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The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of
huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome
into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen
species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular
calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition.
Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising
therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout
court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.

1. Introduction

The prevalence of heart failure (HF) is still increasing world-
wide, with enormous human, social, and economic costs
[1–6], despite huge efforts in understanding pathogenetic
mechanisms and in developing effective therapies that have
transformed this syndrome into a chronic disease. Recently,
following new interesting advances in understanding intra-
cellular signaling pathways that control the main altered

processes in the failing heart (such as cellular calcium han-
dling and the contractilemachinery, cardiac hypertrophy and
dilatation, and myocardial energetics and metabolism), new
promising therapeutical approaches are being developed. It
is well established that cardiomyocytes of a failing heart
are redox imbalanced, and, in this paper, we review and
discuss the pathophysiology of HF, keeping inmind that ROS
and RNS play an important role as signaling molecules in
physiological myocardial homeostasis.
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2. Heart Failure as a Systemic Disease

The etiology of heart dysfunction is heterogeneous, although
individuals with HF have rather common symptoms as
fatigue, shortness of breath, and fluid retention. Half of
HF patients present with contractile failure and a dilated
heart (systolic HF), while other patients have normal systolic
function with a preserved ejection fraction (EF) and a
nondilated, but often hypertrophied, heart. This latter is also
named HF with preserved ejection fraction (HFpEF) [7].

Central to the pathogenesis of systolic HF is decreased
left ventricular (LV) contractile function, due to an initial
ischaemic insult (e.g., myocardial infarction, MI) or to
nonischaemic insult (including genetic and inflammatory
cardiomyopathies, hypertension, metabolic diseases, or toxic
injury). These insults induce an inexorable series of compen-
satory responses in the body, including the retention of salt
and water by the kidneys, the release of neurohormones, and
the activation of intracellular signaling cascades in the heart
and vasculature that modify cellular and organ morphology
and function. Such responses initially offset reduced cardiac
performance but then become part of the disease process,
increasing organ failure and worsening clinical prognosis [1–
7].

3. Neurohumoral Adaptations

When cardiac contractile dysfunction is established, the body
responds by increasing release of sympathetic neurotrans-
mitters, adrenaline and noradrenaline, and neurohormones,
including angiotensin II (ATII), endothelin, and natriuretic
peptides. These events contribute to maintaining cardiac
output, increasing rate and intensity of heart contraction, and
fluid retention. Such chronic stimulation becomes adverse
and worsens prognosis of heart failure [8]. Indeed, current
HF therapies mainly rely on antagonizing such neurohu-
moral activated pathways with 𝛽-adrenergic and angiotensin
receptor blockade and angiotensin converting enzyme (ACE)
inhibition and on hemodynamic control with nitrates and
diuretics, with the net effect of producing vasodilation and
lowering blood pressure, therefore unloading the heart [1–7].
Therapies based on blockade of 𝛽-adrenergic receptors (𝛽-
ARs), inhibition of angiotensin converting enzyme, blockade
of the angiotensin II receptor AT1, and blockade of aldos-
terone receptor improved survival and symptoms in heart
failure patients [1, 7, 9–11].

4. Energetic Breakdown in Heart Failure

The heart is an organ with limited capacity for storing
energy. Thereby, to supply its high and constant workload,
it needs substrates produced quickly and efficiently, mainly
from circulating fatty acids (FA) rather than from glucose.
A failing heart enters a state of inefficiency and of energy
starvation, mainly due to a compromised regulation of
energy metabolism, a reduced ATP availability, or an altered
substrates utilization [7, 12].

A shift in energy metabolism from normal using of fatty
acids (due to a decline in the expression of genes involved

in fatty acid metabolism [13]) towards using glucose, which
probably results in differences in substrates oxidation and
thus mitochondrial function, has been observed in both
ischaemic and nonischaemic heart failure [13–16]. Therefore,
with this shift of metabolic profile, the myocardium relies
on glycolysis for ATP generation [17, 18]. This situation
has important fallouts in specific conditions such as heart
failure associated with diabetes [19]. In this case, reduced FA
oxidation is not accompanied by an increase in glucose or
lactate oxidation to provide ATP, thus causing an energetic
deficit in the failing heart that correlates with overall disease
severity [13, 18]. Importantly, in diabetes, hyperglycemia
per se, independently of FA utilization, is able to lead
to cellular derangements and to adaptive and maladaptive
processes involving, among many, the renin-angiotensin-
aldosterone system, glucose transporters, and AGEs [20, 21].
In this setting, mitochondrial failure to generate enough
ATP, coupled to increased ROS generation, with consequent
ROS-induced posttranslational modifications of important
proteins of the EC coupling machinery is directly involved
in diabetic cardiomyopathy [21, 22].

In a failing heart not only ATP synthesis but also ATP
storage is altered. Phosphocreatine is ATP storage molecule,
which, in presence of ADP, is converted to creatine and ATP
by creatine kinase, thereby generating rapidly energy when
it is needed. The ratio of concentrations of phosphocreatine
to ATP is used as a measure of energy balance. This ratio is
found abnormal in heart failure together with the ATP flux
[23].

5. Oxidative Stress and Heart Failure

Oxidative stress is commonly referred to as unbalanced
ratio between production and scavenging of oxygen radicals
with a detrimental oxidation of different substrates (proteins,
lipids, nucleic acids, and others). The onset of a prooxidative
condition can be due to a hyperactivation of different reactive
species sources (see below) or to a depletion of antioxidant
defenses or both. It is not clear whether oxidative stress is to
be considered a cause, an index, or amediator of heart failure.
In the next paragraphs the sources and effects of prooxidant
will be described in order to elucidate the role of oxygen
radicals on the etiopathology of a failing heart (Figure 1).

6. Sources of Reactive Oxygen and Nitrogen
Species in Heart Failure

Both excessive neurohormonal stimulation and energetic
deficits with mitochondrial dysfunction lead to increased
oxidative stress [21, 24] with production of excessive Reactive
Oxygen Species (ROS) and Reactive Nitrogen Species (RNS),
widely recognized as promotors of both cardiac dysfunction
and pathological remodeling of HF, which is character-
ized by altered excitation-contraction (EC) coupling with
abnormally lower cardiac contractility and muscle relaxation
velocities. Among other events linked to HF onset and pro-
gression are maladaptive hypertrophic myocardial response,
extracellular matrix remodeling, altered tissue energetics,
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Figure 1: ROSpromote heart failure bymanymechanisms. Someof the deleterious effects of ROS are evidenced by red arrows.NOcounteracts
such effects (blue arrows). Modified from Tocchetti et al. [25].

loss of viable cardiomyocytes, vascular and capillary abnor-
malities, and inflammation [4, 7, 25–30]. Myocardial redox
imbalance may be responsible, at least in part, for such
abnormalities [22, 31]. ROS and RNS can be produced
endogenously by cardiomyocytes by several cellular sources,
including “direct” production such as NADPH oxidase
system, lipoxygenases, cyclooxygenases, peroxidases, mito-
chondrial oxidative phosphorylation, nitric-oxide synthase 3
(NOS3 or eNOS) [25–27, 32–34] and “indirect” (free radicals
production inducers) such as cytokines, growth factors,
angiotensin II, catecholamines, pressure overload, xanthine
oxidases, monoamine oxidases, enzymes of catecholamine
and serotonin catabolism. Also, the myocardium is provided
with endogenous nonenzymatic (i.e., glutathione, vitamins
E and C, and 𝛽-carotene [33], lipoic acid, ubiquinone, and
urate) and enzymatic systems that catabolize ROS physiolog-
ically generated [25].

NADPH oxidases are important cellular sources of ROS,
crucial in many pathophysiological conditions that lead to
cardiac diseases [25, 35–37]. The NADPH oxidase enzyme
complex is composed of seven catalytic subunits, Nox1–Nox5
and Duox1 and Duox2. Nox2 and Nox4 are expressed in the
heart and produce ROS by electron transfer from NADPH to
molecular oxygen. In physiological states, Nox2 is quiescent
and is stimulated by the translocation of regulatory proteins
to activate the oxidase complex on the membrane [25, 38].
G-protein-coupled receptor agonists, cytokines, and growth
factors can stimulate Nox2 to generate ROS. On the other
hand, Nox4 is constitutively active and is modulated by its
expression levels [25, 37]. Both Nox2 and Nox4 are key
players in the pathogenesis of LV dysfunction. Indeed, after

myocardial infarction, myocytes hypertrophy and apoptosis
were significantly reduced in aortic rings of Nox2-deficient
mice, with less LV dilation and better function compared to
wild type mice [25, 37, 39]. Also, Nox2-containing NADPH
oxidases play a role in ATII-induced hypertrophy indepen-
dently of pressure overload [37]. The underlying mechanism
at the base of the prohypertrophic Nox2 effect relies, at least
in part, on the oxidation of mitochondrial proteins induced
by increased productionO

2

− that leads tomitochondrial dys-
function [39]. At the same time, Nox4-containing NADPH
oxidases are important in the pathophysiology of cardiac
hypertrophy from pressure overload: pressure overloaded
hearts from c-Nox4−/− mice showed less hypertrophy and
less interstitial fibrosis and apoptosis and had improved LV
function compared to wild type [25, 37, 40]. Human failing
hearts exhibit increased NADPH oxidase activation [41]
together with the parallel activation of downstream signaling
components ERK1/2, JNK, and p38 [42]. Also, Nox4 levels
increase gradually in aging cardiomyocytes; interestingly,
apoptosis is also increased upon enhanced Nox4 expression
of caused apoptosis [25, 37]. Nox4 appears to produce mostly
H
2
O
2
, while Nox2 generates mostly O

2

− [35, 36].
ROS can be also produced by xanthine oxidase (XO), an

enzyme that belongs to the molybdoenzyme family (which
comprises enzymes such as aldehyde oxidase and sulfite
oxidase) [43]. Both O2− and H

2
O
2
XO can be generated by

oxidative hydroxylation of purine substrates from XO. Inhi-
bition of xanthine oxidoreductase improves cardiac structure
and function in spontaneously hypertensive/HF rats [25, 44].
Also, XO can be activated by NAD(P)H oxidase [25, 45].
Compared to wild type animals, myocardial XO activity
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did not increase after MI in p47phox−/− mice (genetically
deprived of p47phox, the cytosolic NADPH oxidase com-
ponent). Disappointingly, XO inhibitors, such as the purine
analog allopurinol and the nonpurine analog febuxostat,
when employed clinically, did not exert beneficial effects on
human ischaemia/reperfusion and cardiac dysfunction [25],
in spite of some success in animal studies [46–48]. Indeed,
xanthine oxidase importance and role in the human heart
have been questioned [49].

Because of their high-energy needs, cardiac myocytes
possess a large number of mitochondria that not only can
produce ATP but also can generate ROS as a by-product of
mitochondrial respiration. Mitochondrial ROS are produced
because the transfer of electrons via the electron transport
chain is not totally efficient [50], with O

2

− being generated
in the mitochondria at a measurable rate during physiolog-
ical oxidative phosphorylation. Most of mitochondrial O

2

−

possesses a relatively short half-life [43]. In themitochondria,
manganese superoxide dismutase (SOD) is located in matrix
while copper/zinc SOD is in the intermembrane space: both
of these enzymes can transform O

2

− into H
2
O
2
, that is not

so reactive as O
2

− and can easily diffuse and behave as
signaling molecule [51]. An alternative enzymatic reaction is
operated by other antioxidant enzymes, such as glutathione
peroxidase-1 and catalase, which can convert H

2
O
2
to O
2

and H
2
O [50]. Nevertheless, an imbalance between mito-

chondrial prooxidant and antioxidant systems can bring
to mitochondrial oxidative stress. Differently from H

2
O
2
,

OH (hydroxyl radical) cannot be catabolized by enzymatic
reactions but can be quenched only by endogenous or food
antioxidants. OH possesses a very short half-life and is very
reactive in vivo; therefore it is believed to be a very dangerous
molecule [52]. OH is a player in reperfusion injury, in HF,
stroke, and MI, and in Ca2+ cycling and myofilament Ca2+
sensitivity in experimental myocardial preparations [33, 53].

Mitochondria produce more ROS during stress condi-
tions, among many ischaemia/reperfusion and cardiac dys-
function [43, 54–56]. ROS can be generated not only on
the inner mitochondrial membrane, but also on the outer
mitochondrial membrane thanks to monoamine oxidases
(MAOs) A and B during oxidative deamination of cate-
cholamines and serotonin [57] (Figure 1).

7. Antioxidant Defenses

Antioxidants can bemainly divided into 2 groups: exogenous
and endogenous. Antioxidants from exogenous sources are
normally introduced with the diet and include (but are not
limited to) vitamins (A and C), carotenoids, and flavonoids
[58, 59]. On the other hand, endogenous compounds with
antioxidant properties can be either of enzymatic origin
(superoxide dismutase, GPx, and catalase) or nonenzymatic
antioxidants (vitamin E, GSH, and bilirubin) [33]. The ther-
apeutic approach to HF aimed at reducing oxidative stress
would benefit from reducing radicals production and by
enhancing antioxidant defenses reducing the ratio between
the two.

8. The Double-Edged Role of Nitric-Oxide
Synthases in Cardiac Dysfunction

Nitric-oxide synthases (NOSs) are extremely interesting
molecules that produce NO by oxidizing the terminal guani-
dine nitrogen of L-arginine to L-citrulline. NOSs are present
in 3 isoforms [43]: endothelial NOS3 (eNOS) and neuronal
NOS1 (nNOS) are constitutively expressed in cardiomy-
ocytes, while inducible NOS2 (iNOS) is absent in the normal
myocardium, but its expression can be induced by proinflam-
matorymediators [25, 60–63]. NO is able to have diverse bio-
logical effects by posttranslational nitrosation/nitrosylation
of specific cysteine thiol residues [43], mostly due to the
cellular location in which NO is generated [28, 64]. NOS3
is mainly located into sarcolemmal caveolae and t tubules,
where it interacts with caveolin-3 that modulates its activity
and is connected with many cell surface receptors and 𝛽-
adrenergic and bradykinin receptors [43, 65, 66]. NOS3-
generated NO has a key role in depressing contractility
and regulating 𝛽-adrenergic stimulation. On the opposite,
NOS1 is usually described in the sarcoplasmic reticulum
and coimmunoprecipitates with ryanodine receptors (RyRs),
thus increasing contractility without altering ICa [25, 28, 61].
Hence, in contrast to NOS3, it appears that NOS1 has mainly
a positive inotropic effect on the myocardium [43, 61].

Importantly, NO also plays an essential role in the
maintenance of the O

2

−/NO homeostasis and can inhibit
XO, thus behaving as an antioxidant [25, 67, 68]. In cardiac
pathophysiology, maintenance of the nitroso/redox balance
between RNS and ROS is critical [25, 27], since excessive
oxidative and nitrosative stress are pivotal in many deleteri-
ous effects on the myocardium. Indeed, oxidative/nitrosative
stress mediate cellular damage to organelles, DNA, proteins,
lipids, and other macromolecules and can ultimately bring
cardiomyocyte death [29]. Oxidative stress occurs when
intrinsic antioxidant defenses are not able to protect from
excessive ROS production.

Interestingly, in some pathological conditions, including
HF, NOS can be uncoupled, and hence the flow of electrons
from the reductase domain to the heme can be diverted to
molecular oxygen instead of L-arginine, with following O

2

−

production [69, 70]. Among the mechanisms that may be
responsible for NOS3 uncoupling, tetrahydrobiopterin (BH4,
a fundamental cofactor of NOS) deficiency has been often
described [71–73]. Additionally, excessive ROS can further
exacerbate NOS uncoupling [25]. NO generated by NOSs
is able to react and interact with ROS. Indeed, in HF, ROS
and RNS generated by different sources can decrease NO
bioavailability. Such interactions can have a significant effect
on myocardial contractility [33]. In failing hearts, beyond
lower antioxidant defenses, diminished NO levels can bring
a further increase in ROS because of NOS uncoupling [64]
(Figure 1). Of notice, ROS such as superoxide can directly
quench bioavailable NO even without affecting the expres-
sion and activity of NOS [74]. Superoxide anion (O

2

−) can
react with NO, forming reactive species such as peroxyni-
trite, producing abnormalities in the nitroso-redox balance
and further myocardial derangements [26, 30]. Importantly,
in cardiomyocytes NO mediates S-nitrosylation of specific



Oxidative Medicine and Cellular Longevity 5

cysteines [33, 75], with effects on Ca2+ fluxes and EC coupling
[33, 76], but high levels of O

2

− can inhibit physiologic S-
nitrosylation. High O

2

− concentrations interact with NO
to form peroxynitrite that can produce numerous cytotoxic
effects that may alter excitation-contraction coupling [26,
77, 78]. Additionally, in failing myocytes, NOS1 moves from
its sarcoplasmic reticulum (SR) subcellular location to the
sarcolemmal membrane [43, 79], disrupting the tight time-
and substrate-dependent NOS regulation. Also, the high
levels of NOS2 in failing myocytes appear to be, at least in
part, a cause of the blunted myocardial inotropy after 𝛽-
adrenergic stimulation [80, 81].

9. ROS-Mediated Alterations in
Cardiac Dysfunction

In the heart, ROS stimulate transcription factors to promote
hypertrophic signaling, therefore producing cardiac growth,
remodeling, and dysfunction. ROS affect cardiac contractility
and survival [4, 7, 25–30]. Cardiomyocytes apoptosis that is
present in hypertrophy and HF contributes to development
and progression of cardiac dysfunction [33, 82]. High levels
of ROS have a key role in myocytes apoptosis. Indeed, at
relatively low levels, ROS stimulates protein synthesis, while,
at higher levels, there is activation of JNK and p38 MAPKs
and Akt and induction of apoptosis [33]. Interestingly, in
rat cardiomyocytes, H

2
O
2
at low micromolar concentrations

blunts contractile function significantly and activates ERK1/2
kinase with no effect on survival, while at higher micromolar
concentrations H

2
O
2

can stimulate apoptosis via JNK and
p38 kinase [52].

ROS mediate the prohypertrophic signaling of alpha 1
adrenergic and angiotensin II pathways [83–87], by means
of Ras thiol regulation [88]. In the heart, different signaling
pathways involved in the modulation of cardiac hypertro-
phy, including protein kinase C (PKC), the MAPKs p38,
JNK, apoptosis-signaling kinase 1 (ASK-1), and ERK1/2
[33], NF-𝜅B, calcineurin, many tyrosine kinases, Akt, and
Phosphatidyl-Inositol-3-Kinase (PI3K) [25–27, 89, 90], can
be stimulated by ROS. Interestingly, H

2
O
2
stimulates hyper-

trophy by activating PI3K in a time- and dose-depend-
ent manner [91].

ROS can also stimulate myocardial fibrosis, thus con-
tributing tomyocardial remodeling [92, 93]: ROS can activate
cardiac fibroblasts [94], regulate collagen synthesis [95], and
activate posttranslationally matrix metalloproteases (MMPs)
that are secreted in an inactive form [96].

Finally, ROS are able to regulate proteins of the excitation-
contraction (EC) couplingmachinery directly [97] (Figure 1).
ROS oxidation of critical thiols on the RyR increases its
open probability thus enhancing Ca2+ release, exacerbating
Ca2+ overload and myocyte dysfunction [7, 98, 99]. ROS
can also target sarcolemmal L-type Ca2+ channel, thus sup-
pressing the Ca2+ current [100]. Additionally, they can blunt
the activity of the sarcoplasmic reticulum Ca2+ ATPase
(SERCA2), which plays an essential role in controlling Ca2+
cycling, with consequent myocytes dysfunction [33, 101].
Interestingly, low expression of SERCA2a can be already

found in myocytes hypertrophied after ROS treatment [33].
Activation of Ca2+-calmodulin-dependent protein kinase II
(CaMKII) by ROS [102] is critically linked to remodeling
of ionic homeostasis in various experimental hypertrophy
models [103, 104] including familial hypertrophic cardiomy-
opathy [105]. In the myocardium, ROS can regulate the
function of other important channels, including sodium
channels, potassium channels, and ion exchangers, such as
the Na+/Ca2+ exchanger (NCX) and Na+/H+ exchanger type
1 [33, 106–110]. Also, in HF ROS can contribute to cardiac
dysfunction by lowering myofilaments Ca2+ sensitivity [111,
112].

10. Antioxidant Therapeutics in Heart Failure

10.1. Standard Heart FailureTherapyThat Possess Antioxidant
Properties. During the last decades, treatment of HF has
changed more than one time, along with the progressing
pathophysiological knowledge of the disease. It initially
focused on hemodynamic control and unloading of the heart
with vasodilators and diuretics. Then, the concept that the
compensatory neurohormonal response was no longer con-
sidered beneficial but rather worsening heart failure intro-
duced inhibitors of renin-angiotensin-aldosterone system, as
well as 𝛽-blockers, now used as current therapeutics. Then
treatments focused on muscle stimulation in the weakened
heart, but these therapeutics were set aside due to their
detrimental effects when used in the long term [113] as
demonstrated by several clinical trials [1, 4, 7, 114–118]. In
the last years, implantable devices have had a remarkable
impact on management of heart failure, since electrical
devices controlled by microprocessors can deliver therapy,
monitor disease, and prevent sudden cardiac death [2, 3,
7]. Interestingly, it has to be acknowledged that standard
HF therapy is based on many drugs that possess redox
properties (Table 1) [43]. For instance, current treatments
with ACE inhibitors and ATII receptor blockers (ARBs)
can limit ROS deleterious signaling [43, 119]. Indeed, ATII
can induce hypertrophy via a G𝛼q mediated pathway that
involves ROS generation and ROS-associated activation of
various downstream signals [85, 120]. Consequently, in clin-
ical practice, blockade of either ATII production or ATII
binding to the AT1 receptor can prolong survival in patients.
Notably, antioxidants that counteract ROS effects can also
blunt ATII-induced hypertrophy [43, 86].

Spironolactone inhibits aldosterone actions, blunting the
myocardial oxidant and profibrotic conditions that are a
hallmark of HF. Indeed, aldosterone is able to activate
NADPH oxidases, thus increasing ROS production [43, 121].
Similarly, correction of redox imbalance has been implicated
in the therapeutic effects of eplerenone in HF [43, 122, 123].

Interestingly, recent studies on cardiac resynchronization
therapy (CRT) demonstrate that the beneficial effects of this
important device therapy also involve, amongmany, a redox-
mechanism. In particular, in dyssynchronous HF, Cys294 of
the mitochondrial F1-ATPase can form a disulfide bond with
another cysteine residue, while introduction of CRT prevents
disulfide formation with S-nitrosylation of Cys294 [124, 125].
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Table 1: Properties of the main antioxidant therapeutics.

Components of standard heart failure therapy that possess
antioxidant properties
ACEi, ARBs, ARNi, antialdosterone drugs: interference with
RAAS signaling
Carvedilol: 𝛽1- and 𝛽2-adrenergic receptor blocker that also
increase NO production or decrease inactivation
𝛽3AR agonists: enhancement of myocardial 𝛽3-adrenergic
coupling with NO-cGMP signaling
ARNi: enhancement of NPs/cGMP/PKG pathway
Drugs with redox effect that are not mainstream therapeutic
approach in heart failure
PDE5 inhibition and BH4 supplementation: potentiating
NO/cGMP/PKG signaling
Statins: NADPH oxidase inhibitors
Allopurinol: xanthine oxidases inhibitor
Ranolazine: inhibitor of elevated late INa
MAO inhibitors: blunting ROS production fromMAOs
Novel therapeutic compounds that target ROS/RNS signaling
pathways
SS-31 (MTP-131, Bendavia): direct action on mitochondrial
function
Resveratrol: preservation of the LKB1-AMPK-eNOS signaling axis
HNO donors: improving Ca2+ cycling and myofilament Ca2+
sensitivity
ARNi: angiotensin receptor-neprilysin inhibitor.
AMPK: AMP-activated protein kinase.
NPs: natriuretic peptides.

Carvedilol is 𝛽1- and 𝛽2-adrenergic receptor antagonist
with additional vasodilatory 𝛼1-blocking properties [126]. Its
structure contains a carbazolemoiety bywhich carvedilol can
be considered also a potent antioxidant [126–128], as a result
of increased NO production or decreased inactivation [126,
129].

The third-generation 𝛽-blocker nebivolol, by simulta-
neous stimulation of 𝛽3-adrenergic receptor (AR), can
enhance NO signaling which is often lost in HF because
of the lower NO bioavailability. The eNOS-dependency
of nebivolol beneficial effects beyond conventional beta
blockers was demonstrated in experimental models of post-
MI and hypertrophy [130, 131]. A recent study [132] also
showed that microdomain-targeted enhancement of myocar-
dial 𝛽3AR/NO-cGMP signaling may be responsible, at least
in part, for 𝛽1-adrenergic antagonist-mediated preservation
of cardiac function in a volume-overloaded canine model.
Additionally, the BEAT-HF trial (NCT01876433) is recently
evaluating efficacy of oral treatment with a 𝛽3AR agonist in
chronic HF, exploring also potential effects on diastolic func-
tion, symptoms, repolarization duration, and safety (Table 1).

10.2. Drugs with Redox Effect That Are Not MainstreamTher-
apeutic Approach to Heart Failure. Potentiating NO/cGMP
signaling has provided beneficial effects on animal models
of HF by means of phosphodiesterases 5 (PDE5) inhibi-
tion [133] and by BH4 supplementation [73]. cGMP/PKG

(cGMP-dependent protein kinase) pathway negatively con-
trols stress-response signaling. cGMP is generated upon
natriuretic peptide binding to its receptors coupled to par-
ticulate guanylyl cyclase or upon NO activation of soluble
guanylyl cyclase. Importantly, cGMP controls the activi-
ties of phosphodiesterases (which in turn control cAMP
and cGMP hydrolysis) and can then activate PKG. This
important kinase phosphorylates Ca2+ channels, myosin
phosphatase, RGS2 (which negatively regulates G-protein-
coupled receptors), and IRAG (which modulates inositol-
1,4,5-trisphosphate-dependent Ca2+ signaling), troponin I,
and phospholamban [134]. Enhancing cGMP/PKG signaling
by inhibiting PDE5 seems to be able to attenuate and reverse
cardiac hypertrophy induced by pressure overload [133] and
blunt acute and chronic 𝛽-adrenergic stimulation and also
protect against ischaemia-reperfusion injury and myocardial
apoptosis induced by antitumoral agents [135–137]. Even
though the first clinical trials with sildenafil in HF have been
somehow disappointing, the concept that the cGMP pathway
is a promising target to exploit has been corroborated by the
recent results on the beneficial effects of neprilysin inhibition
combined to ARBs [138].

Simvastatin (NADPH oxidase inhibitor) and allopurinol
(xanthine oxidases inhibitor) both counteract oxidative stress
and interfere with ROS-mediated hypertrophic signaling
[139], blunting cardiac remodeling. In particular, statins
can inhibit the isoprenylation and activation of Rac1 and
other proteins of the Rho family, hence lowering NADPH
oxidase activity [43, 140]. Additionally, it seems that statins
have direct antioxidant effects on lipids, and it has been
shown that the oxidation of LDL, VLDL, and HDL can
be inhibited by hydroxyl metabolites of atorvastatin [43,
141]. Also, both short- and long-term therapies with statins
can benefit endothelial dysfunction [43]. Recent work from
Andres and colleagues [142] showed that acute cardiopro-
tective effects elicited by simvastatin involve the protein
Parkin that stimulates mitophagy and prevents mevalonate
accumulation. The xanthine oxidase inhibitor allopurinol is
currently studied to improve remodeling after MI in diabetic
patients (clinicaltrials.gov: NCT01052272) [139].

Enhanced myocytes [Na+]i has been recently shown to
lower mitochondrial Ca2+ uptake, increasing ROS produc-
tion [110].The same group was able to prevent such enhanced
ROS generation with an inhibitor of the mitochondrial
Na+/Ca2+ exchanger (mNCE), which decreasedNa+-induced
Ca2+ exportation [109]. In turn, ROS could then activate
Ca2+/calmoduline kinase II [104, 143] that would increase
late INa by interacting with the Na+ channel [144, 145],
thus generating a vicious cycle of high [Na+]i and oxidative
stress [110]. High [Na+]i would then stimulate NCX and
intracellular Na+ would be exchanged with extracellular Ca2+

with consequent Ca2+ overload and electrical andmechanical
dysfunction, in a scenario in which SERCA2a is inhibited
and the RyR2 is activated by ROS [146, 147]. Hence, high
[Na+]i can be identified as an interesting therapeutic target
for HF treatment [102]. Indeed, inhibiting the late INa with
ranolazine has been proven beneficial in experimental HF
[102, 148–151].
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Other promising therapeutic targets are monoaminox-
idases: MAO A and MAO B have been recently proposed
to play a role in experimental hypertrophy and failure via
increased generation of H

2
O
2
. Pharmacological or genetic

manipulation of such enzymes could then prove beneficial in
cardiac dysfunction [25, 152, 153] (Table 1).

10.3. Novel Therapeutic CompoundsThat Target the ROS/RNS
Signaling Pathways. Other interesting compounds that may
ameliorate cardiac function by acting on the redox milieu
have been identified. SS-31 (MTP-131, Bendavia) [154] is a
mitochondria-specific antioxidant that appears to decrease
LV hypertrophy in a mouse model of ATII-induced hyper-
trophy [155] and improve postinfarction cardiac function
preventing adverse left ventricular remodeling and restoring
mitochondria-related gene expression in rats [156]. Four
phase I trials with Bendavia have been completed, with an
ongoing phase II trial in ischaemic cardiomyopathy [139, 157].

Resveratrol is a widely used antioxidant dietary supple-
ment with promising experimental results on pressure over-
load cardiac hypertrophy, but beneficial effects on clinical
hypertrophy have not yet been reported [139, 158].

Currently, in HF treatment the room for inotropic
therapies such as dopamine, dobutamine, and milrinone
is very limited by the mortality associated with long-term
treatment with these drugs [115–117]. Nitroxyl (HNO) repre-
sents an alternative approach. HNO is a 1-electron-reduced
and protonated sibling of NO and, like NO, is a gaseous
signaling molecule and a potent vasodilator. Nevertheless,
HNO appears to have distinct chemical and physiological
properties and unique signaling pathways from those of NO
[159, 160]. HNO was initially discovered to induce both
venous and arterial dilation and positive inotropy in intact
failing hearts. Following mechanistic studies have revealed
multiple pathways that combine the strategies of these other
approaches. Clinical interest inHNO is increasing in virtue of
its positive inotropic effects. In vitro experiments suggested
positive inotropic and lusitropic properties of HNO, while
subsequent studies in healthy and heart failure dog models
with the HNO donor Angeli’s salt (Na

2
N
2
O
3
) demonstrated

significant improvements in load-independent LV contrac-
tility, associated with reductions in preload volume and
diastolic pressure [161, 162]. These beneficial effects seem
to be independent of cAMP/protein kinase A (PKA) and
cGMP/PKG signaling [163] with no modification of L-type
calcium channel activity [164], but rather related to mod-
ifications of specific cysteine residues on phospholamban
[165, 166] and SERCA2a [167] and on myofilament proteins,
correlating with increased Ca2+ sensitivity and force gen-
eration [168]. Recently, a new HNO donor, CXL-1020, has
been developed, and both animal and clinical studies seem to
confirm positive inotropic and lusitropic effects [118, 169–171]
(Table 1).

11. Conclusions

ROS and RNS at physiological concentrations are beneficial
molecules and play a role in the regulation of cellular

signaling pathways [28]. ROS/RNS generation is finely regu-
lated for proper myocardial homeostasis. Although oxidative
and nitrosative stress can be deleterious and may therefore
constitute a therapeutic target in HF, indiscriminate elimi-
nation of ROS and RNS by antioxidant treatments may not
provide any improvement andmay even impair physiological
cellular functions, causing a complete loss of ROS/RNS sig-
naling [172–175]. Indeed, antioxidants were shown to be able
to counteract cardiac remodeling and improve contractility
in many animal models of HF. However, when translated
to the clinical arena, such therapeutic strategies [64] did
not show the expected benefits or even worsened mortality
[176], when the antioxidant effect was not paralleled by other
pharmaceutical and biological properties, as for carvedilol
[126]. Importantly, ROS biological effects on cardiomyocytes
dependon the site of generation.Therefore,more specific, tar-
geted, and “compartmentalized” antioxidant approaches that
blunt local ROS/RNS production might be more successful
in countering irreversible oxidative modifications. Further-
more, since in heart disease deranged mitochondria are the
major generators of ROS, dictating the overall myocardial
redox conditions, therapeutic strategies aimed at removing
diseased mitochondria, thus promoting mitophagy, may
help diminishing oxidative stress and ameliorating cardiac
function [176].
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