spaces that contain as a particular case the Schwartz class when the weight function
is ω(t) = log(1 + t), t > 0. We have seen in the literature the benefits of time-frequency
analysis when applied to such classes (see [19]), even in combination with the global theory of
(pseudo)differential operators (see e.g. the paper by the same authors [8] and the references
therein, or [32, 33] when the classes are defined by sequences in the sense of Denjoy-Carleman;
see [27] for a detailed study of the structure of these spaces when defined by sequences). We
have to mention also that our classes always contain compactly supported functions (they are
non-quasianalytic) and we recover Gelfand-Shilov spaces of Beurling type of index s > 1 when
the weight function is ω(t) = t1/s (i.e. a Gevrey weight).

The purpose of our paper is to define the Beurling version of the analytic wave front set
found in [22, 12] (where the authors only treated the Roumieu case) in the setting of S ′

ω-
ultradistributions, show that it can be described in terms of Gabor frames (as it is done in the
setting of temperate distributions in [35]) and apply it to the study of the global regularity
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of (pseudo)differential operators of infinite order (in [35] the authors cannot treat operators of
infinite order, since they have symbols with polynomial growth). So, we extend, among other
results, part of the work [35] to the ultradifferentiable setting and treat the Beurling case, which
is new in the literature (the authors in [22, 12] treat the Roumieu case only for Gelfand-Shilov
ultradistributions).

From [19], we know that a function f ∈ Sω(Rd) can be characterized in terms of the growth
of its Gabor transform, i.e. of its short-time Fourier transform. We use this fact to extend to
the ultradifferentiable setting some known properties of the Gabor transform in the frame of
the Schwartz class S, that we could not find in the literature for Sω, and we add them here for
the reader’s convenience (see Section 2).

In Section 3 we consider the global ω-wave front set WF′
ω(u), for ω-tempered distributions

u ∈ S ′
ω(Rd), defined as the complement of the points z0 ∈ R2d \ {0} for which there exists an

open conic set Γ containing z0 such that

sup
z∈Γ

eλω(z)|Vφu(z)| < +∞, ∀λ > 0,

where Vφu is the Gabor transform of u with respect to the window φ ∈ Sω(Rd) (we prove that
the definition does not depend on the choice of φ). This definition of wave front set seems
natural since the Gabor transform allows to analyze simultaneously the ultradistribution with
respect to variables and covariables.

However, in many applications to signal processing and related topics, often Gabor frames
come out to be the most appropriate tool (see, for instance, [14, 20]). For this reason it is
also useful to consider a Gabor ω-wave front set WFGω (u), defined in terms of the decay of the
Gabor coefficients ⟨u,Π(λ)φ⟩ of the ultradistribution u ∈ S ′

ω(Rd) (see Definition 3.3), where
Π(λ)φ(y) = ei⟨y,λ2⟩φ(y−λ1) with λ = (λ1, λ2) in a suitable lattice Λ. Actually this is equivalent
to analyze the decay of the Gabor transform of u on a conical set intersected with Λ, so that
it is natural to study the relation between these two wave front sets. One of the main results
of this paper, Theorem 3.17, is that WF′

ω(u) = WFGω (u) for all u ∈ S ′
ω(Rd), if the lattice is

sufficiently dense. In the particular case of ω(t) = log(1+ t) we recover the results of [35] about
wave front sets of tempered distributions.

In order to examine Gabor ω-wave front sets, we need suitable modulation spaces with
exponential weights, in the setting of ω-ultradistributions. To this aim we prove in Section 3
those results about modulation spaces which differ from the classical ones (cf. e.g. [18]).
Moreover, we prove two natural properties for the Gabor ω-wave front set. Namely, for an
ultradistribution u ∈ S ′

ω(Rd), we show that WF′
ω(u) is empty if and only if u ∈ Sω(Rd), and

that it is not affected by translations and modulations (time-frequency shifts), as expected in
the global setting.

In Section 4 our results in the former sections are applied to study the global regularity of
some kind of pseudodifferential operators of infinite order with our global wave front set. For
a global symbol a(x, ξ) with exponential growth in the second variable, defined in the spirit of
[15] (see Definition 4.2), we consider the Kohn-Nirenberg quantization

a(x,D)f(x) := (2π)−d
∫
Rd

ei⟨x,ξ⟩a(x, ξ)f̂(ξ)dξ,
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which is well defined for f ∈ Sω(Rd). We analyze the kernel of the Gabor transform of this
pseudo-differential operator to prove that

WF′
ω(a(x,D)u) ⊆ cone supp(a),

where cone supp(a) is the conic support of a(x, ξ), as defined in [22] (see also Definition 4.10).
As far as we know, this is new in the literature. As a consequence, we have that the Kohn-
Nirenberg quantization a(x,D), for a symbol a(x, ξ) ∈ Sω(R2d) with compact support, is a
globally ω-regularizing pseudo-differential operator, in the sense that for every u ∈ S ′

ω(Rd) we
have that a(x,D)u ∈ Sω(Rd).

We also study the micro-pseudolocal behaviour of a linear partial differential operator with
polynomial coefficients using purely the properties of the Gabor transform (Proposition 4.13)
and also of a very general type of localization operators (Theorem 4.15), obtaining in the
Beurling setting the analogous result of [12, Proposition 3.3]. Finally, in Section 5 we calculate
the wave front set of some concrete ultradistributions and show, in particular, the usefulness of
working with different weight functions, as in Example 5.4, where we analyze the global ω-wave
front set of some ultradistributions for different weight functions ω.

2. Preliminaries and the short-time Fourier transform in
Sω(Rd)

Given a function f ∈ L1(Rd), the Fourier transform of f is defined as

F(f) = f̂(ξ) =

∫
Rd

e−i⟨x,ξ⟩f(x) dx,

with standard extensions to more general spaces of functions and distributions.

Definition 2.1. A non-quasianalytic subadditive weight function is a continuous increasing
function ω : [0,+∞) → [0,+∞) satisfying the following properties:

(α) ω(t1 + t2) ≤ ω(t1) + ω(t2) ∀t1, t2 ≥ 0;

(β)

∫ +∞

1

ω(t)

t2
dt < +∞;

(γ) ∃a ∈ R, b > 0 s.t. ω(t) ≥ a+ b log(1 + t) ∀t ≥ 0;
(δ) φω(t) := ω(et) is convex.

We then define ω(ζ) := ω(|ζ|) for ζ ∈ Cd.

We denote by φ∗
ω the Young conjugate of φω, defined by

φ∗
ω(s) := sup

t≥0
{st− φω(t)}, s ≥ 0.

Note that φ∗
ω is increasing and convex, and φ∗∗

ω = φω by Fenchel-Moreau Theorem (see for
example [10]). Moreover, φ∗

ω(s)/s is increasing since

φ∗
ω(0) = sup

t≥0
(−φω(t)) ≤ 0
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and therefore, for 0 < s1 < s2, by the convexity of φ∗
ω:

φ∗
ω(s1) = φ∗

ω

(
s1
s2
s2 +

(
1− s1

s2

)
0

)
≤ s1
s2
φ∗
ω(s2) +

(
1− s1

s2

)
φ∗
ω(0) ≤

s1
s2
φ∗
ω(s2).

It will be also useful in the sequel the following inequality

2je−λφ
∗
ω( j

λ) ≤ e−3λφ∗
ω( j

3λ), ∀j ∈ N0, λ > 0.(2.1)

Estimates of this kind are well known (see, for instance, [11, 5]), usually stated under slightly
different conditions on ω. We give here a short proof of (2.1) for the sake of completeness. By
definition of φ∗

ω for φω(t) = ω(et) and by the subadditivity of ω:

φ∗
ω(s) = sup

t≥0
{ts− φω(t)} ≥ sup

t≥1
{ts− φω(t)} = sup

σ≥0
{(σ + 1)s− φω(σ + 1)}

= s+ sup
σ≥0

{σs− ω(eeσ)} ≥ s+ sup
σ≥0

{σs− 3φω(σ)} = s+ 3φ∗
ω

(s
3

)
.

Therefore, for s = j/λ and multiplying by λ:

λφ∗
ω

(
j

λ

)
≥ j + 3λφ∗

ω

(
j

3λ

)
,

and hence

2je3λφ
∗
ω( j

3λ) ≤ eλφ
∗
ω( j

λ).

Definition 2.2. We define Sω(Rd) as the set of all u ∈ S(Rd) such that

(i) ∀λ > 0, α ∈ Nd
0 : sup

Rd

eλω(x)|Dαu(x)| < +∞,

(ii) ∀λ > 0, α ∈ Nd
0 : sup

Rd

eλω(ξ)|Dαû(ξ)| < +∞,

where N0 := N ∪ {0} and Dα = (−i)|α|∂α.
As usual, the corresponding dual space is denoted by S ′

ω(Rd) and is the set of all linear
and continuous functionals u : Sω(Rd) → C. An element of S ′

ω(Rd) is called an ω-tempered
distribution.

In [8, Thm. 4.8] we provided the space Sω(Rd) with different equivalent systems of seminorms.
For example, for u ∈ Sω(Rd), the family of seminorms

pλ,µ(u) := sup
α,β∈Nd

0

sup
x∈Rd

|xβDαu(x)|e−λφ
∗
ω(

|α|
λ )−µφ∗

ω(
|β|
µ ),(2.2)

for λ, µ > 0. On the other hand, it is not difficult to see (using, for instance, [8, Lemma 4.7(ii)])
that the family of seminorms

(2.3) qλ,µ(u) := sup
α∈Nd

0

sup
x∈Rd

|Dαu(x)|e−λφ∗
ω(

|α|
λ )+µω(x), λ, µ > 0,

defines another equivalent system of seminorms for Sω(Rd).
We recall that Sω(Rd) ⊆ S(Rd) and for their correspondent dual spaces we have the inclusion

S ′(Rd) ⊆ S ′
ω(Rd). Moreover, the Fourier transform is a continuous automorphism from Sω(Rd)

to Sω(Rd) and from S ′
ω(Rd) to S ′

ω(Rd).
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The condition (β) of non-quasianalyticity in Definition 2.1 ensures the existence of functions
with compact support in Sω(Rd). To be more precise, let us briefly recall (see [11, 4]) the
definition of the space E(ω)(Ω) of ω-ultradifferentiable functions of Beurling type in an open
subset Ω of Rd. It is the set

E(ω)(Ω) :=
{
f ∈ C∞(Ω) : ∀K ⊂⊂ Ω, ∀m ∈ N

sup
α∈Nd

sup
x∈K

|Dαf(x)|e−mφ∗
ω(

|α|
m ) < +∞

}
.

To define then the space of ω-ultradifferentiable functions of Beurling type with compact sup-
port, we first consider, for a compact set K ⊂ Ω,

(2.4) D(ω)(K) := {f ∈ E(ω)(Ω) : supp f ⊆ K}.
This space is not trivial because of (β) of Definition 2.1. Finally, we set the space of test
functions as follows

D(ω)(Ω) = ind lim
K↗Ω

D(ω)(K).

Then the following continuous inclusions hold (see [17, 3]):

D(ω)(Rd) ⊂ Sω(Rd) ⊂ E(ω)(Rd).

Example 2.3. An example of non-quasianalytic subadditive weight function is

ω(t) = t1/s, s > 1.

In this case E(ω)(Ω) is the space γ(s)(Ω) of small Gevrey functions (see [24]), D(ω)(Ω) is the
space of small Gevrey functions with compact support. The space Sω(Rd) is the Gelfand-Shilov
space of Beurling type Σs(Rd) (see [31]).

Other examples of admissible weights are given by

ω(t) = logβ(eβ−1 + t), β ≥ 1.

In this case we recover, for β = 1, the class E(Ω) of C∞ functions, the class of D(Ω) of C∞

functions with compact support in Ω and, for Sω(Rd), the classical space S(Rd) of rapidly
decreasing functions in Rd.

We refer, for instance, to [11, 1, 2] for more examples. We also refer to [9] for the comparison
of the spaces E(ω),D(ω) with the analogous ones defined by sequences in the sense of Denjoy-
Carleman (in the Roumieu case as well; see at the beginning of Section 4 for more information).

Let us denote by Tx, Mξ and Π(z), respectively, the translation, the modulation and the
phase-space shift operators, defined by

Txf(y) = f(y − x), Mξf(y) = ei⟨y,ξ⟩f(y), Π(z)f(y) =MξTxf(y) = ei⟨y,ξ⟩f(y − x),

for x, y, ξ ∈ Rd and z = (x, ξ).

Definition 2.4. For a window function φ ∈ Sω(Rd) \ {0}, the short-time Fourier transform
(briefly STFT) of f ∈ S ′

ω(Rd) is defined, for z = (x, ξ) ∈ R2d, by:

Vφf(z) := ⟨f,Π(z)φ⟩(2.5)

=

∫
Rd

f(y)φ(y − x)e−i⟨y,ξ⟩dy,(2.6)
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where the bracket ⟨·, ·⟩ in (2.5) and the integral in (2.6) denote the conjugate linear action of
S ′
ω on Sω, consistent with the inner product ⟨·, ·⟩L2.

By [19, Lemma 1.1], for f, φ, ψ ∈ Sω(Rd) we have the following inversion formula:

⟨ψ, φ⟩f(y) = 1

(2π)d

∫
R2d

Vφf(z)(Π(z)ψ)(y)dz.(2.7)

In particular, for ψ = φ ∈ Sω(Rd) \ {0}:

f(y) =
1

(2π)d∥φ∥2L2

∫
R2d

Vφf(z)(Π(z)φ)(y)dz.(2.8)

We recall, from [19], the following results:

Theorem 2.5. Let φ ∈ Sω(Rd) \ {0} and f ∈ S ′
ω(Rd). Then Vφf is continuous and there are

constants c, λ > 0 such that

|Vφf(z)| ≤ ceλω(z) ∀z ∈ R2d.(2.9)

Proposition 2.6. Let φ ∈ Sω(Rd)\{0} and assume that F : R2d → C is a measurable function
that satisfies that for all λ > 0 there is a constant Cλ > 0 such that

|F (z)| ≤ Cλe
−λω(z) ∀z ∈ R2d.

Then

f(y) :=

∫
R2d

F (z)(Π(z)φ)(y)dz

defines a function f ∈ Sω(Rd).

Theorem 2.7. Let φ ∈ Sω(Rd) \ {0}. Then, for f ∈ S ′
ω(Rd), the following are equivalent:

(i) f ∈ Sω(Rd);
(ii) for all λ > 0 there exists Cλ > 0 such that

|Vφf(z)| ≤ Cλe
−λω(z) ∀z ∈ R2d;

(iii) Vφf ∈ Sω(R2d).

The following lemma is well known for functions in S(Rd), and hence in Sω(Rd). So we omit
its proof.

Lemma 2.8. For f, φ ∈ Sω(Rd) we have that

V̂φf(η, y) = (2π)dei⟨η,y⟩f(−y)φ̂(η) ∀(η, y) ∈ R2d.

As a consequence, we can deduce the following result.

Proposition 2.9. Let φ ∈ Sω(Rd) \ {0}. Then

Vφ : Sω(Rd) −→ Sω(R2d)

is continuous.
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Proof. Let us first remark that if f ∈ Sω(Rd) then Vφf ∈ Sω(R2d) by Theorem 2.7.
Since Sω is a Fréchet space, to prove the continuity of Vφ we consider a sequence {fn}n∈N ⊂

Sω(Rd) such that

fn −→ f ∈ Sω(Rd) in Sω(Rd)(2.10)

and prove that Vφfn → Vφf in Sω(R2d).
Indeed, (2.10) implies that

ei⟨η,y⟩fn(−y)φ̂(η) −→ ei⟨η,y⟩f(−y)φ̂(η) in Sω(R2d)

and hence, by Lemma 2.8,

V̂φfn → V̂φf in Sω(R2d).

Applying the inverse Fourier transform, which is continuous on Sω, we have that

Vφfn → Vφf in Sω(R2d).

and the proof is complete. �
The short-time Fourier transform also provides a new equivalent system of seminorms for

Sω(Rd).

Proposition 2.10. If φ ∈ Sω(Rd) \ {0}, then the collection of seminorms

∥Vφf∥ω,λ := sup
z∈R2d

|Vφf(z)|eλω(z),

for λ > 0, forms an equivalent system of seminorms for Sω(Rd).

Proof. Set

S̃ω(Rd) := {f ∈ S(Rd) : ∥Vφf∥ω,λ < +∞ ∀λ > 0}.

By Theorem 2.7 the sets S̃ω(Rd) and Sω(Rd) are equal. We have to prove that they have the
same topology.

By the inversion formula (2.8) we have that, for z = (x, ξ) ∈ R2d and λ, µ > 0,

e−λφ
∗
ω(

|α|
λ )e−µφ

∗
ω(

|β|
µ )|yβDα

y f(y)|

≤ Ce−λφ
∗
ω(

|α|
λ )e−µφ

∗
ω(

|β|
µ )

∫
R2d

|Vφf(z)| · |yβDα
y (Π(z)φ)(y)|dz

= Ce−λφ
∗
ω(

|α|
λ )e−µφ

∗
ω(

|β|
µ )

∫
R2d

|Vφf(x, ξ)| · |yβDα
y e

i⟨y,ξ⟩φ(y − x)|dxdξ

≤ C
∑
γ≤α

(
α

γ

)
2−|α|

∫
R2d

|Vφf(x, ξ)| · |y||β|e−µφ
∗
ω(

|β|
µ )(2.11)

·|ξ||α−γ||Dγ
yφ(y − x)|e−λφ∗

ω(
|α|
λ )2|α|dxdξ

for some C > 0.
We shall now need the following inequality

tje−µφ
∗
ω( j

µ) ≤ Cµe
µω(t), ∀t > 0, j ∈ N0,(2.12)
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that is well known for t ≥ 1 with Cµ = 1 (see, for instance, [8, Lemma 4.7(i)] or [15]), and is
trivial for 0 < t ≤ 1 with Cµ = e−µφ

∗
ω(0), since φ∗ is increasing.

Substituting (2.12) and (2.1) into (2.11), by the subadditivity of ω we have

e−λφ
∗
ω(

|α|
λ )−µφ∗

ω(
|β|
µ )|yβDα

y f(y)| ≤ Cµ
∑
γ≤α

(
α

γ

)
2−|α|

∫
R2d

|Vφf(x, ξ)|eµω(x)eµω(y−x)

·|ξ||α−γ||Dγ
yφ(y − x)|e−3λφ∗

ω(
|α|
3λ )dxdξ.(2.13)

Since φ ∈ Sω(Rd), by (2.3), for every λ, µ > 0 there is a constant Cλ,µ > 0 such that for all
γ ∈ Nd

0 and y ∈ Rd,

|Dγ
yφ(y)|eµω(y) ≤ Cλ,µe

λφ∗
ω(

|γ|
λ ).(2.14)

From (2.14) with 3λ instead of λ and y − x instead of y, we have that for every µ, λ > 0 there
exists a constant Cµ,λ > 0 such that

e−λφ
∗
ω(

|α|
λ )−µφ∗

ω(
|β|
µ )|yβDα

y f(y)| ≤ Cµ,λ
∑
γ≤α

(
α

γ

)
2−|α|

·
∫
R2d

|Vφf(x, ξ)|eµω(x)|ξ||α−γ|e3λφ
∗
ω(

|γ|
3λ )−3λφ∗

ω(
|α|
3λ )dxdξ.

By (2.12) we have |ξ||α−γ| ≤ C3λe
3λω(ξ)+3λφ∗

ω(
|α−γ|
3λ

). Since φ∗
ω is convex and φ∗

ω(0) ≤ 0, we
have that

φ∗
ω(a) + φ∗

ω(b) = φ∗
ω

(
(a+ b)

a

a+ b

)
+ φ∗

ω

(
(a+ b)

b

a+ b

)
≤ φ∗

ω(a+ b), a, b > 0.(2.15)

Therefore, for a new constant Cµ,λ > 0:

e−λφ
∗
ω(

|α|
λ )−µφ∗

ω(
|β|
µ )|yβDα

y f(y)|

≤ Cµ,λ
∑
γ≤α

(
α

γ

)
2−|α|

∫
R2d

|Vφf(x, ξ)|eµω(x)e3λω(ξ)dxdξ

≤ Cµ,λ

∫
R2d

|Vφf(z)|e(µ+3λ+m)ω(z)e−mω(z)dz

≤ C ′
µ,λ∥Vφf∥ω,µ+3λ+m,(2.16)

for C ′
µ,λ := Cµ,λ

∫
R2d e

−mω(z)dz, which is finite if m ≥ (2d + 1)/b, where b is the constant in
condition (γ) of Definition 2.1.

It is easy to see that S̃ω(Rd) is a Fréchet space. Indeed, the estimate (2.16) implies that the
identity operator I : S̃ω(Rd) → Sω(Rd) is continuous. Hence, any Cauchy sequence {fn}n∈N
in S̃ω(Rd) is a Cauchy sequence in Sω(Rd). So, it converges in Sω(Rd) to some f (because
Sω(Rd) is complete). From Proposition 2.9, {Vφfn}n∈N converges to Vφf in Sω(R2d). Therefore,

{fn}n∈N converges to f in S̃ω(Rd).
We can apply the open mapping theorem to conclude that I is an isomorphism and hence

the two topologies on Sω(Rd) coincide. �
Now, we can prove the following
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Proposition 2.11. Assume that ψ, γ ∈ Sω(Rd) \ {0} with ⟨ψ, γ⟩ ≠ 0. Then the following
assertions hold:

(a) If F : R2d → C is a measurable function that satisfies, for some c, λ > 0,

|F (z)| ≤ ceλω(z) ∀z ∈ R2d,(2.17)

then

Sω(Rd) ∋ φ 7→ ⟨f, φ⟩ :=
∫
R2d

F (z)⟨Π(z)γ, φ⟩dz

defines an ω-tempered distribution f ∈ S ′
ω(Rd).

(b) In particular, if F = Vψf for some f ∈ S ′
ω(Rd), then the following inversion formula

holds:

f =
1

(2π)d⟨γ, ψ⟩

∫
R2d

Vψf(z)Π(z)γdz.(2.18)

Proof. From (2.17) we have, for all φ ∈ Sω(Rd),

|⟨f, φ⟩| ≤
∫
R2d

|F (z)| · |Vγφ(z)|dz

≤ c

∫
R2d

eλω(z)+mω(z)|Vγφ(z)|e−mω(z)dz

≤ c′∥Vγφ∥ω,λ+m(2.19)

for some c′ > 0 and m ≥ (2d+ 1)/b, where b is the constant in condition (γ) of Definition 2.1.
From Proposition 2.10 the inequality (2.19) implies that f defines a continuous linear func-

tional on Sω(Rd), i.e. f ∈ S ′
ω(Rd). This proves (a).

In particular, if F = Vψf for some f ∈ S ′
ω(Rd) then F satisfies (2.17) by Theorem 2.5 and

hence (2.18) defines an ω-tempered distribution f̃ ∈ S ′
ω(Rd) given by

⟨f̃ , φ⟩ = 1

(2π)d⟨γ, ψ⟩

∫
R2d

Vψf(z)⟨Π(z)γ, φ⟩dz ∀φ ∈ Sω(Rd).

However, from (2.7) we have that

φ =
1

(2π)d⟨ψ, γ⟩

∫
R2d

Vγφ(z)Π(z)ψdz

and then (see also [18, pg 43] for vector valued integrals)

⟨f, φ⟩ = 1

(2π)d⟨ψ, γ⟩

∫
R2d

Vγφ(z)⟨f,Π(z)ψ⟩dz

=
1

(2π)d⟨γ, ψ⟩

∫
R2d

⟨Π(z)γ, φ⟩Vψf(z)dz

= ⟨f̃ , φ⟩, φ ∈ Sω(Rd).

Therefore f = f̃ and (b) is proved. �
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Let us now recall the definition of the adjoint operator of Vφ. We consider, for φ ∈ L2(Rd),
the operator

Aφ : L2(R2d) −→ L2(Rd)

defined by

AφF =

∫
R2d

F (z)Π(z)φdz.

This is the adjoint operator of Vφ : L2(Rd) → L2(R2d) since, for all F ∈ L2(R2d) and
h ∈ L2(Rd),

⟨AφF, h⟩ =
∫
R2d

F (z)⟨Π(z)φ, h⟩dz = ⟨F, Vφh⟩ = ⟨V ∗
φF, h⟩.

In particular, for φ ∈ Sω(Rd) and F ∈ Sω(R2d) we can define the adjoint operator V ∗
φF =

AφF . We observe that V ∗
φF ∈ Sω(Rd). In fact, if G(x, ξ, t) := F (x, ξ)φ(t − x) ∈ Sω(R3d), we

can write AφF as a partial Fourier transform:

AφF (t) =

∫
R2d

F (x, ξ)φ(t− x)ei⟨t,ξ⟩dxdξ =
(
F(x,ξ)G

)
(x′, ξ′, t)

∣∣
(x′,ξ′,t)=(0,−t,t) .(2.20)

Since Sω(R3d) is invariant under partial Fourier transforms (see, e.g. [8, Remark 4.10]) and
restrictions to linear sub-manifolds we deduce that

V ∗
φ : Sω(R2d) −→ Sω(Rd)(2.21)

is continuous.
Moreover, the inversion formula (2.7) gives, for φ, ψ, f ∈ Sω(Rd) with ⟨φ, ψ⟩ ̸= 0,

1

⟨φ, ψ⟩
V ∗
φVψf =

1

⟨φ, ψ⟩

∫
R2d

Vψf(z)Π(z)φdz = (2π)df,

i.e.
1

(2π)d⟨φ, ψ⟩
V ∗
φVψ = ISω(Rd).(2.22)

More in general, if φ ∈ Sω(Rd) \ {0} and F is a measurable function on R2d, we define the
adjoint operator

V ∗
φF =

∫
R2d

F (z)Π(z)φdz,(2.23)

where the integral is interpreted, if necessary, in a weak sense, i.e.

⟨V ∗
φF, g⟩ =

∫
R2d

F (z)⟨Π(z)φ, g⟩dz =
∫
R2d

F (z)Vφg(z)dz = ⟨F, Vφg⟩

for g ∈ Sω(Rd).
In particular, if φ, ψ ∈ Sω(Rd) \ {0} with ⟨φ, ψ⟩ ̸= 0, by Theorem 2.5 and Proposition 2.11

we can define the adjoint operator (2.23) for F = Vψf with f ∈ S ′
ω(Rd) and obtain that, for all

g ∈ Sω(Rd),

⟨V ∗
φVψf, g⟩ =

∫
R2d

Vψf(z)⟨Π(z)φ, g⟩dz = (2π)d⟨φ, ψ⟩⟨f, g⟩,(2.24)
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i.e.

1

(2π)d⟨φ, ψ⟩
V ∗
φVψ = IS′

ω(Rd).(2.25)

We can now prove the following proposition in a standard way.

Proposition 2.12. Let φ, ψ, γ ∈ Sω(Rd) with ⟨γ, ψ⟩ ̸= 0 and let f ∈ S ′
ω(Rd). Then

|Vφf(z)| ≤
1

(2π)d|⟨γ, ψ⟩|
(|Vψf | ∗ |Vφγ|)(z), z = (x, ξ) ∈ R2d.

3. The ω-Gabor wave front set

In this section we consider a global wave front set for ω-tempered distributions from two different
points of view. The first one is defined in terms of rapid decay of the STFT in conical sets, that
is a natural approach to analyze the regularity of an ultradistribution with respect to variables
and covariables simultaneously. The second one is described in terms of the rapid decay of the
Gabor frame coefficients, and is more related to applications to signal processing and related
topics (see, for instance, [35, 14, 20]).

One of the main results of this section is to prove that these two points of view lead to the
same global wave front set, so that it is actually sufficient to consider the decay of the Gabor
transform in conical sets intersected with a suitable lattice.

Definition 3.1. Let u ∈ S ′
ω(Rd) and φ ∈ Sω(Rd) \ {0}. We say that z0 = (x0, ξ0) ∈ R2d \ {0}

is not in the ω-wave front set WF′
ω(u) of u if there exists an open conic set Γ ⊆ R2d \ {0}

containing z0 and such that

sup
z∈Γ

eλω(z)|Vφu(z)| < +∞, ∀λ > 0.(3.1)

We observe that WF′
ω(u) is a closed conic subset of R2d \ {0}. Moreover, it does not depend

on the choice of the window function φ, as the following proposition shows.

Proposition 3.2. Let u ∈ S ′
ω(Rd), φ ∈ Sω(Rd) \ {0} and z0 ∈ R2d \ {0}. Assume that there

exists an open conic set Γ ⊆ R2d \ {0} containing z0 such that (3.1) is satisfied. Then, for
any ψ ∈ Sω(Rd) \ {0} and for any open conic set Γ′ ⊆ R2d \ {0} containing z0 and such that
Γ′ ∩ S2d−1 ⊆ Γ, where S2d−1 is the unit sphere in R2d, we have

sup
z∈Γ′

eλω(z)|Vψu(z)| < +∞, ∀λ > 0.(3.2)

Proof. From Proposition 2.12 we have that

|Vψu(z)| ≤ (2π)−d∥φ∥−2
L2 (|Vφu| ∗ |Vψφ|)(z) ∀z ∈ R2d.(3.3)

Moreover, since φ ∈ Sω(Rd), from Theorem 2.7 we have that for every µ > 0 there exists
Cµ > 0 such that

eµω(z)|Vψφ(z)| ≤ Cµ ∀z ∈ R2d.(3.4)
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Then

(|Vφu| ∗ |Vψφ|)(z) =

∫
R2d

|Vφu(z − z′)| · |Vψφ(z′)|dz′

=

∫
⟨z′⟩≤ε⟨z⟩

|Vφu(z − z′)| · |Vψφ(z′)|dz′ +
∫
⟨z′⟩>ε⟨z⟩

|Vφu(z − z′)| · |Vψφ(z′)|dz′

=: I1 + I2.(3.5)

Let us choose ε > 0 sufficiently small so that

z ∈ Γ′, |z| ≥ 1, ⟨z′⟩ ≤ ε⟨z⟩ ⇒ z − z′ ∈ Γ,

and hence, from (3.1), the subadditivity of ω and (3.4):

I1 ≤ Cλ

∫
⟨z′⟩≤ε⟨z⟩

e−λω(z−z
′)|Vψφ(z′)|dz′

≤ Cλe
−λω(z)

∫
R2d

e(λ+m)ω(z′)|Vψφ(z′)|e−mω(z
′)dz′

≤ C ′
λe

−λω(z), λ > 0, z ∈ Γ′, |z| ≥ 1.(3.6)

if m ≥ (2d+ 1)/b, where b is the constant in condition (γ) of Definition 2.1.
On the other hand, from Theorem 2.5 and (3.4), for m > 0 big enough:

I2 ≤ c

∫
⟨z′⟩>ε⟨z⟩

eλω(z−z
′)|Vψφ(z′)|dz′

≤ ceλω(z)
∫
⟨z′⟩>ε⟨z⟩

e(λ+m−µ)ω(z′)|Vψφ(z′)|eµω(z
′)e−mω(z

′)dz′

≤ c′eλω(z)e−A(λ+m−µ)e(λ+m−µ)Bεω(z)Cµ(3.7)

for some c′ > 0, if µ > λ +m, A = ω(1) and Bε = ([1/ε] + 1)−1, since for ⟨z′⟩ > ε⟨z⟩ by the
subadditivity of ω:

ω(z) ≤ ω(⟨z⟩) ≤ ω

(
1

ε
⟨z′⟩

)
≤

([
1

ε

]
+ 1

)
ω(⟨z′⟩)

≤
([

1

ε

]
+ 1

)
ω(1 + |z′|) ≤

([
1

ε

]
+ 1

)(
ω(1) + ω(z′)

)
,

where [x] denotes the integer part of x ∈ R.
Since ε is fixed, the arbitrariness of µ > λ +m in (3.7) implies that for every λ′ > 0 there

exists a constant Cλ′ > 0 such that

I2 ≤ Cλ′e
−λ′ω(z), z ∈ R2d.(3.8)

This gives the conclusion. �
Given α, β > 0, consider the lattice Λ = αZd × βZd ⊂ R2d. For a window φ ∈ L2(Rd) \ {0}

the collection {Π(σ)φ}σ∈Λ is called a Gabor frame for L2(Rd) provided there exist constants
A,B > 0 such that

A∥f∥2L2 ≤
∑
σ∈Λ

|⟨f,Π(σ)φ⟩|2 ≤ B∥f∥2L2 , f ∈ L2(Rd)
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(see [18] for the analysis of the conditions on α and β for which {Π(σ)φ}σ∈Λ is a Gabor frame).
Now, we define the Gabor ω-wave front set.

Definition 3.3. Let φ ∈ Sω(Rd) \ {0} and Λ = α0Zd × β0Zd ⊆ R2d a lattice with α0, β0 > 0
sufficiently small so that {Π(σ)φ}σ∈Λ is a Gabor frame for L2(Rd). If u ∈ S ′

ω(Rd), we say that
z0 ∈ R2d \ {0} is not in the Gabor ω-wave front set WFGω (u) of u if there exists an open conic
set Γ ⊂ R2d \ {0} containing z0 such that

sup
σ∈Λ∩Γ

eλω(σ)|Vφu(σ)| < +∞ ∀λ > 0.(3.9)

Our next goal is to prove that WF′
ω(u) = WFGω (u). To this aim we need some properties of

modulation spaces adapted to our setting. We prove those results that differ from the classical
ones already known in S(Rd) (see [18]).

We consider, for λ ∈ R \ {0},

mλ(z) = eλω(z), vλ(z) = e|λ|ω(z), z ∈ Rn.(3.10)

The weights mλ(z) are vλ-moderate, in the sense that

mλ(z1 + z2) ≤ vλ(z1)mλ(z2),

for every λ ̸= 0 and z1, z2 ∈ Rn. This is immediate from the subadditivity of ω.
We denote, following [18], the weighted Lp,q spaces by

Lp,qmλ
(R2d) :=

{
F measurable on R2d such that

∥F∥Lp,q
mλ

:=
(∫

Rd

(∫
Rd

|F (x, ξ)|pmλ(x, ξ)
pdx

)q/p
dξ
)1/q

< +∞
}
,

for 1 ≤ p, q < +∞, and

L∞,q
mλ

(R2d) :=
{
F measurable on R2d such that

∥F∥L∞,q
mλ

:=
(∫

Rd

(
ess sup
x∈Rd

|F (x, ξ)|mλ(x, ξ)
)q
dξ
)1/q

< +∞
}
,

Lp,∞mλ
(R2d) :=

{
F measurable on R2d such that

∥F∥Lp,∞
mλ

:= ess sup
ξ∈Rd

(∫
Rd

|F (x, ξ)|pmλ(x, ξ)
pdx

)1/p

< +∞
}
,

for 1 ≤ p, q ≤ +∞ with p = +∞ or q = +∞ respectively.
By [18, Lemma 11.1.2] these are Banach spaces for all 1 ≤ p, q ≤ +∞. Moreover, for

F ∈ Lp,qmλ
(R2d) and H ∈ Lp

′,q′

1/mλ
(R2d), where p′ and q′ are the conjugate exponents of p and q

respectively (i.e. 1
p
+ 1

p′
= 1 if 1 < p < +∞, p′ = +∞ if p = 1, p′ = 1 if p = +∞, and the same

for q), then F ·H ∈ L1(R2d) and∣∣∣∣∫
R2d

F (z)H(z)dz

∣∣∣∣ ≤ ∥F∥Lp,q
mλ

∥H∥
Lp′,q′
1/mλ

.(3.11)

If 1 ≤ p, q < +∞, the dual of Lp,qmλ
(R2d) is given by Lp

′,q′

1/mλ
(R2d).
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From [18, Proposition 11.1.3] we have the following Young inequality for weighted Lp,q spaces.
For F ∈ Lp,qmλ

and G ∈ L1
vλ
,

∥F ∗G∥Lp,q
mλ

≤ C∥F∥Lp,q
mλ

∥G∥L1
vλ
,(3.12)

for some C > 0.

Remark 3.4. It is easy to see that for every λ ∈ R \ {0} and 1 ≤ p, q ≤ +∞ we have

Sω(R2d) ⊂ Lp,qmλ
(R2d).

Moreover e−µω(z) ∈ Lp,qmλ
(R2d) for µ > 0 large enough, since mλ(z) = eλω(z) and e−Aω(z) ≤

e−aA(1 + |z|)−bA for any A > 0, by condition (γ) of Definition 2.1.

Definition 3.5. Let φ ∈ Sω(Rd) \ {0}, and mλ(z) as in (3.10) for some λ ̸= 0. For 1 ≤ p, q ≤
+∞, the modulation space M p,q

mλ
(Rd) is defined by

M p,q
mλ

(Rd) := {f ∈ S ′
ω(Rd) : Vφf ∈ Lp,qmλ

(R2d)},

with norm ∥f∥Mp,q
mλ

= ∥Vφf∥Lp,q
mλ

. We denote then M p
mλ

(Rd) := M p,p
mλ

(Rd).

Observe that Definition 3.5 is similar to the definition of modulation spaces in [18]; the
difference is that here M p,q

mλ
(Rd) is a subset of S ′

ω(Rd), and we take a window φ ∈ Sω(Rd),

while in [18] the modulation space Mp,q
m (Rd) is a subset of S ′(Rd) and the window belongs to

S(Rd) (or a subset of (M1
v )

∗ for a suitable weight v, in a suitable space of ‘special’ windows
SC(Rd)). Moreover, here we always need weights of exponential type. We refer to [40, 41]
for modulation spaces in the setting of Gelfand-Shilov spaces, among other type of spaces of
ultradifferentiable functions and ultradistributions.

The definition of M p,q
mλ

is independent of the window φ, in the sense that different (non-zero)

windows in Sω(Rd) give equivalent norms. Indeed for φ, ψ ∈ Sω(Rd), φ, ψ ̸= 0, we have from
Proposition 2.12, applied with γ = ψ, that

∥Vφf∥Lp,q
mλ

≤ 1

(2π)d∥ψ∥2L2

∥|Vψf | ∗ |Vφψ|∥Lp,q
mλ

≤ C∥Vψf∥Lp,q
mλ
,(3.13)

where C =
∥Vφψ∥L1

vλ

(2π)d∥ψ∥2
L2
, as we can deduce from Young inequality (3.12) (observe that C is finite

by Proposition 2.9 and Remark 3.4). Then, by interchanging the roles of φ and ψ we have that
Vφf ∈ Lp,qmλ

if and only if Vψf ∈ Lp,qmλ
, and the corresponding modulation space norms of f with

respect to the two windows are equivalent.

Remark 3.6. From Theorems 2.7 and 2.5 and Proposition 2.11 we have that

Sω(Rd) =
∩
λ>0

M∞
mλ

(Rd); S ′
ω(Rd) =

∪
λ<0

M∞
mλ

(Rd).

The inversion formula of Proposition 2.11 holds also in modulation spaces, as stated below.

Proposition 3.7. Let γ ∈ Sω(Rd) be a not identically zero window, and consider, for a mea-
surable function F on R2d, the adjoint V ∗

γ F defined as in (2.23). Then:
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(i) The operator V ∗
γ acts continuously as

V ∗
γ : Lp,qmλ

(R2d) → M p,q
mλ

(Rd),

and there exists C > 0 such that

∥V ∗
γ F∥Mp,q

mλ
≤ C∥Vφγ∥L1

vλ
∥F∥Lp,q

mλ
,

where φ is the window in the corresponding M p,q
mλ

norm.

(ii) In the particular case when F = Vgf , for g ∈ Sω(Rd), and f ∈ M p,q
mλ

, if ⟨γ, g⟩ ̸= 0 the
following inversion formula holds:

f =
1

(2π)d⟨γ, g⟩

∫
R2d

Vgf(z)Π(z)γ dz.

Proof. (i) We start by proving that V ∗
γ F is an element of S ′

ω(Rd). For ψ ∈ Sω(Rd) we have
from (3.11),

|⟨V ∗
γ F, ψ⟩| = |⟨F, Vγψ⟩| ≤ ∥F∥Lp,q

mλ
∥Vγψ∥Lp′,q′

1/mλ

≤ ∥F∥Lp,q
mλ

∥eµω(z)Vγψ∥∞∥e−µω(z)∥
Lp′,q′
1/mλ

;

this expression is finite for µ > 0 sufficiently large, as we can deduce from Theorem 2.7(ii)
and Remark 3.4. Then from Proposition 2.10 we have that V ∗

γ F is a well defined element of

S ′
ω(R2d). From Theorem 2.5 we have that VφV

∗
γ F is a continuous function; it is explicitly given

by

VφV
∗
γ F (z) = ⟨V ∗

γ F,Π(z)φ⟩ =
∫
R2d

F (y, η)Vγ(Π(z)φ)(y, η) dy dη.

Writing z = (x, ξ) we have

|VφV ∗
γ F (x, ξ)| =

∣∣∣∣∫
R2d

F (y, η)Vφγ(x− y, ξ − η)e−i⟨y,ξ−η⟩ dy dη

∣∣∣∣
≤ (|F | ∗ |Vφγ|)(x, ξ).

Then, from Young inequality (3.12) we obtain

∥V ∗
γ F∥Mp,q

mλ
= ∥VφV ∗

γ F∥Lp,q
mλ

≤ C∥F∥Lp,q
mλ

∥Vφγ∥L1
vλ
,(3.14)

and this expression is finite since Vφγ ∈ Sω(R2d) ⊂ L1
vλ
(R2d) for every λ ∈ R from Remark 3.4.

(ii) We first observe that, by (3.13), Vgf ∈ Lp,qmλ
. Then, from point (i), f̃ = 1

(2π)d⟨γ,g⟩V
∗
γ Vgf ∈

M p,q
mλ

. Since M p,q
mλ

⊂ S ′
ω, we have that f̃ = f by (2.25). �

Theorem 3.8. Let 1 ≤ p, q <∞. We have

(M p,q
mλ

)∗ = M p′,q′

1/mλ
,

and the duality is given by

⟨f, h⟩ =
∫
R2d

Vφf(z)Vφh(z) dz

for f ∈ M p,q
mλ

and h ∈ M p′,q′

1/mλ
.
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Proof. The proof of this result relies on the duality of weighted Lp,q spaces, and it is the same
as in Theorem 11.3.6 of [18]. �
Proposition 3.9. For 1 ≤ p, q <∞ we have that Sω(Rd) is a dense subspace of M p,q

mλ
.

Proof. We first observe that, from property (γ) of the weight function ω (see Definition 2.1) we
have that, for µ > λ big enough, e−µω(z) ∈ Lp,qmλ

by Remark 3.4. Hence, for every f ∈ Sω(Rd)
we obtain

∥f∥Mp,q
mλ

= ∥Vφf∥Lp,q
mλ

≤ ∥Vφf(z)eµω(z)∥∞∥e−µω(z)∥Lp,q
mλ
.

From Proposition 2.10 we have

Sω(Rd) ⊂ M p,q
mλ
,

with continuous inclusion. It remains to prove the density. We denote by Kn := {z ∈ R2d :
|z| ≤ n}, and we fix φ ∈ Sω with ∥φ∥2L2 = (2π)−d. Consider f ∈ M p,q

mλ
and define

Fn = Vφf · χKn and fn = V ∗
φFn.

From Proposition 2.6 we have that fn ∈ Sω(Rd). Moreover, using (2.25) and Proposition 3.7
we obtain

∥fn − f∥Mp,q
mλ

= ∥V ∗
φFn − V ∗

φVφf∥Mp,q
mλ

≤ C∥Fn − Vφf∥Lp,q
mλ

= C∥Vφf∥Lp,q
mλ

(R2d\Kn).

So, ∥fn − f∥Mp,q
mλ

tends to 0 for n→ ∞, which completes the proof. �

We recall now from [18] some basic facts about amalgam spaces.

Definition 3.10. We indicate with ℓp,qmλ
(Z2d) the space of all sequences (akn)k,n∈Zd, with akn ∈ C

for every k, n ∈ Zd, such that the following norm is finite

∥a∥ℓp,qmλ
=

(∑
n∈Zd

(∑
k∈Zd

|akn|pmλ(k, n)
p

)q/p)1/q

.

Definition 3.11. Let F be a measurable function on R2d, and define

akn = ess sup
(x,ξ)∈[0,1]2d

|F (k + x, n+ ξ)|.

We say that F ∈ W (Lp,qmλ
) if the sequence a = (akn)k,n∈Zd belongs to ℓp,qmλ

(Z2d). The space
W (Lp,qmλ

) is called amalgam space, and has the norm defined by

∥F∥W (Lp,q
mλ

) = ∥a∥ℓp,qmλ
.

Let φ ∈ Sω(Rd) and Λ = α0Zd × β0Zd a lattice with α0, β0 > 0 sufficiently small so that
{Π(σ)φ}σ∈Λ is a Gabor frame for L2(Rd). We indicate with m̃λ the restriction of the weight
(3.10) to the lattice Λ, in the sense that

m̃λ(k, n) := mλ(α0k, β0n).

We recall the following result (see Proposition 11.1.4 of [18]).
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Proposition 3.12. Let F ∈ W (Lp,qmλ
) be a continuous function, and α0, β0 > 0. Then F |Λ ∈

ℓp,qm̃λ
, and there exists a constant C = C(α0, β0, λ) such that

∥F |Λ∥ℓp,q
m̃λ

≤ C∥F∥W (Lp,q
mλ

).

Now, we study the Gabor frame operator associated to the lattice Λ, given by

Sφ,ψf =
∑
σ∈Λ

⟨f,Π(σ)φ⟩Π(σ)ψ,(3.15)

for φ, ψ, f ∈ L2(Rd).
We write as usual Sφ,ψ = DψCφ, where Cφ is the ‘analysis’ operator, acting on a function f

as

Cφf = ⟨f,Π(σ)φ⟩, σ ∈ Λ,(3.16)

and Dψ is the ‘synthesis’ operator, acting on a sequence c = (ckn)k,n∈Zd as

Dψc =
∑
k,n∈Zd

cknΠ(α0k, β0n)ψ.(3.17)

We analyze the action of the previous operators on the modulation spaces M p,q
mλ

. The proofs
of the next two results are very similar to [18, Thms. 12.2.3, 12.2.4], so we omit them. We just
remark that, since φ ∈ Sω ⊂ S, we have that Vφφ ∈ S; then by Proposition 12.1.11 of [18] we
have Vφφ ∈ W (L1

vλ
), and so we can apply Theorem 11.1.5 of [18].

Theorem 3.13. Let φ ∈ Sω(Rd) and Λ a lattice as before. Then the operator

Cφ : M p,q
mλ

(Rd) −→ ℓp,qm̃λ
(Z2d)

is bounded for every λ ∈ R \ {0}, α0, β0 > 0, and 1 ≤ p, q ≤ ∞.

Theorem 3.14. Let ψ ∈ Sω(Rd). Then we have:

(i) The operator

Dψ : ℓp,qm̃λ
(Z2d) −→ M p,q

mλ
(Rd)

is bounded, for every 1 ≤ p, q ≤ ∞, α0, β0 > 0, and λ ∈ R \ {0}.
(ii) For every c ∈ ℓp

′,q′

m̃−λ
and f ∈ M p,q

mλ
we have that

⟨Dψc, f⟩ = ⟨c, Cψf⟩, for 1 ≤ p, q <∞(3.18)

and

⟨Cψf, c⟩ = ⟨f,Dψc⟩, for 1 < p, q ≤ ∞.(3.19)

(iii) For p, q <∞, we have that Dψc converges unconditionally in M p,q
mλ

; if p = q = ∞, then
Dψc converges unconditionally weak∗ in M∞

1/vλ
.

Now, we study the Gabor frame operator (3.15). We recall (see [18, Prop. 5.1.1 and 5.2.1])
that if we take a window φ ∈ L2(Rd) and a lattice Λ such that {Π(σ)φ}σ∈Λ is a Gabor frame
for L2(Rd), the operator (3.15) is invertible on L2(Rd). Moreover, if we define the dual window
ψ of φ by ψ := S−1

φ,φφ, we have that for every f ∈ L2(Rd),

f =
∑
σ∈Λ

⟨f,Π(σ)φ⟩Π(σ)ψ
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with unconditional convergence in L2(Rd). We observe also that if φ ∈ Sω(Rd) then the dual
window ψ ∈ Sω(Rd) by [19, Thm. 4.2].

Lemma 3.15. Fix φ ∈ Sω(Rd) \ {0}, and let ψ ∈ Sω(Rd) \ {0} be the dual window of φ. For
f ∈ M p,q

mλ
(Rd), λ ∈ R \ {0}, we have

f = DψCφf =
∑
σ∈Λ

⟨f,Π(σ)φ⟩Π(σ)ψ

and

f = DφCψf =
∑
σ∈Λ

⟨f,Π(σ)ψ⟩Π(σ)φ,

with convergence in M p,q
mλ

for p, q <∞, and weak∗ convergence in M∞
1/vλ

in the case p = q = ∞.

Proof. We first consider the case p, q < ∞. From Proposition 3.9 we have that there exists a
sequence fn ∈ Sω(Rd) such that fn → f in M p,q

mλ
as n → ∞. Since Sω(Rd) ⊂ L2(Rd), we have

that

fn = DψCφfn = DφCψfn.(3.20)

From Theorems 3.13 and 3.14 we obtain DψCφfn → DψCφf and DφCψfn → DφCψf in M p,q
mλ

,
and so from (3.20) the result is proved.

We now pass to the case p = q = ∞. Let f ∈ M∞
1/vλ

and g ∈ M 1
vλ
. We have to prove that

⟨f, g⟩ = ⟨DψCφf, g⟩ = ⟨DφCψf, g⟩.(3.21)

From (3.18) and (3.19) we have that

⟨DψCφf, g⟩ = ⟨f,DφCψg⟩;

from the previous point we have that DφCψg = g in M 1
vλ
, so the first equality in (3.21) is

proved. The other is similar. �
Remark 3.16. Let u ∈ S ′

ω(Rd), and φ, ψ ∈ Sω(Rd) as in Lemma 3.15. Then for every
θ ∈ Sω(Rd) we have

⟨u, θ⟩ =
∑
σ∈Λ

⟨u,Π(σ)φ⟩⟨Π(σ)ψ, θ⟩.(3.22)

We have indeed that from Remark 3.6 there exists λ < 0 such that u ∈ M∞
mλ

= M∞
1/vλ

. Then,

from Lemma 3.15, for every g ∈ M 1
vλ
,

⟨u, g⟩ =
∑
σ∈Λ

⟨u,Π(σ)φ⟩⟨Π(σ)ψ, g⟩.

From Proposition 3.9, the previous formula then holds for g = θ ∈ Sω(Rd), so we have (3.22).

We can now prove the main result of this section.

Theorem 3.17. If u ∈ S ′
ω(Rd) then

WF′
ω(u) = WFGω (u).
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Proof. The inclusion WFGω (u) ⊆ WF′
ω(u) is trivial, so that we only have to prove that

WF′
ω(u) ⊆ WFGω (u).

Let 0 ̸= z0 /∈ WFGω (u). So, there exists an open conic set Γ ⊂ R2d\{0} containing z0 such that
(3.9) is satisfied. By Remark 3.16 we have that, for φ ∈ Sω(Rd) \ {0} and φ̃ = S−1

φφφ ∈ Sω(Rd)
its dual window,

⟨u, ψ⟩ =
∑
σ∈Λ

Vφu(σ)⟨Π(σ)φ̃, ψ⟩ ∀ψ ∈ Sω(Rd).

We denote

u1 =
∑
σ∈Λ∩Γ

Vφu(σ)Π(σ)φ̃,

u2 =
∑
σ∈Λ\Γ

Vφu(σ)Π(σ)φ̃.

Clearly Vφu(z) = Vφu1(z) + Vφu2(z). Denoting σ = (σ1, σ2) ∈ Rd × Rd, by (2.12), (2.1), the
subadditivity of ω and (2.14), we can estimate, for every α, β ∈ Nd

0, λ, µ > 0:

e−λφ
∗
ω(

|α|
λ )e−µφ

∗
ω(

|β|
µ )|xβ∂αu1(x)|

≤
∑
σ∈Λ∩Γ

|Vφu(σ)| ·
∣∣xβ∂α(ei⟨σ2,x⟩φ̃(x− σ1)

)∣∣e−λφ∗
ω(

|α|
λ )e−µφ

∗
ω(

|β|
µ )

≤
∑
σ∈Λ∩Γ

|Vφu(σ)|
∑
γ≤α

(
α

γ

)
2−|α||x||β|e−µφ

∗
ω(

|β|
µ )⟨σ2⟩|α−γ||∂γφ̃(x− σ1)|e−λφ

∗
ω(

|α|
λ )2|α|

≤ Cµ
∑
σ∈Λ∩Γ

|Vφu(σ)|
∑
γ≤α

(
α

γ

)
2−|α|eµω(x)|∂γφ̃(x− σ1)|⟨σ2⟩|α−γ|e−3λφ∗

ω(
|α|
3λ )

≤ Cµ
∑
σ∈Λ∩Γ

|Vφu(σ)|
∑
γ≤α

(
α

γ

)
2−|α|eµω(σ1)eµω(x−σ1)|∂γφ̃(x− σ1)|⟨σ2⟩|α−γ|e−3λφ∗

ω(
|α|
3λ )

≤ Cλ′,µ
∑
σ∈Λ∩Γ

|Vφu(σ)|
∑
γ≤α

(
α

γ

)
2−|α|eµω(σ1)eλ

′φ∗
ω(

|γ|
λ′ )−3λφ∗

ω(
|α|
3λ )⟨σ2⟩|α−γ|

for some Cµ, Cλ′,µ > 0.
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For λ′ = 6λ we apply [5, Prop. 2.1(g)], then (2.12) and (3.9), and finally obtain, for some
constants depending on λ and µ, and m > 0 big enough:

e−λφ
∗
ω(

|α|
λ )e−µφ

∗
ω(

|β|
µ )|xβ∂αu1(x)|

≤ Cλ,µ
∑
σ∈Λ∩Γ

|Vφu(σ)|
∑
γ≤α

(
α

γ

)
2−|α|eµω(σ1)e−6λφ∗

ω(
|α−γ|
6λ )⟨σ2⟩|α−γ|

≤ Cλ,µ
∑
σ∈Λ∩Γ

|Vφu(σ)|
∑
γ≤α

(
α

γ

)
2−|α|eµω(σ1)e6λω(⟨σ2⟩)

≤ Cλ,µ
∑
σ∈Λ∩Γ

|Vφu(σ)|e(µ+6λ)ω(⟨σ⟩)+mω(⟨σ⟩)e−mω(⟨σ⟩)

≤ C ′
λ,µ

∑
σ∈Λ∩Γ

e−mω(⟨σ⟩) ≤ C ′′
λ,µ, x ∈ Rd.(3.23)

This proves that u1 ∈ Sω(Rd) (here, we consider the seminorms given in (2.2)). Therefore, from
Theorem 2.7, Vφu1 ∈ Sω(R2d) and for every λ > 0 there is a constant Cλ > 0 such that

eλω(z)|Vφu1(z)| ≤ Cλ ∀z ∈ R2d.(3.24)

Let us now fix an open conic set Γ′ ⊂ R2d \ {0} containing z0 and such that Γ′ ∩ S2d−1 ⊆ Γ.
Then

inf
0 ̸=σ∈Λ\Γ
z∈Γ′

∣∣∣∣ σ|σ| − z

∣∣∣∣ = ε > 0(3.25)

and |σ − z| ≥ ε|σ| for 0 ̸= σ ∈ Λ \ Γ and z ∈ Γ′.
From the subadditivity of ω we have

eλω(z)|Vφu2(z)| ≤
∑
σ∈Λ\Γ

eλω(σ)+λω(z−σ)|Vφu2(σ)| · |⟨Π(σ)φ̃,Π(z)φ⟩|

≤ C
∑
σ∈Λ\Γ

e(λ+λ̄)ω(σ)eλω(z−σ)|Vφφ̃(z − σ)|,(3.26)

for some C, λ̄ > 0, because of Theorem 2.5 and since ([18, pg 41])

|⟨Π(σ)φ̃,Π(z)φ⟩| = |e−i⟨σ1,z2−σ2⟩Vφφ̃(z − σ)| = |Vφφ̃(z − σ)|.(3.27)

Since φ̃ ∈ Sω(Rd), from Theorem 2.7 we have that for every µ > 0 there is a constant Cµ > 0
such that

|Vφφ̃(z − σ)| ≤ Cµe
−µω(z−σ)

and hence, substituting in (3.26):

eλω(z)|Vφu2(z)| ≤ CCµ
∑
σ∈Λ\Γ

e(λ+λ̄)ω(σ)e(λ−µ)ω(z−σ).(3.28)
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However, for z ∈ Γ′ and σ ∈ Λ \Γ we have |σ− z| ≥ ε|σ| and therefore, by the subadditivity
of ω, we have that

ω(σ) = ω

(
ε|σ|
ε

)
≤

([
1

ε

]
+ 1

)
ω(ε|σ|) ≤

([
1

ε

]
+ 1

)
ω(z − σ).

Substituting in (3.28) we obtain, for M = ([1/ε] + 1)−1 and µ > λ sufficiently large:

eλω(z)|Vφu2(z)| ≤ CCµ
∑
σ∈Λ\Γ

e(λ+λ̄+λM−µM)ω(σ) ≤ Cλ, z ∈ Γ′,(3.29)

for some Cλ > 0.
From (3.24) and (3.29) we finally deduce

sup
z∈Γ′

eλω(z)|Vφu(z)| < +∞, λ > 0,

and hence z0 /∈ WF′
ω(u). �

From Theorem 3.17, in what follows we use WF′
ω(u) for WFGω (u) and any u ∈ S ′

ω(Rd).

Proposition 3.18. For every u ∈ S ′
ω(Rd) we have WF′

ω(u) = ∅ if and only if u ∈ Sω(Rd).

Proof. Suppose that u ∈ Sω(Rd), and fix a window function φ ∈ Sω(Rd) \ {0}; from Theorem
2.7 we have that for every λ > 0 there exists Cλ > 0 such that

|Vφu(z)| ≤ Cλe
−λω(z), ∀z ∈ R2d.

Then for every open conic set Γ ⊆ R2d \ {0} condition (3.1) holds, so WF′
ω(u) = ∅.

Suppose now that WF′
ω(u) = ∅. From Definition 3.1 we have that for every z ∈ R2d \ {0} there

exists an open conic set Γz ⊆ R2d \ {0} containing z such that for every λ > 0 there exists
Cλ,z > 0 satisfying

|Vφu(z)| ≤ Cλ,ze
−λω(z) ∀z ∈ Γz.

Let Υz = Γz ∩ S2d−1. We have that {Υz, z ∈ R2d \ {0}} is an open covering of S2d−1; since
S2d−1 is compact and Γz is conic, there exist z1, . . . , zk ∈ R2d \ {0} such that

Γz1 ∪ · · · ∪ Γzk = R2d \ {0}.

We then have that for every λ > 0,

|Vφu(z)| ≤ Cλe
−λω(z) ∀z ∈ R2d,

where Cλ = max{Cλ,z1 , . . . , Cλ,zk , |Vφu(0)|eλω(0)}. From Theorem 2.7 we finally have u ∈
Sω(Rd). �

We now prove that the wave front set WF′
ω is not affected by the phase-space shift operator.

Proposition 3.19. For every w = (y, η) ∈ R2d and for every u ∈ S ′
ω(Rd) we have

WF′
ω(Π(w)u) = WF′

ω(u).
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Proof. Since Π(w) =MηTy, it is enough to prove that translation and modulation do not affect
the wave front set. Concerning translation, we have that for z = (x, ξ) ∈ R2d,

Vφ(Tyu)(z) = ⟨Tyu,Π(z)φ⟩ = ⟨u, T−yΠ(z)φ⟩ = e−i⟨y,ξ⟩VT−yφu;

writing ψ = T−yφ ∈ Sω(Rd) we have that

|Vφ(Tyu)(z)| = |Vψu(z)|,

and since the wave front set does not depend on the window (Proposition 3.2) we have
WF′

ω(Tyu) = WF′
ω(u). Concerning modulation, we have

Vφ(Mηu)(z) = ⟨Mηu,Π(z)φ⟩ = ⟨u,M−ηΠ(z)φ⟩ = ei⟨η,x⟩VM−ηφu(z);

then, writing θ =M−ηφ ∈ Sω(Rd), we get

|Vφ(Mηu)(z)| = |Vθu(z)|,

and as before we conclude that WF′
ω(Mηu) = WF′

ω(u). �

The results obtained in Sections 2 and 3 are true in the quasi-analytic case also, i.e. when
we consider that ω(t) = o(t), as t → +∞, instead of condition (β) of Definition 2.1. However,
in the following we will consider weights satisfying (β), i.e. there are compactly supported
functions in Sω(Rd).

4. Applications to (pseudo-)differential operators

In this section we analyze the action of several operators of pseudo-differential (or differential)
type on the global wave front set WF′

ω(u) of u ∈ S ′
ω(Rd). In particular, we obtain regularity

results for pseudo-differential operators of infinite order in the Beurling setting. Note that, in
the classical Schwartz space S(Rd), Rodino-Wahlberg treat in [35] pseudo-differential operators
with symbols of polynomial growth.

In order to study the behaviour of the ω-wave front set of pseudo-differential operators of
infinite order we need nuclearity of Sω to apply the kernel theorem. It is known that Sω is nuclear
for many weight functions ω. For example, whenever they satisfy the following condition:

(4.1) ∃ H > 1 ∀ t ≥ 0, 2ω(t) ≤ ω(Ht) +H.

Bonet, Meise and Melikhov [9] proved that under such a condition the classes of ultradifferen-
tiable functions defined by sequences in the sense of Komatsu satisfying the standard conditions
(M0), (M1), (M2) and (M3), and the classes defined by weight functions in the sense of Braun,
Meise and Taylor [11] coincide. Hence, under condition (4.1) our results are true also for spaces
defined by sequences instead of weights (see, for instance, Langenbruch [27] for a complete
study of the structure of many global weighted spaces of (ultra)differentiable functions and
ultradistributions defined by sequences in the sense of Komatsu).

First, we state the following property:

Lemma 4.1. If the weight function ω satisfies (4.1) then

log t = o(ω(t)), as t→ +∞.(4.2)
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Proof. Let H > 1 be the constant of (4.1). We fix c > 0 such that ω(c) > H. For t ≥ cH there
exists m ∈ N such that

cHm ≤ t ≤ cHm+1.

By (4.1) we have, for all x ≥ 0,

22ω(x) ≤ 2ω(Hx) + 2H ≤ ω(H2x) + 2H +H.

Hence, by induction on k ∈ N, we obtain

2kω(x) ≤ ω(Hkx) + (2k−1 + 2k−2 + · · ·+ 1)H.

Therefore,

lim
t→∞

log t

ω(t)
≤ lim

m→∞
m∈N

log(cHm+1)

ω(cHm)
≤ lim

m→∞
m∈N

(m+ 1) logH + log c

2m
[
ω(c)− H

2
− H

22
− · · · − H

2m

]
= lim

m→∞
m∈N

(m+ 1) logH + log c

2m
[
ω(c)−H + H

2m

] = 0.

�
We start by defining the following symbol class.

Definition 4.2. For m ∈ R we define

Smω := {a ∈ C∞(R2d) : ∀λ, µ > 0 ∃Cλ,µ > 0 such that

|∂αx∂
β
ξ a(x, ξ)| ≤ Cλ,µe

λφ∗
ω(

|α|
λ )eµφ

∗
ω(

|β|
µ )emω(ξ), ∀(x, ξ) ∈ R2d, α, β ∈ Nd

0}.

Let us remark that when ω(t) = log(1+ t) then Smω contains the classical Hörmander symbol
classes of global type and finite order Smρ,0, for all ρ ∈ [0, 1], and, in particular, it coincides with
Sm0,0 (see [25] and the arguments of [15, Example 2.11 (1)]). However, in the present section, we
are not considering this extreme case by Lemma 4.1. We extend the results of [35] for symbols
of type (0, 0) with infinite order.

Then we consider the Kohn-Nirenberg quantization defined by

a(x,D)f(x) := (2π)−d
∫
Rd

ei⟨x,ξ⟩a(x, ξ)f̂(ξ)dξ, a ∈ Smω , f ∈ Sω(Rd).(4.3)

The above Kohn-Nirenberg quantization is well defined since f̂ ∈ Sω(Rd) and hence for every
λ > 0 there exists Cλ > 0 such that

|a(x, ξ)| · |f̂(ξ)| ≤ emω(ξ)Cλe
−λω(ξ)

which is integrable in Rd if we choose λ > 0 sufficiently large. Moreover,

a(x,D) : Sω −→ S ′ ⊆ S ′
ω.

If Sω is nuclear, we can apply the kernel theorem to the linear operator

Vφa(x,D)V ∗
φ : Sω(R2d) −→ S ′

ω(R2d)

and find a unique distribution K ∈ S ′
ω(R4d) such that

Vφa(x,D)V ∗
φF (y

′, η′) = (2π)d
∫
R2d

K(y′, η′; y, η)F (y, η)dydη ∀F ∈ Sω(R2d),(4.4)
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in the sense that

⟨Vφa(x,D)V ∗
φF,G⟩ = (2π)d⟨K(y′, η′; y, η), G(y′, η′)F (y, η)⟩ ∀G ∈ Sω(R2d).(4.5)

If u ∈ Sω(Rd) and F = Vφu ∈ Sω(R2d) for φ ∈ Sω(Rd) with ∥φ∥L2 = 1, then, from (2.22),

Vφa(x,D)u(y′, η′) = (2π)−dVφa(x,D)V ∗
φVφu(y

′, η′)

=

∫
R2d

K(y′, η′; y, η)Vφu(y, η)dydη

and we can compute the kernel directly:

Lemma 4.3. For a ∈ Smω , φ ∈ Sω(Rd) with ∥φ∥L2 = 1 and u ∈ Sω(Rd) we have that

Vφ(a(x,D)u)(z′) =

∫
R2d

K(z′, z)Vφu(z)dz,(4.6)

where, for all z = (y, η), z′ = (y′, η′) ∈ R2d,

K(z′, z) = (2π)−2dei⟨y,η⟩
∫
R2d

ei(⟨x,ξ⟩−⟨y,ξ⟩−⟨x,η′⟩)a(x, ξ)φ̂(ξ − η)φ(x− y′)dxdξ.(4.7)

Proof. Let F ∈ Sω(R2d) and consider the Kohn-Nirenberg quantization (4.3) of V ∗
φF ∈ Sω(Rd):

a(x,D)V ∗
φF (x) = (2π)−d

∫
Rd

ei⟨x,ξ⟩a(x, ξ)V̂ ∗
φF (ξ)dξ.

Then, by the definition of short-time Fourier transform and (4.3):

Vφa(x,D)V ∗
φF (y

′, η′) =

∫
Rd

(a(x,D)V ∗
φF )(x)φ(x− y′)e−i⟨x,η

′⟩dx

= (2π)−d
∫
Rd

∫
Rd

ei⟨x,ξ⟩a(x, ξ)V̂ ∗
φF (ξ)φ(x− y′)e−i⟨x,η

′⟩dξdx.(4.8)

So, fixed x, ξ we have, by (2.23),

ei⟨x,ξ⟩a(x, ξ)V̂ ∗
φF (ξ)φ(x− y′)e−i⟨x,η

′⟩

=

∫
Rd

ei⟨x,ξ⟩a(x, ξ)V ∗
φF (x

′)e−i⟨x
′,ξ⟩φ(x− y′)e−i⟨x,η

′⟩dx′

=

∫
Rd

∫
R2d

ei⟨x,ξ⟩a(x, ξ)F (y, η)ei⟨x
′,η⟩φ(x′ − y)

·e−i⟨x′,ξ⟩φ(x− y′)e−i⟨x,η
′⟩dydηdx′.

Since a ∈ Smω , F ∈ Sω(R2d) and φ ∈ Sω(Rd), we have that for every λ1, λ2, λ3 > 0 there exists
a constant Cλ > 0 such that, by the subaddititvity of ω:

|a(x, ξ)F (y, η)φ(x′ − y)φ(x− y′)|
≤ Cλe

mω(ξ)e−λ1ω(y,η)e−λ2ω(x
′−y)e−λ3ω(x−y

′)

≤ Cλe
mω(ξ)e−

λ1
2
ω(y)e−

λ1
2
ω(η)e−λ2ω(x

′)+λ2ω(y)e−λ3ω(x)+λ3ω(y
′).



26 The Gabor wave front set in spaces of ultradifferentiable functions

Choosing λ1 > 2λ2 > 0 sufficiently large we can apply Fubini’s theorem with respect to the
variables y, η and x′, obtaining:

ei⟨x,ξ⟩a(x, ξ)V̂ ∗
φF (ξ)φ(x− y′)e−i⟨x,η

′⟩

=

∫
R2d

ei⟨x,ξ⟩ a(x, ξ)F (y, η)

·
(∫

Rd

ei⟨x
′,η⟩φ(x′ − y)e−i⟨x

′,ξ⟩dx′
)
φ(x− y′)e−i⟨x,η

′⟩dydη

=

∫
R2d

ei⟨x,ξ⟩ a(x, ξ)F (y, η)

·
(∫

Rd

ei⟨y+s,η⟩e−i⟨y+s,ξ⟩φ(s)ds

)
φ(x− y′)e−i⟨x,η

′⟩dydη

=

∫
R2d

ei⟨x,ξ⟩ a(x, ξ)F (y, η)ei⟨y,η⟩e−i⟨y,ξ⟩

·
(∫

Rd

e−i⟨s,ξ−η⟩φ(s)ds

)
φ(x− y′)e−i⟨x,η

′⟩dydη

=

∫
R2d

ei⟨x,ξ⟩ a(x, ξ)F (y, η)ei⟨y,η⟩e−i⟨y,ξ⟩(4.9)

· φ̂(ξ − η)φ(x− y′)e−i⟨x,η
′⟩dydη.

Since a ∈ Smω , F ∈ Sω(R2d) and φ ∈ Sω(Rd), for every µ1, µ2, µ3 > 0 there exists a constant
Cµ > 0 such that, by the subadditivity of ω,

|a(x, ξ)F (y, η)φ̂(ξ − η)φ(x− y′)|
≤ Cµe

mω(ξ)e−µ1ω(y)e−µ1ω(η)e−µ2ω(ξ)+µ2ω(η)e−µ3ω(x)+µ3ω(y
′),

so that, for µ3, µ1 > µ2 sufficiently large, the above function is integrable in R4d
(x,ξ,η,y) and

substituting (4.9) into (4.8) we can apply Fubini’s theorem to obtain:

Vφa(x,D)V ∗
φF (y

′, η′) =

= (2π)−d
∫
R2d

F (y, η)ei⟨y,η⟩

·
(∫

R2d

ei(⟨x,ξ⟩−⟨y,ξ⟩−⟨x,η′⟩)a(x, ξ)φ̂(ξ − η)φ(x− y′)dxdξ

)
dydη.

Applying the above result to F = Vφu for some u ∈ Sω(Rd), since ∥φ∥L2 = 1 and hence
V ∗
φF = V ∗

φVφu = (2π)du by (2.22), we have

Vφ(a(x,D)u)(y′, η′) =

∫
R2d

K(y′, η′; y, η)Vφu(y, η)dydη,

for

K(y′, η′; y, η) = (2π)−2dei⟨y,η⟩
∫
R2d

ei(⟨x,ξ⟩−⟨y,ξ⟩−⟨x,η′⟩)a(x, ξ)φ̂(ξ − η)φ(x− y′)dxdξ,

which concludes the proof of the lemma. �
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In the next result the following property on the weight function ω, which can be proved as
in [8, Lemma 4.7(ii)] (for instance), will be useful: from for every σ, µ > 0 and t ≥ 1,

inf
j∈N0

t−σjeµφ
∗
ω(σj

µ ) ≤ e−(µ−σ
b
)ω(t)−σa

b ,(4.10)

where a ∈ R and b > 0 are the constants of condition (γ) in Definition 2.1.

Proposition 4.4. If a ∈ Smω , m ∈ R and K ∈ C∞(R4d) is defined by (4.7), then for every
λ > 0 there exists a constant Cλ > 0 such that

|K(z′, z)| ≤ Cλe
−λω(y−y′)e(m−λ)ω(η−η′)emω(η

′), z = (y, η), z′ = (y′, η′) ∈ R2d.(4.11)

Moreover, if a(z) = 0 for z ∈ Γ \ B(0, R) for an open conic set Γ ⊆ R2d \ {0} and for some
R > 0 (here B(0, R) is the ball of center 0 and radius R in R2d), then for every open conic set
Γ′ ⊆ R2d \ {0} such that Γ′ ∩ S2d−1 ⊆ Γ we have that for every λ > 0 there exists a constant
Cλ > 0 such that for all z′ = (y′, η′) ∈ Γ′ and z = (y, η) ∈ R2d,

|K(z′, z)| ≤ Cλe
−λω(y−y′)e−λω(η−η

′)e−2λω(y′)e−2λω(η′).(4.12)

Proof. By the linear change of variables ξ′ = ξ − η and x′ = x− y′ in (4.7) we have

K(z′, z) = (2π)−2dei⟨y,η⟩
∫
R2d

ei(⟨x
′+y′,ξ′+η⟩−⟨y,ξ′+η⟩−⟨x′+y′,η′⟩)a(x′ + y′, ξ′ + η)φ̂(ξ′)φ(x′)dx′dξ′

= (2π)−2dei(⟨y
′,η⟩−⟨y′,η′⟩)

·
∫
R2d

ei(⟨x
′,ξ′⟩+⟨x′,η⟩+⟨y′,ξ′⟩−⟨y,ξ′⟩−⟨x′,η′⟩)a(x′ + y′, ξ′ + η)φ̂(ξ′)φ(x′)dx′dξ′,

and hence, setting x = x′ and ξ = ξ′:

|K(z′, z)| = (2π)−2d

∣∣∣∣∫
R2d

ei(⟨x,η−η
′+ξ⟩+⟨ξ,y′−y⟩)a(x+ y′, ξ + η)φ̂(ξ)φ(x)dxdξ

∣∣∣∣ .(4.13)

Writing, for M,N ∈ N0,

ei(⟨x,η−η
′+ξ⟩+⟨ξ,y′−y⟩) = ⟨η − η′ + ξ⟩−2M(1−∆x)

Mei(⟨x,η−η
′+ξ⟩+⟨ξ,y′−y⟩)

= ⟨y − y′⟩−2N⟨η − η′ + ξ⟩−2M(1−∆x)
Mei⟨x,η−η

′+ξ⟩(1−∆ξ)
Nei⟨ξ,y

′−y⟩

and integrating by parts in (4.13), we have

|K(z′, z)| = (2π)−2d⟨y − y′⟩−2N

∣∣∣∣∫
R2d

ei(⟨x,η−η
′⟩+⟨ξ,y′−y⟩)λN,M(y′, η′, η, x, ξ)dxdξ

∣∣∣∣ ,(4.14)

where

λN,M(y′, η′, η, x, ξ)

= (1−∆ξ)
N
[
ei⟨x,ξ⟩⟨η − η′ + ξ⟩−2M(1−∆x)

M
(
a(x+ y′, ξ + η)φ̂(ξ)φ(x)

)]
.

For a ∈ Smω , since φ, φ̂ ∈ Sω(Rd), we use the definition of symbol (Definition 4.2) and the
seminorms (2.3) to obtain that for each λ, µ, λ′, µ′, λ′′, µ′′ > 0 there is a positive constant



28 The Gabor wave front set in spaces of ultradifferentiable functions

C := Cλ,µ,λ′,µ′,λ′′,µ′′ such that for every M,N ∈ N0:

|λN,M(y′, η′, η, x, ξ)| ≤ C
∑

γ1+γ2+γ3+γ4=2N

(2N)!

γ1!γ2!γ3!γ4!

∑
σ1+σ2=2M

(2M)!

σ1!σ2!
⟨x⟩|γ1|⟨η − η′ + ξ⟩−2M−|γ2|

× e
λφ∗

ω

(
|γ3|
λ

)
e
µφ∗

ω

(
|σ1|
µ

)
emω(ξ+η)e

λ′φ∗
ω

(
|γ4|
λ′

)
e−µ

′ω(ξ)

× e
λ′′φ∗

ω

(
|σ2|
λ′′

)
e−µ

′′ω(x).(4.15)

We observe that

⟨η − η′ + ξ⟩−1 ≤
√
2⟨η − η′⟩−1⟨ξ⟩,(4.16)

and, hence,
⟨η − η′ + ξ⟩−2M−|γ2| ≤ 2(2M+|γ2|)/2⟨η − η′⟩−2M−|γ2|⟨ξ⟩2M+|γ2|.

By (2.12) and by the subadditivity of ω, for all λ̃ > 0:

⟨x⟩|γ1| ≤ e
λ̃φ∗

ω

(
|γ1|
λ̃

)
eλ̃ω(⟨x⟩) ≤ e

λ̃φ∗
ω

(
|γ1|
λ̃

)
eλ̃ω(1+|x|) ≤ Cλ̃e

λ̃φ∗
ω

(
|γ1|
λ̃

)
eλ̃ω(x)(4.17)

for Cλ̃ = eλ̃ω(1).
Analogously

⟨ξ⟩|γ2| ≤ Cλ̃e
λ̃φ∗

ω

(
|γ2|
λ̃

)
eλ̃ω(ξ).(4.18)

Substituting (4.17) and (4.18) into (4.15), choosing µ′ = λ̃ +m + 1, µ′′ = λ̃ + 1, µ = λ =

λ′ = λ′′ = λ̃ and applying (2.15) we obtain a constant Cλ > 0 such that for all M,N ∈ N0:

|λN,M(y′, η′, η, x, ξ)| ≤ Cλ(d
√
2)2M+2N

∑
γ1+γ2+γ3+γ4=2N

(2N)!

γ1!γ2!γ3!γ4!
d−2N

∑
σ1+σ2=2M

(2M)!

σ1!σ2!
d−2M

× eλφ
∗
ω

(
2N
λ

)
eλφ

∗
ω

(
2M
λ

)
⟨η − η′⟩−2M−|γ2|⟨ξ⟩2Me−ω(ξ)−ω(x)emω(η−η′)emω(η′)

≤ Cλ(d
√
2)2M+2Neλφ

∗
ω

(
2N
λ

)
eλφ

∗
ω

(
2M
λ

)
×⟨η − η′⟩−2M⟨ξ⟩2Me−ω(ξ)−ω(x)emω(η−η′)emω(η′).

By [8, Lemma 4.5] we have that for every λ′ > 0 there exists Cλ′ > 0 such that

|λN,M(y′, η′, η, x, ξ)| ≤ Cλ′e
λ′φ∗

ω

(
2N
λ′

)
eλ

′φ∗
ω

(
2M
λ′

)
⟨η − η′⟩−2M⟨ξ⟩2Me−ω(ξ)−ω(x)emω(η−η′)emω(η′).

Now, we turn to formula (4.14) and we have that for all λ there is a constant Cλ > 0 such
that for every M,N ∈ N0:

|K(z′, z)| ≤ Cλ⟨y − y′⟩−2Neλφ
∗
ω( 2N

λ )⟨η − η′⟩−2Meλφ
∗
ω( 2M

λ )emω(η−η
′)emω(η

′)

×
(∫

Rd

e−ω(x)dx
)(∫

Rd

⟨ξ⟩2Me−ω(ξ)dξ
)
.(4.19)

We observe that the integrals are convergent (the second one, for allM ∈ N0) by Lemma 4.1.
We take the infimum on N and M separately and use the property that the infimum of the
pointwise product of two sets of positive numbers is the product of the infimums of the two
sets. Therefore, we apply (4.10) for σ = 2 to obtain (possibly) a new constant C ′

λ such that:

|K(z′, z)| ≤ C ′
λe

−(λ− 2
b )ω(y−y′)e−(λ−

2
b )ω(η−η′)emω(η−η

′)emω(η
′),(4.20)
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which proves (4.11) by the arbitrariness of λ.
Now, we want to prove (4.12). To do so, we apply (4.16) only to ⟨η − η′ + ξ⟩−M in (4.15)

and, by the same computations to get (4.19), we have that if a(z) = 0 for z ∈ Γ \ B(0, R), for
every λ > 0 there is a constant Cλ > 0 such that

|K(z′, z)| ≤ Cλ⟨y − y′⟩−2Neλφ
∗( 2N

λ )⟨η − η′⟩−Meλφ∗
ω( 2M

λ )emω(η−η
′)emω(η

′)

×
∫
Dy′,η

⟨η′ − (ξ + η)⟩−Me−ω(x)⟨ξ⟩Me−ω(ξ)dxdξ,(4.21)

where

Dy′,η := {(x, ξ) ∈ R2d : (x+ y′, ξ + η) ∈ (R2d \ Γ) ∪B(0, R)}.
We now want to estimate (4.21) for z′ = (y′, η′) ∈ Γ′ and z = (y, η) ∈ R2d. By [35, pg 643]

we know that

⟨y′⟩⟨η′⟩ ≤ C⟨x⟩2⟨η′ − (ξ + η)⟩2, z′ ∈ Γ′ \B(0, 2R), z ∈ R2d, (x, ξ) ∈ Dy′,η,(4.22)

for some constant C > 0.
We plug (4.22) into (4.21) and apply [5, Prop. 2.1(g)] to obtain, for z′ ∈ Γ′ \ B(0, 2R) and

z ∈ R2d,

|K(z′, z)| ≤ CM/2Cλ⟨y − y′⟩−2Neλφ
∗
ω( 2N

λ )

×⟨η − η′⟩−Me
λ
2
φ∗
ω( M

λ/2)e
λ
4
φ∗
ω(

M/2
λ/4 )⟨y′⟩−M/2e

λ
4
φ∗
ω(

M/2
λ/4 )⟨η′⟩−M/2

× emω(η−η
′)emω(η

′)

∫
Dy′,η

⟨x⟩M⟨ξ⟩Me−ω(x)e−ω(ξ)dxdξ.

Proceeding as in the case before (taking the infimum in M and N separately), we obtain,
from (4.10), that for every λ > 0 there exists another constant Cλ > 0 such that

|K(z′, z)| ≤ Cλe
−(λ− 2

b )ω(y−y′)e−(
λ
2
− 1

b )ω(η−η′)

× e−(
λ
4
− 1

2b)ω(y′)e−(
λ
4
− 1

2b)ω(η′)emω(η−η
′)emω(η

′)

≤ Cλe
−λ̄ω(y−y′)e−λ̄ω(η−η

′)e−2λ̄ω(y′)e−2λ̄ω(η′),

for λ̄ = λ
8
− 2

b
−m and z′ ∈ Γ′ \ B(0, 2R), z ∈ R2d. The estimate (4.12) for |z′| ≤ 2R follows

from the case before, so the proof is complete. �
Remark 4.5. For a ∈ Smω , m ∈ R, and K ∈ C∞(R4d) defined by (4.7) the integral in (4.6) is

well defined also for u ∈ S ′
ω(Rd). In fact, (2.9) and (4.11) imply that there exist C̃, λ̃ > 0 and

that for every λ > 0 there exists Cλ > 0 such that

|K(z′, z)Vφu(z)| ≤ C̃Cλe
−λω(y−y′)+(m−λ)ω(η−η′)emω(η

′)eλ̃ω(y)+λ̃ω(η)

≤ C̃Cλe
λω(y′)+(m+λ)ω(η′)e(λ̃−λ)ω(y)+(m+λ̃−λ)ω(η) ∈ L1(R2d

z=(y,η))(4.23)

if λ > max{λ̃,m+ λ̃}, by (4.2).

We now want to extend Lemma 4.3 for u ∈ S ′
ω(Rd). To this aim we first need the next two

results.

Proposition 4.6. The space Sω(Rd) is dense in S ′
ω(Rd).
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Proof. Let us consider the inclusion

i : Sω(Rd) ↪→ S ′
ω(Rd)

f 7→ ⟨i(f), φ⟩ :=
∫
Rd

f(x)φ(x)dx ∀φ ∈ Sω(Rd).

To show that the image is dense we take T ∈
(
S ′
ω(Rd)

)′
such that T |Sω

= 0 and prove that
T ≡ 0 (Hahn-Banach theorem for locally convex spaces).

Since Sω(Rd) is reflexive, there exists a unique f ∈ Sω(Rd) such that

T (φ) =

∫
Rd

f(x)φ(x)dx = 0, ∀φ ∈ Sω(Rd),

because of T |Sω
= 0. Therefore f = 0, i.e. T ≡ 0. �

Proposition 4.7. Let φ ∈ Sω(Rd) \ {0}. Then

Vφ : S ′
ω(Rd) −→ S ′

ω(R2d)

is continuous.

Proof. We already know that

V ∗
φ : Sω(R2d) −→ Sω(Rd)

is continuous by (2.21). It follows that

(V ∗
φ )

∗ : S ′
ω(Rd) −→ S ′

ω(R2d)

is continuous and moreover (V ∗
φ )

∗
∣∣
Sω(Rd)

= Vφ because, for f, g ∈ Sω(Rd),

⟨(V ∗
φ )

∗f, g⟩ = ⟨f, V ∗
φ g⟩ = ⟨Vφf, g⟩.

Since Sω(Rd) is dense in S ′
ω(Rd) by Proposition 4.6, we have that (V ∗

φ )
∗ is the continuous

extension of Vφ to S ′
ω(Rd) and, hence, Vφ is continuous on S ′

ω(Rd) also. �

Now, we need amplitudes a(x, y, ξ), instead of symbols a(x, ξ).

Definition 4.8. Given m ∈ R, we say that a(x, y, ξ) ∈ C∞(R3d) is an amplitude in the space
Smω if for every λ, µ > 0 there is Cλ,µ > 0 such that

|∂αx∂γy∂
β
ξ a(x, y, ξ)| ≤ Cλ,µe

λφ∗( |α+γ|
λ

)+µφ∗( |β|
µ
)emω(ξ),

for all (x, y, ξ) ∈ R3d and α, β, γ ∈ Nd
0.

Now, proceeding in a similar way to that of Proposition 1.9 and Theorem 2.2 of [15], one can
prove that if a(x, y, ξ) ∈ Smω is an amplitude as in Definition 4.8, the operator acting on Sω,
given by the iterated integral

A(f)(x) :=

∫
Rd

(∫
Rd

ei⟨x−y,ξ⟩a(x, y, ξ)f(y)dy

)
dξ, f ∈ Sω,

is well defined and continuous from Sω into itself. The operator A is called pseudo-differential
operator of type ω with amplitude a(x, y, ξ). Moreover, A can be extended continuously to
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the dual space Ã : S ′
ω → S ′

ω in a standard way (see [15, Theorem 2.5]). In particular, the
Kohn-Nirenberg quantization defined in (4.3) is a pseudo-differential operator with amplitude

a(x, y, ξ) := (2π)−dp(x, ξ),

where p(x, ξ) is a symbol as in Definition 4.2.
As a consequence of the above considerations and of the estimates of the kernel in Proposi-

tion 4.4, we obtain the following result:

Corollary 4.9. Let a(x, ξ) ∈ Smω a symbol as in Definition 4.2, φ ∈ Sω(Rd) with ∥φ∥L2 = 1
and u ∈ S ′

ω(Rd). Then, for K(z′, z) as in (4.7), we have

Vφa(x,D)u(z′) =

∫
R2d

K(z′, z)Vφu(z)dz,(4.24)

for all z′ ∈ R2d.

Proof. Since Vφ operates on S ′
ω, from the previous comments it is clear that Vφa(x,D) can

be extended to S ′
ω(Rd). We take u ∈ S ′

ω(Rd). By Proposition 4.6, there exists a sequence
{un}n∈N ⊂ Sω(Rd) which converges to u in S ′

ω and, hence,∫
R2d

K(z′, z)Vφun(z)dz = Vφa(x,D)un(z
′) −→ Vφa(x,D)u(z′) in S ′

ω(R2d).(4.25)

We want to prove that∫
R2d

K(z′, z)Vφun(z)dz −→
∫
R2d

K(z′, z)Vφu(z)dz(4.26)

using Lebesgue’s dominated convergence theorem. First, it is easy to see that {Vφun(z)}n∈N
converges pointwise to Vφu(z) for every z ∈ R2d from the definition of the short-time Fourier
transform.

Now, since {un}n∈N is bounded in S ′
ω(Rd), it is equicontinuous there. So, there exist a

constant C > 0 and a seminorm q on Sω(Rd) such that

|⟨un, φ⟩| ≤ Cq(φ), φ ∈ Sω(Rd).

This yields a uniform estimate of the inequality (2.9) (see the proof of [19, Theorem 2.4]) in
the sense:

|Vφun(z)| ≤ C̃eλ̃ω(z), z ∈ R2d, n ∈ N,(4.27)

for some C̃, λ̃ > 0 independent of n and z. From (4.27) and (4.23) we have that K(z′, z)Vφun(z)
is dominated by a function in L1(R2d

z ).
Therefore (4.26) is satisfied and hence, from (4.25),

Vφa(x,D)u(z′) =

∫
R2d

K(z′, z)Vφu(z)dz

also for u ∈ S ′
ω(Rd). �

We recall the notion of conic support from [35]:
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Definition 4.10. For a ∈ D′(R2d) the conic support of a, denoted by cone supp(a), is the set
of all z ∈ R2d \ {0} such that any open conic set Γ ⊂ R2d \ {0} containing z satisfies that

supp(a) ∩ Γ is not compact in R2d.

We have the following

Proposition 4.11. If m ∈ R, a ∈ Smω and u ∈ S ′
ω(Rd), then

WF′
ω(a(x,D)u) ⊆ cone supp(a).

Proof. Let 0 ̸= z0 /∈ cone supp(a). This means that there exists an open conic set Γ ⊂ R2d \{0}
containing z0 and such that a(z) = 0 for z ∈ Γ \ B(0, R) for some R > 0. Then, from
Proposition 4.4, for every open conic set Γ′ ⊆ R2d \ {0} with Γ′ ∩ S2d−1 ⊆ Γ we have that the
kernel K(z′, z) defined by (4.7) satisfies the estimate (4.12) for all z′ ∈ Γ′ and z ∈ R2d.

We argue as in Corollary 4.9 and use (4.12) to obtain that formula (4.24) holds for all z′ ∈ Γ′

and therefore there exist C, λ̄ > 0, and for every λ,N > 0 there exists Cλ,N > 0 such that, for
all z′ ∈ Γ′,

|Vφ(a(x,D)u)(z′)| ≤
∫
R2d

|K(z′, z)| · |Vφu(z)|dz

≤ Cλ,Ne
−2(λ+N)ω(y′)e−2(λ+N)ω(η′)

·
∫
R2d

e−(λ+N)ω(y−y′)e−(λ+N)ω(η−η′)|Vφu(y, η)|dydη

≤ CCλ,Ne
−2(λ+N)ω(y′)e−2(λ+N)ω(η′)

·
∫
R2d

e−(λ+N)ω(y−y′)e−(λ+N)ω(η−η′)eλ̄ω(y,η)dydη.

It follows, by the subadditivity of ω, that

|Vφa(x,D)u(z′)| ≤ CCλ,Ne
−2(λ+N)ω(y′)e−2(λ+N)ω(η′)

·
∫
R2d

e−(λ+N)ω(y)+(λ+N)ω(y′)e−(λ+N)ω(η)+(λ+N)ω(η′)eλ̄ω(y)+λ̄ω(η)dydη

≤ CCλ,Ne
−λω(y′)e−λω(η

′)

∫
R2d

e(λ̄−N)ω(y)e(λ̄−N)ω(η)dydη(4.28)

≤ Cλe
−λω(y′)e−λω(η

′) ≤ Cλe
−λω(z′) ∀z′ = (y′, η′) ∈ Γ′

for some Cλ > 0 if we choose N sufficiently large so that the integral in (4.28) converges.
This proves that z0 /∈ WF′

ω(a(x,D)u) by Definition 3.1, and the proof is complete. �
Since our weight functions are non-quasianalytic, we can obtain the following consequence

of Proposition 4.11.

Corollary 4.12. Let a ∈ Sω(R2d) with compact support, and consider the corresponding pseudo-
differential operator a(x,D), cf. (4.3). Then a(x,D) is globally ω-regularizing, in the sense that
for every u ∈ S ′

ω(Rd) we have a(x,D)u ∈ Sω(Rd).

Proof. It is easy to see that a ∈ S0
ω. Consequently, the corresponding pseudo-differential op-

erator a(x,D) can be extended to S ′
ω(Rd). Since the support of a is compact, we have that
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cone supp(a) = ∅. From Proposition 4.11 we get WF′
ω(a(x,D)u) = ∅.We apply Proposition 3.18

to conclude. �
In the next part of the section we consider other kind of operators, proving that their appli-

cation to ultradistributions does not enlarge the wave front set. We start from the operators
with polynomial coefficients.

Theorem 4.13. Let m > 0 be an integer, and consider

A(x,D) =
∑

|α+β|≤m

cαβx
αDβ

x ,

where cαβ ∈ C. Then for every u ∈ S ′
ω(Rd) we have

WF′
ω(A(x,D)u) ⊆ WF′

ω(u).

Proof. We fix a window function φ ∈ Sω(Rd), and, for ν ∈ Nd
0 we write φν for the function

φν(x) = xνφ(x).

For every α ∈ Nd
0 and z = (y, η) ∈ R2d we obtain by induction on |α| that

xαΠ(z)φ =
∑
ν≤α

(
α

ν

)
yα−νΠ(z)φν .(4.29)

We have indeed that for |α| = 1, writing 1j for the multi-index in Nd
0 having 1 in the j-th

position and 0 elsewhere, we have

xjΠ(z)φ = yjΠ(z)φ+Π(z)φ1j
;

we suppose now that (4.29) is true for every |α| = n, and prove it for α̃ with |α̃| = n+1. There
exists j ∈ {1, . . . , d} such that α̃ = α + 1j. Then by the inductive hypothesis we have

xα̃Π(z)φ = xj
∑
ν≤α

(
α

ν

)
yα−νΠ(z)φν

=
∑
ν≤α

(
α

ν

)[
yα−ν+1jΠ(z)φν + yα−νΠ(z)φν+1j

]
= yα̃Π(z)φ+Π(z)φα̃ +

∑
ν≤α
ν ̸=0

[(
α

ν

)
+

(
α

ν − 1j

)]
yα̃−νΠ(z)φν

=
∑
ν≤α̃

(
α̃

ν

)
yα̃−νΠ(z)φν ,

and so (4.29) is proved. From the definition of short-time Fourier transform we have

Vφ(x
αu)(z) = ⟨xαu,Π(z)φ⟩ = ⟨u, xαΠ(z)φ⟩

and so by (4.29) we get

Vφ(x
αu)(z) =

∑
ν≤α

(
α

ν

)
yα−νVφνu(z).(4.30)
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Concerning differentiation, since

Vφ(D
βu)(z) = ⟨Dβu,Π(z)φ⟩ = ⟨u,Dβ(Π(z)φ)⟩

a direct computation shows that

Vφ(D
βu)(z) =

∑
µ≤β

(
β

µ

)
ηβ−µVDµφu.(4.31)

From (4.30) and (4.31) we finally obtain

Vφ(A(x,D)u)(y, η) =
∑

|α+β|≤m

cαβVφ(x
αDβ

xu)(y, η)

=
∑

|α+β|≤m

∑
ν≤α
µ≤β

cαβ

(
α

ν

)(
β

µ

)
yα−νηβ−µVDµφνu(y, η).(4.32)

On the other hand, it is not difficult to see that for every µ, ν ∈ Nd
0, D

µφν ∈ Sω(Rd).
Suppose now that z0 = (y0, η0) /∈ WF′

ω(u), z0 ∈ R2d \ {0}. Then, there exists an open conic
set Γ ⊆ R2d \ {0} containing z0 and such that

sup
z∈Γ

eλω(z)|Vφu(z)| < +∞, λ > 0.

From Proposition 3.2 we have that for every µ, ν ∈ Nd
0 and for every open conic set Γ′ ⊆ R2d\{0}

containing z0 and such that Γ′ ∩ S2d−1 ⊆ Γ,

sup
z∈Γ′

eλω(z)|VDµφνu(z)| < +∞ ∀λ > 0.(4.33)

From (4.32), for every k > 0 we get

eλω(z)|Vφ(A(x,D)u)(z)| ≤
∑

|α+β|≤m

∑
ν≤α
µ≤β

cαβ

(
α

ν

)(
β

µ

)
e−kω(z)|yα−νηβ−µ|e(λ+k)ω(z)|VDµφνu(z)|.

Since |α− ν|+ |β − µ| ≤ m, from (4.2) we have that for any m ∈ N, m log(t) ≤ ω(t) for t > 0
large enough. So, tm ≤ eω(t) for t > 0 large enough, and hence

sup
z∈R2d

e−kω(z)|yα−νηβ−µ| < +∞,

for every ν ≤ α and µ ≤ β. Therefore, from (4.33) we obtain

sup
z∈Γ′

eλω(z)|Vφ(A(x,D)u)(z)| < +∞, λ > 0,

which means that z0 /∈ WF′
ω(A(x,D)u), and the proof is complete. �

We now want to prove an analogue of Theorem 4.13 for the case of localization operators.
We recall here the definition of such operators and prove some results that are needed for our
purpose. Given two window functions ψ, γ ∈ Sω(Rd) \ {0} and a symbol a ∈ S ′

ω(R2d), the
corresponding localization operator Laψ,γ is defined, for f ∈ Sω(Rd), as

Laψ,γf = V ∗
γ (a · Vψf).(4.34)
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From Proposition 2.9 we have that

Laψ,γ : Sω(Rd) → S ′
ω(Rd).

We want now to consider symbols in a smaller class than S ′
ω(R2d), in order to apply the

corresponding localization operator to distributions. We have the following result.

Lemma 4.14. Let a(z), z ∈ R2d, be a measurable function such that there exist τ, C > 0 such
that

|a(z)| ≤ Ceτω(z) ∀z ∈ R2d.(4.35)

Then

Laψ,γ : Sω(Rd) → Sω(Rd)(4.36)

and

Laψ,γ : S ′
ω(Rd) → S ′

ω(Rd)(4.37)

are continuous.

Proof. Let f ∈ Sω(Rd). From Theorem 2.7 we have that for every λ, ρ > 0 there exists Cλ > 0
such that

eρω(z)|a(z)||Vψf(z)| ≤ Cλe
(ρ+τ−λ)ω(z),

and so, choosing λ ≥ ρ + τ , we have that a · Vψf ∈ L∞
mρ

(R2d) for every ρ > 0, where mρ is

defined by (3.10). From Proposition 3.7 and (4.34), we have that Laψ,γf ∈ M∞
mρ

(Rd) for every

ρ > 0, and then, from Remark 3.6, Laψ,γf ∈ Sω(Rd). To prove the continuity of Laψ,γ on Sω(Rd)

we fix φ ∈ Sω(Rd) \ {0}, ρ > 0, and we observe that from (3.14) (with p = q = ∞) and (4.35)
we get

sup
z∈R2d

|Vφ(Laψ,γf)(z)|eρω(z) = sup
z∈R2d

|VφV ∗
γ (a · Vψf)|eρω(z)

≤ C∥Vφγ∥L1
vρ

sup
z∈R2d

|a(z)Vψf(z)|eρω(z)

≤ C ′ sup
z∈R2d

|Vψf(z)|e(τ+ρ)ω(z).

From Proposition 2.10 we have that (4.36) is continuous.
Let now f ∈ S ′

ω(Rd). From Remark 3.6 there exists λ < 0 such that f ∈ M∞
mλ

(Rd); then,
choosing ρ = −|τ | − |λ| we have

eρω(z)|a(z)||Vψf(z)| ≤ Ce(ρ+τ−λ)ω(z) < +∞
for every z ∈ R2d, so a · Vψf ∈ L∞

mρ
(R2d). Then by Proposition 3.7 we have Laψ,γf ∈ M∞

mρ
(Rd),

and from Remark 3.6 we finally have Laψ,γf ∈ S ′
ω(Rd). Observe now that for every u ∈ S ′

ω(Rd)

and v ∈ Sω(Rd) we have

⟨Laψ,γu, v⟩ = ⟨V ∗
γ (a · Vψu), v⟩ = ⟨u, V ∗

ψ (a · Vγv)⟩ = ⟨u, Laγ,ψv⟩.

Then Laψ,γ = (Laγ,ψ)
∗; since a satisfies the same estimates as a, the continuity of (4.37) follows

from that of (4.36). �
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Theorem 4.15. Let ψ, γ ∈ Sω(Rd) \ {0}, and let a be a symbol satisfying (4.35). Then for
every u ∈ S ′

ω(Rd) we have

WF′
ω(L

a
ψ,γu) ⊆ WF′

ω(u).

Proof. Let z0 /∈ WF′
ω(u), z0 ∈ R2d \ {0}. Then there exists an open conic set Γ ⊆ R2d \ {0}

containing z0 such that

sup
z∈Γ

eλω(z)|Vψu(z)| < +∞ ∀λ > 0.

From (4.35), since λ is arbitrary we have

sup
z∈Γ

eλω(z)|a(z)Vψu(z)| < +∞ ∀λ > 0.

For window functions φ, γ ∈ Sω(Rd) we can then repeat the same procedure used in the proof
of Proposition 3.2. First, we observe that from the definition of localization operator

Vφ(L
a
ψ,γu) = VφV

∗
γ (a · Vψu).

Now, it is not difficult to see that

Vφ(L
a
ψ,γu)(x, ξ) =

∫
R2d

(a · Vψu)(s, η)Vγ(Π(z)φ)(s, η)dsdη,

Vγ(Π(z)φ)(s, η) = Vφγ(x− s, ξ − η)e−i⟨s,ξ−η⟩,

and hence
|Vφ(Laψ,γu)| ≤ |a · Vψu| ∗ |Vφγ|.

Consequently, for every open conic set Γ′ ⊆ R2d\{0} containing z0 and such that Γ′ ∩ S2d−1 ⊆ Γ
we have (see the proof of Proposition 3.2)

sup
z∈Γ′

eλω(z)|Vφ(Laψ,γu)(z)| < +∞, λ > 0.

This implies that z0 /∈ WF′
ω(L

a
ψ,γu) and the proof is complete. �

5. Examples

In this section we compute the Gabor wave front set for some particular u ∈ S ′
ω(Rd) (see also

the examples in [35]).

Example 5.1. Consider the Dirac distribution u = δ ∈ S ′
ω(Rd) for every weight ω. We have

that

Vφδ(x, ξ) = φ(−x).

Since Vφδ(0, ξ) = φ(0), choosing φ in such a way that φ(0) ̸= 0 we have

{0} × (Rd \ {0}) ⊆ WF′
ω(δ).

Let now (x0, ξ0) ∈ R2d \{0} such that x0 ̸= 0, and consider an open conic set containing (x0, ξ0)
of the form

Γ = {(x, ξ) ∈ R2d \ {0} : |ξ| < C|x|}
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for C > 0. From the subadditivity of ω, there exists C1 > 0 such that, writing z = (x, ξ),

sup
z∈Γ

eλω(z)|Vφδ(z)| ≤ sup
x∈Rd

eλC1ω(x)|φ(−x)| < +∞

since φ ∈ Sω(Rd). Then (x0, ξ0) /∈ WF′
ω(δ), and so WF′

ω(δ) = {0} × (Rd \ {0}). From
Proposition 3.19 we have that for every x ∈ Rd, writing δx for the Dirac distribution centered
at x,

WF′
ω(δx) = {0} × (Rd \ {0}).(5.1)

Example 5.2. Let u = 1 be the function identically 1, that belong to S ′
ω(Rd) for every weight

ω. A direct computation shows that

Vφ(1) = e−i⟨x,ξ⟩φ̂(−ξ);
since φ̂ ∈ Sω(Rd) we can proceed as in Example 5.1, obtaining that for every weight ω,
WF′

ω(1) = (Rd \ {0}) × {0}. From Proposition 3.19 we then have that for every ξ ∈ Rd

and for every weight ω,

WF′
ω(e

i⟨·,ξ⟩) = (Rd \ {0})× {0}.(5.2)

Example 5.3. We consider now the function u(x) = eicx
2/2, for x ∈ R and c ∈ R\{0}. Observe

that u ∈ S ′
ω(R) for every ω. Choosing as window function the Gaussian φ(t) = e−t

2/2, that
belongs to Sω(R) for every ω, we have, as in Example 6.6 of [35], that there exists C > 0 such
that

|Vφu(x, ξ)| = C exp

(
−(ξ − cx)2

2(1 + c2)

)
.

Then, proceeding in a similar way as in the previous cases we have

WF′
ω(u) = {(x, cx) : x ∈ R \ {0}}(5.3)

for every weight ω.

We observe that in the cases (5.1) and (5.2) the Gabor wave front set gives rougher informa-
tion since it does not take into account translations and modulations, while for the case (5.3)
it gives finer information, since it identifies the so-called instantaneous frequency, that is the
only direction along which the time-frequency content of u does not decay. For a comparison
of the Gabor wave front set of the element considered in the previous examples with other type
of global wave front set (at least in the frame of tempered distributions) we refer to [35].

We observe now that in the previous examples the considered distributions have the same
wave front set for every weight ω. In general the Gabor wave front set may depend on ω, as
shown in the next example.

Example 5.4. Let ω and σ be two weight functions, such that ω(t) ≤ σ(t) and Sσ(Rd) ∩
D(Rd) ( Sω(Rd) ∩D(Rd). We then fix a function f ∈ Sω(Rd) with compact support such that
f /∈ Sσ(Rd). From Proposition 3.18 we have

WF′
ω(f) = ∅.

Fix now a window φ0 ∈ Sσ(Rd) with compact support such that φ0 ≡ 1 on supp(f). From the
definition of short-time Fourier transform, we then have that the orthogonal projection on Rd

x
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of the support of Vφ0f(x, ξ) is compact. Let now z0 = (x0, ξ0) ∈ R2d with x0 ̸= 0, and fix an
open conic set containing z0 of the form

Γ = {(x, ξ) ∈ R2d \ {0} : |ξ| < C|x|},

for C > 0. We then have that Γ ∩ supp(Vφ0f) is compact, so the condition (3.1) is satisfied for
every λ > 0. Then (x0, ξ0) /∈ WF′

σ(f) for every x0 ̸= 0. Consider now a point of the type (0, ξ0)
with ξ0 ̸= 0, ξ0 ∈ Rd. From the fact that φ0 ≡ 1 on supp(f), we have

Vφ0f(0, ξ) =

∫
e−i⟨t,ξ⟩f(t)φ0(t) dt = f̂(ξ).

Since f /∈ Sσ(Rd), we have that there exists λ > 0 such that

sup
ξ∈Rd

eλσ(ξ)|Vφ0f(0, ξ)| = +∞,

so (3.1) cannot be satisfied in an open conic set containing (0, ξ0), and then (0, ξ0) ∈ WF′
ω(f).

We then have that

WF′
σ(f) = {0} × (Rd \ {0});

in particular WF′
σ(f) ̸= WF′

ω(f).
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[31] S. Pilipović, Tempered ultradistributions, Boll. U.M.I. B (7) 2 (1988), no. 2, 235-251.
[32] B. Prangoski, Pseudodifferential operators of infinite order in spaces of tempered ultradistributions, J.

Pseudo-Differ. Oper. Appl. 4 (2013), no. 4, 495-549.
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