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Abstract: The high sedimentological variability of gypsuntke has the effect that a univocal characterizatiathis material is not easy to establish.
This is particularly true from the geomechanicahpof view: when the mechanical properties of gypsrocks are requested, it is therefore necessary
to undertake detailed characterization analysesarfian facies of gypsum were observed in the Uppearchtie evaporitic succession (Messinian
Salinity Crisis) within the whole Mediterranean Basn this work, mechanical tests were conductadacsite-specific facies, represented by the
microcrystalline branching selenite. The testedamcame from the Monferrato area (northwestety)ltUniaxial compressive strength (UCS) tests
were performed in order to obtain reference medashrparameters. More rapid and economic point kestl (PLT) and ultrasonic pulse velocity
(UPV) measurements were additionally performedenfy their applicability as complementary/alteimatmethods for site characterization. Rock-
type specific PLT-UCS and UPV-UCS relationships evestablished. A wide dispersion of the mecharpeshmeters was observed due to the
heterogeneities of the studied material. Consedyerdmpositional, textural and microstructural ebstions on selected samples were performed.
Two main material classes were recognized baseaverage grain size and total gypsum content, unéteglthe significant influence of the grain
sorting on the measured mechanical properties.
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Introduction Wang and Li, 2015; Zel et al., 2015; Colomberolgt2916; Vasanelli et

al., 2017).

Rock mass classification and geotechnical desigmiiting industry
and rock-related structures require definition pkdfic geotechnical
parameters, providing a strength indication for shedied material (e.g.
shear resistance and compressive strength). Otiee ohost widely used
parameters in various engineering issues, includimg selection of
appropriate excavation techniques and stabilityyaea, is the uniaxial
compressive strength (UCS). Destructive tests,itioaally used to
estimate UCS, are however expensive and need &ecwample

preparation. This often results in a small setested samples, which similar facies of gypsum. An

could not be adequate in number to account forhigh geological

Following these approaches, an integration of tlestnestablished
destructive techniques (UCS) with faster and cheapethodologies
(PLT and UPV) is presented in this work to obtaippmpriate
correlations and a reliable technical charactddnadf a specific facies of
gypsum. Even if relatively standard methodologiasehbeen applied in

this work, similar approaches are not availablethe literature on

branching selenite. New specific material-calibdatelationships are

therefore proposed with the aim of improving gebtécal design over

innovative classifioat based on
compositional, textural and microstructural obstores is additionally

variability of the studied material. Consequenttheaper and faster proposed which could be helpful in discriminatifgstparticular facies
methodologies, providing alternative physical anechanical parameters behavior. Gypsum rock observed in nature show ithdelarge variety of
potentially correlated with UCS, have been propdsgdarious authors ages, formation mechanisms, depositional envirotsnand facies. Each
(among others, Hatherly et al., 2007; Sharma andi5i2008; Lawrence type of gypsum is marked by specific features imte of grain size,
et al., 2013). texture, microstructure and composition (Lugli et 2010).

The simplest method to provide an expeditious indéxhe rock Previous studies were accomplished on the mecHgmioperties of
mechanical strength is the point load test (PLThisTtechnique is specific gypsum facies. Papadopoulos et al. (19®dnpared the
economic and quick; it does not require any spegipreparation and can mechanical properties of alabastrine, medium-gchared coarse-grained
be carried out directly on site. By contrast, defation is not controlled Neogene gypsum from Crete, recognizing the undeglgirong influence
during the test. The resulting PLT strength indiex can be potentially of formation mechanisms and depositional envirortmelilmaz and
correlated with UCS (ISRM, 1985; ASTM, 2007). Ditfat authors Sendir (2002) analyzed the relationships of Schneidbund number with
focused on rock-type dependdrtsUCS relationships and conversionUCS and Young's modulugkf) on a pure alabastrine gypsum type from
factors (Broch and Franklin, 1972; Bieniawski, 19THhau and Wong, the Sivas Basin (Turkey); whereas the mechanicgesties of porphyric
1996; Hardy, 1997; Tsiambaos and Sabatakakis, Z88%r et al., 2005; and alabastrine gypsum types from the same basie w@mpared in
Kahraman et al., 2005; Cobdiho and Celik, 2008; Kahraman andYilmaz (2007). At the nanoscale, Chen et al. (2C®)lyzed the flexural
Gunaydin, 2009; Basu and Kamran, 2010; Singh ef@all2; JahanGer, strength of individual crystal of gypsum and itflience on the elastic
2013; Li and Wong, 2013; Salah et al., 2014; Kayd Haraman, 2015; properties of specific geometrical configurationcofstal agglomerates at

Akram et al., 2017; Liu et al., 2017; Everall arahBlav, 2018).

Beside destructive methods, non-destructive uliviastests can be
used to indirectly assess the rock mechanical ptiegeby correlations
between ultrasonic pulse velocity (UPV) and elastic strength
parameters (McNally, 1990; Yasar and Erdogan, 26@stherly et al.,
2005; Oyler et al.,, 2010). In particular, UPV-UCS8rrelations were
recently established for different rock types invesal studies
(Vasconcelos et al., 2008; Butel et al., 2014; Kea and Kesimal, 2015;
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high porosities (needle aggregates and homogerrana®mly oriented
single crystals) to study synthetic samples. Heieliaal. (2012) proposed
PLT-UCS correlations for a specific gypsum faciesnf the Early
Miocene Gachsaran Formation (Iran), with peculigstlline-gypsum
and micrite layers and veins. The above-mentionerksy and resulting
correlations, have however to be considered vaily for the particularly
analyzed facies.

Recently, sedimentologists underlined the preseofcea specific
facies, named branching selenite, in most of thepadpMiocene
evaporites of the Mediterranean Basin (Lugli et2010). This facies has



a scientific and economic significance becauses iagsociated with a
specific layer (reported in geological literature “key layer”) and it is
consequently very useful for both stratigraphicdsts and ore body
reconstructions for mining. Despite its importancejechanical
investigations and specific correlations for thpedfic facies are not
available in the literature and are therefore wodhinvestigation.

Branching selenite, as well as some other gypsamdais commonly
exploited in either open pits or underground qeatrMining tunnels in
gypsum formations can reach lengths of tens ofiélers, and thus both
underground and surface stabilities have to beredsiNevertheless, in
everyday practice, the lack of a specific focughmnrelationship between
gypsum geological variability and strength paramseteften leads to
ignoring of important information for the mechanicharacterization of
the ore deposits.

The present research aims at focusing on
characterization of a set of branching selenitepasncoming from the
Monferrato area (northwestern Italy). Special aiten is paid to
correlations among different mechanical tests tiate to be facies-
specific, in reason of the described high geoldgieaiability of gypsum
rocks. Results of destructive (UCS and PLT) and-aestructive (UPV)
tests on branching-selenite samples and faciesfispeorrelations
among them are reported. The possibility to complenthe mechanical
characterization obtained from UCS tests with gdanumber of cheaper
and more expeditious tests, such as PLT and UPdltegl in a much

larger available dataset without significant costréase. Because of the

wide dispersion in the collected mechanical paramebbserved within
the same gypsum facies, further chemical (i.e. gypsontent) and
physical (i.e. rock texture and microstructure) relaterizations of the
tested rock samples were undertaken. As a mattéaocof the strength
dependence from geological and physical features) as grain size and
mineralogy, have been suggested by many authorsef@ral other rock
types (Aggistalis et al., 1980; Hatzor and PalcHik97; Palchik and
Hatzor, 2004; Tsiambaos and Sabatakakis, 2004;dedm et al., 2005;
Sabatakakis et al., 2008; Rajabzadeh et al., 20/E2g and Li, 2012; Ju
et al., 2013; Karakul and Ulusay, 2013; Wasanthal.e2015; Aladejare
and Wang, 2017; Yu et al., 2017).

2. Geological framework

During the Messinian Salinity Crisis, both hypetia and hypo-
haline sediments were deposed all over the Meditean basin, in three
successive phases (Lugli et al. 1999; Dela Piared. 2002, 2007, 2011,
2012, 2014; Roveri et al., 2008; Manzi et al., 2080811, 2013). During
the first phase (5.971-5.60 Ma), the primary lowggpsum (PLG) Unit
was deposed in the marginal basins, while anoxidsrsettled in the
deeper basins. The second phase (5.60-5.55 Magspomded to the
resedimentation of the PLG Unit as a chaotic b&lyseédimented Lower
Gypsum (RLG)) in the deeper basins. Eventuallyjrduthe third phase
(5.55-5.33 Ma), hypo-haline sediments in the stedafLago-Mare”
facies were locally deposed. The resulting distidyu of Messinian
evaporitic sediments in the Mediterranean basahéwn in Fig. 1.
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Fig. 1. Distribution of Messinian evaporites in thtediterranean basin (modified
from Rouchy and Caruso, 2006). The sampling areahf® gypsum rock facies of
the present study is highlighted in red (Monferraiorthwestern Italy).

The organization of sediments within the PLG Urst dyclically
depending on the influence of orbital parametersttan paleoclimatic
conditions. Within the unit, it is possible to rgodze pairs of gypsum and
marl layers which are usually repeated in a cytliay. Even if the
beginning of gypsum deposition is not synchronoaos tlie entire
Mediterranean basin, several studies allowed totifyethe stratigraphic
beginning of the salinity crisis, even where thepsgym was not yet
deposed (Hilgen et al., 1995; Manzi et al., 20¥3}otal number of 16
marl-gypsum cycles were recognized.

According to Lugli et al. (2010), different faciese observed in the
PLG Unit of the whole Mediterranean area: giant amassive selenite,
banded selenite, branching selenite, displacivengte| gypsarenite and
gypsrudite.

The giant and massive selenite consists of twinned gypsum crystals
(called arrow-head or swallow-tail) with averagezesiof several
centimeters. The peculiar organization of thesstaty was successfully
used to determine the strata polarity in miningrapen, because the
vertical crystal growth direction is subperpendicub the stratification.

The banded selenite or grass-like selenite consists of relatively $mal
vertical crystals, less than 10 cm in thicknesschviare separated by thin
few-millimeter thick carbonate laminae.

The branching selenite has been described as “nodular and lenticular
selenite” or “wavy, needle-like selenite layersi icily, Italy) or “hemi-
radial to radial selenite” (in Spain). It consistsclear selenite crystals,
with length varying from some millimeters up to feentimeters, having
their long axis inclined or oriented horizontalgrouped into decimeter-
large irregular nodules and lenses separated by fime-grained
carbonate or gypsum laminae. The crystal arrangemevreals that
clusters of selenite grew laterally, grouped in nbtees, projecting
outward from an initial nucleation zone into a figrained gypsum matrix
resulting in a conical shape. Those cones arecdiffito recognize
because they are widely spaced and very broad aottie nucleation
points are not always visible. The matrix surromgdihe cones may
consist mostly of gypsum or mudstone with fine-geai gypsum. This
facies appears only from the 6th cycle and consetyuallows an easy
identification of this cycle over the whole Medimnean basin. For this
reason, the 6th cycle is considered as a key setlifogical level and is
reported in the literature (Dela Pierre et al., D04ds “Sturani Key Bed”
(SKB).



The displacive selenite usually shows lenticular crystals, but a few

twinned crystals have also been observed, up to dcmoss. They are
commonly present above selenite beds, in contattt thie overlaying
shale layers. The typical horizontal growth (“flaging”) of the lenticular
crystals is opposed to the vertical growth of thienpry selenite twins,
and as in this case, the free space of the disglagiowth is only
horizontal because the shale layers are normally arfew decimeters
thick.

The gypsarenite andgypsrudite are clastic deposits locally recognized

throughout the selenite successions of the PLG. Uhi¢y are limited to
thin layers in the more marginal successions. Irstnod the cases, the
selenite clasts are only slightly corroded, sudggsiocal erosion and
deposition as a consequence of floods at the Ipagsigins.

All these facies have been recognized in the evtipsuccessions of
the Mediterranean region, including the Monferrgtological domain
(northwestern ltaly), where samples for this stugdye collected (Clari et
al., 1995; Piana and Polino, 1995). The Monfersatatigraphic sequence
(Fig. 2) shows that, under the SKB (6th cycle)eéhtayers of massive
selenite (10-12 m in thickness) are divided by rfaarkrs with a thickness
of approximately 2 m. The SKB layer has an avethgekness of 10 m
and it is mainly made of branching-selenite witlkdlbbanded-selenite
facies. Over the SKB layer, finer interbedded layefr gypsum and marl
are present, referred as “higher evaporitic cycl@3gla Pierre et al.,
2016).

3. Materials

A total of 60 gypsum samples in branching-selerigteies were

obtained from 10 boreholes in the evaporitic susioesof the Monferrato
area. Core drilling on site was performed in vaiticlirection, i.e.

perpendicularly to the sub-horizontal stratificati@nd to the main
sedimentary discontinuities. As a result, the adiedction of the cores is

perpendicular to the stratigraphic anisotropy, Whit the tested samples

consists of carbonate or gypsum laminae embeddegée homogenous
nodules of gypsum crystals. In the studied areatifitation lies nearly

horizontally and, in case of underground quarriggts run completely

into the gypsum layers; the direction of maximuradoon walls and

pillars is therefore perpendicular to the sedimsntdiscontinuities.

Consequently, UCS tests with uniaxial stress oegmormally to the

sample anisotropies simulate on-site pillar condgi For these reasons
PLT and UPV measurements were also performed irsdh@ direction.

Cores were made available from a private company the related

diameter (80 mm) was out of our control. Final ksgof the selected
cores, after parallel edge cutting with a circidaw (perpendicularly to
core axis), were in the range between 200 mm afd&. Number and
size of the cores tested for mechanical charaetéiz (UCS, PLT and

UPV) are summarized in Table 1. The sampling procedor each

method is shown in Fig. 3. All cores were testedrinconditions in order
to reduce the additional influence of water content the retrieved

parameters.
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Fig. 2. Typical stratigraphic section of Messini@vaporitic deposits in the

Monferrato area (Bernardi, 2013).

Even if all the cores were tested with the nontdesive UPV
technique, only 49 measurements are discussedeinfalfowing; the
results of the remaining 11 cores were excludedtduke high standard
deviation observed among the measurements.

For the destructive tests (UCS and PLT), in sonseséahe total core
length was higher than the standard required sasigde Therefore, these
cores were further cut into shorter samples.

Table 1. Number of samples tested with the desdribethodologies and sizes of

the specimens.

Test Number offSpecimen sizes (length XNumberof commo
lsamples diameter) (mmx mm) isamples

UPV test 49 200-508 80 UCS-UPV: 15

PLT 35 (5430-70x 80 UCS-PLT: 8
Ispecimens)

UCS test withconstan|8 160-280x 80

strain rate

UCS test withconstar|9 160-280x 80

stress rate




Gypsum content 15 UCS-gypsum

measurement content: 8

PLT-gypsum

content 13 (11

Ispecimens)

UPV-gypsum

content: 12

IThin section 6 UCS-thin section: 4

observation PLT-thin section 5

(8 specimens)

UPV-thin section: §

UPV Test - 200-500 mm

80 mm

30-70 mm

Test

L

160 - 280 mm

Thin Sections

Gypsum Content

4.

Fig. 3. Schematic representation of sample exgacfrom the long cores and

preparation according to geometrical requiremefthefive test methods.

Gypsum content measurements and thin section ciigmrs were
carried out on broken samples of PLT and UCS téstparticular, 15
samples were devoted to the evaluation of the gypsantent and six
samples to the preparation of thin sections.

Independent data from the same gypsum layer regoraverage
porosity in the range between 4% and 8% and aragedsulk weight of
22 kN/n.

4. Methods
4.1. Ultrasonic pulse velocity tests

UPV measurements were performed with an ultrasopitse
generator Pundit (Proceq) which provides emissimh &quisition (at a
sampling frequency of 2 MHz) of P-waves by means$waf cylindrical

transducers having a nominal frequency of 54 kHeaslirements were

conducted following the requirements of ASTM D28%5-(2008) for
laboratory determination of pulse velocities. Ratirly, all the

investigated travel distances (i.e. core length, 200-500 mm) obey th

standard relationship with the minimum lateral dusien ¢ (i.e. core

diameter, 80 mm) and the average sample grairdsize
H < 5¢
H > 10d

Branching selenite gypsum is a fine-grained rockinfgaa maximum
grain size of about 10 mm, thus investigatédasically obeys Eq. (2).

D

(2) (F) of the specimen to its cross-sectional area befesting A):

Given the relatively low nominal frequency of thertsducers, some
discrepancies from the standard arose with the ahbeeneters @

considering:

¢=51=15d 3)
wherel is the pulse wavelength, defined as

1= ©)

wheref is the nominal frequency of the instrument (54 xHonsidering
an approximate average UPV of 2000 m/s, the expgestelengthi is
37 mm. As a consequence, samples with diamete® ah® could not
fully satisfy Eq. (3), but it was at least ensutechave measurements on
samples obeying>24.

An average of ten UPV acquisitions was repeatecearh sample.
Manual picking of the first arrival times was perfeed on each recorded
trace, to obtain the time of travel within the istigated core.
Determination of the P-wave velocity was then ghitforward since
travel distances (core lengths) were known. FinBVUsalues for each
sample were averaged over the 10 related measut&men
4.2. Point load test

Gypsum samples were loaded in the PLT apparatusebst two
conical steel points, according to the suggestethadefor determining
point load strength (ISRM, 1985; ASTM, 2007). Instteconditions
involving core specimens tested along the axiabafion, the sample
geometric requirements follow:
03¢<H< ¢ (5)

For this reason, the cores were cut into smallewpées, with lengths
between 30 mm and 70 mm (Table 1).

The point load indexs is defined as the ratio between the applied
force at failure ) and the equivalent diameter of the cddg):(

P

Is = Dz (6)
where
pg="¢ )

T

Due to the influence of the sample diametet$m normalized value
referred to as an equivalent sample with diametéfanm (ssg is used:

_ (%)0.45 IS (8)

4.3. Uniaxial compressive strength test
The UCS test is used for determination of the maxinstrength and
elastic parameters (Young’s modulus and Poissatis)rof intact rock

ISSO

cores in uniaxial compression. Following ASTM D34@8 (2002) and
UNI EN 1926-2007 (2007), samples with geometrietdires obeying
Eq. (9) were placed in a loading frame and the laload was

continuously increased until failure:
20<H<25¢ 9)

Both constant stress-rate and constant strain-tetts were
performed. In the first configuration, a mechani¢@lomazzi) and a
hydraulic (Galdabini) press were used for peak doldver and higher
than 50 kN, respectively. Only the maximum strengtlue was recorded,
without strain measurement. In the second configama a constant
deformation rate of 0.5pm/s was applied by means of a servo-controlled
press; axial and lateral deformations were monitahgoughout the test
and the material behavior after the peak was &sorded. Local strains,
in both axial and lateral directions, were measuusihg electrical
resistance strain gages. To evaluate the reliplofithis device, the total

éieformation of the sample in axial direction wasoaieasured by means

of linear variable differential transformers (LVDTsn the steel plate of
the press.
The UCS of each sample was expressed as the fdtie @ailure load

F

A
4.4. Gypsum content measur ement

Ucs = (10)



The gypsum content in the samples was measuredigiirehe and used to calculate the grain size distributiorves. An example of
thermogravimetric method (Porta, 1998), which isdzhon the measure this image processing is shown in Fig. 4.
of the mass losses occurring during the heating shmple due to the
dehydration of gypsum. Calcium sulphate occursature in the form of 5. Results
three different minerals distinguished by the degfhydration: gypsum
(CasQ:-2H:,0), bassanite (CaSM.5H0) and anhydrite (CaSP The 5.1. Ultrasonic pulse velocity test
phase transition between these minerals dependtheremperature, The average UPV values obtained on the 49 sampéeseported in
following: Fig. 5. As for the following figures, values measlion the samples are
CaS0, - 2H,0 - CaS0O, - 0.5H,0 + 1.5H,0 — CaS0, + 2H,0 (11) sorted in ascending order, from low to high, towlifor a progressive
When the sample is heated to 105 °C, part of gy crystal water yisyalization of the distribution of the measuredrgmeters. Vertical
is lost, and bassanite is produced. With increasimgperatures, all the pjack pars show standard deviations from the aeeraglues.
gypsum is transformed into anhydrite; the totalvewsion is attained at pjeasurements spread out in a wide range, with amuim of 745 m/s

about 200 °C. Knowing that the total amount of taysvater is 20.91% and a maximum of 3169 m/s. The average velocithefwhole dataset is
of the gypsum mass (Eswaran and Gong, 1991), fremteasure of the 1737 s,

sample mass variation during the heating, the gypsarcentage (mass) 52 point load test

is obtained. The obtainedss, values are shown (in ascending order) in Figo6, f
4.5. Thin section obser vation all the 54 tested samples. As already observedRY results]sso values
Given the heterogeneity of the facies, thin sestigrere prepared gjstribute quite homogeneously over a wide intet@e02-1.2 MPa), with
perpendicularly to the observed anisotropy (acogrdio the loading 4 high variability of values among the samples. Terage lsso
direction). Large transparent glass supports (100160 mm) were used computed based on the whole dataset is 0.44 MPa.
for thick, smooth and polished slices of materiato(nd 1 mm), to |y aqdition to the obtainetks, values, macroscopic observation on
investigate representative portions of the sampBress-sections were sample failure during the tests (Fig. 7a) highkghsystematic differences
then observed and described with optical microséopeflected light t0  panween samples havirlgs, lower and higher than 0.5-0.6 MPa. In the
analyze texture and microstructures. The grain sitribution was st case, samples often broke in several scrajth, failure surfaces
quantitatively estimated with a photographic methiear each section, a peing developed not only in vertically but also$uhizontally, following

representative area was selected and the inner gdges were manually the weakness surfaces of the rock anisotropies @} In the second
delineated. The area of the grains was retrievedl the software ImageJ case, samples generally broke in two parts, witblear sub-vertical

failure surface (Fig. 7c).

Fig. 4. (a) Representative area of the thin seatiosample c (see Fig. 14); (b) Manually delineageldes of the grains; and (c) Calculated grainsaveth the software

ImageJ.
3500 Fig. 5. Average UPV measurements on 49 sampletedsar ascending order. The
. vertical black bars show the standard deviatiotheften measurements performed
3000 - T on each sample.
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Fig. 6.1ss0values determined on 54 samples from point lost] $erted in ascending Fig. 8. UCS values determined on 17 samples fron$ W&sts, sorted in ascending
order.

order.

Since electrical strain gages were often unreliabl¢he post-peak
phase, losing cohesion with the sample due to thek failure or
excessive deformation, strain values measured wsiithin gages and
LVDTs were compared. The total strain measured WitBTs is shown
in Fig. 9a. These data provide an estimate of #ferthation behavior of
the material, both in pre- and post-peak phasesn(ef/ the strain is
overestimated). For comparison, lateral and axiedss-strain curves
obtained with the strain gages, offering a morecisee measure of the
local deformation, are shown in Fig. 9b. The qaéiie comparison
between the axial strain curves underlines simitands within the
different measurement methods, highlighting theaf¥eness of strain
gages on this kind of material. A similar distriloat of Young’s modulus-
UCS values is clear from both graphs. Samples 21,U3 and U8 show
rock fragments of samples withso values lower than 0.5-0.6 MPa; and (c) Post-ucS and Young's modulus higher than 11-12 MPa andsfa,

respectively. Samples U4, U5 and U7, with UCS betw#@ MPa and 12
MPa, have lower Young's modulus (<3 GPa) and sarhlfiehas both
UCS and Young's modulus values much lower thanetwsall the other
samples.

The Young’s modulus and Poisson’s ratio were olethioy using the
deformation values from the strain gages and byutaing the tangent to
the 50% of the stress-strain curve. From theseesalB-wave velocities
(Ve) were retrieved for a direct comparison with ¥emeasured on the
same samples with the UPV test. For the majoritysahples, a good
correspondence is found between measured UPV vaheesalculated/p
'(Fig. 10).

Fig. 7. (a) Macroscopic observations of sampleifailduring PLTs; (b) Post-failure

failure rock fragments of samples wig, values higher than 0.5-0.6 MPa.

5.3. Uniaxial compr essive strength test

The UCS values obtained on 17 samples tested \ifiereconstant
stress-rate or constant strain-rate procedureshangn in Fig. 8, sorted in
ascending order. UCS ranges between 1.73 MPa a8 MPa. Stress-
strain curves obtained from the constant straie{esdts are plotted in Fig.
9 and the related elastic parameters are summanzethble 2. To
simplify the reading, samples were labeled from td1U8. Elastic
parameters referred to samples U7 and U8 are resepted because
during the test, the strain gages unglued fronsémeples.

Table 2. Summary of the elastic parameters retidi@m constant strain-rate UCS tests. The Youmglulus and Poisson’s ratio were obtained usingdé#fermation
values from the strain gages and by calculatingtéingent to the 50% of the stress-strain cukevalues were calculated from the elastic parametanssidering an
average density of 2.4 kg/épand compared with the UPV measured on the samples.

ISample Peak Strength (MPa}) Ultimate Strength (MP@a)  Youngdutas (GPa) | Poisson’s ratio » calculated (m/s) > measured with UPV test (m/s)
U1 18.35 6.68 0.24 1799.82 2753.1

U2 15.3 11.47 7.61 0.33 2158.95 2593.5

U3 14.04 14.47 0.29 2781.54 2434.73

U4 11.57 10.8 2.86 0.37 1442.68 1512.78

US 10.1 0.23 1.71 0.42 1341.7 1690.3

U6 2.12 1.45 0.8 0.33 698.62 986

U7 8.02 5.89

U8 11.84 9.98
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macroscopic cracks began during the loss of lodHerpost-peak phases.
Cracks progressively propagated until a well-defifiglure surface was
formed, with an angle of approximately 50°-60° wilie core horizontal
edges. In most cases, the specimen did not reéicalacollapse, but an
internal cohesion was maintained even after fail(see Fig. 11c).
Samples with the lowest strength did not alwaysettgy a well-defined
failure surface. Conversely, sub-horizontal bregksurfaces, following
rock anisotropy direction, were observed. Thestasas seem to develop
along the fine material films separating differggpsum lenses.

5.4. Gypsum content measur ement

The results of chemical characterization on theat&lyzed samples
report gypsum percentages on the total composioying between 62%
and 97% (Fig. 12). Most of the samples (12) areydwver, in a range
between 80% and 93%.

Gypsum content data, divided in percentage higiner lawer than
90%, were overlapped to the results of mechankalacterization in Fig.
13. Despite some outliers, a coherent trend betwgpaum percentages
and strength data is observed: samples with gypsantent higher than

Fig. 10. Comparison among retrieved from elastic parameters and from the upW0% reflect higher mechanical properties (retriefreth direct or indirect

measurements.

In correspondence with the peak load, visible faduwere not often
observable on the sample surface. The observabletiyrof the first

measurements), whereas gypsum content lower th#nc@@responds, in
general, to lower strength.
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5.5. Thin section observation .. ’ ’ ! ° BSamph:O Y H b *

The analyzed thin sections are shown in Fig. 14inkrease in grain
size is noticed from Fig. 14a to f. Two main groupth similar textural
features can be recognized, based on qualitatigereation and grain
size distribution curves (Fig. 15a): fine-grainédg( 14a-c) and coarse-
grained samples (Fig. 14d-f).

Fine-grained samples show the dominant presenca wfatrix o
small crystals (around 0.1 mm) that concentrategalayers, elongated in
the direction of anisotropy, wrapping oval lensathwt-2 mm crystals.
Some of the gypsum crystals into these lenses stmoelongated shape,
with the maximum length of 9-10 mm, underlying tisotropy (Fig.
14c). In this configuration, crystals are perfedtlycontact, without any
empty space. This is mainly due to the poor sortihthe grain size and
the consequent presence of fine crystals (<0.5 mnthe void among
coarser grains.

Fig. 13. Data of (a) UPV, (blsso and (c) UCS, with associated gypsum content
(labels).

Conversely, coarse-grained samples do not showrésence of fine
§ gypsum crystals and the grain size seems to be imoneogeneous,
resulting in a clast-supported texture. In additibiis sections show a less
compact structure, showing thin void spaces ambegtystals (Fig. 14d)
or the embedded presence of fine marl films, withided shape and sub-
horizontal direction (Fig. 14e). In the coarsestisa (Fig. 14f), the most
significant feature is the average crystal dimemslocally equal to 3-4
mm, almost twice the average size in the otheigesta few layers with
slightly variable grain sizes, parallel to the atigpy planes, have also
been recognized.
The grain size distribution curves and their deixs (Fig. 15a and b,
respectively) confirm that, even if the larger ¢ays have similar sizes in
the two groups (1-2 mm), the fine-grained samptasela significant finer



content (0.1-0.5 mm, see the local peak in Fig),1%hich is not present characterized by higher porosity values (7%-8%)ileve fine-grained

in the other group.

Porosity estimations (from sample mass in dry amtl eonditions)

demonstrated that the coarse-grained well-sortedples are indeed

poor-sorted samples show lower porosity, usuailyelothan 5%.

100

Fig. 14. Thin section photos of the gypsum sampleserved with an optical microscope in reflectetitli
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Fig. 15. (a) Grain size distribution curves of thin sections of Fig. 14; and (b) Derivative of theerage curves of the fine and coarse grainededasshowing the peaks of

the maximum concentration of grain size.

An indication of the grain size group was overlapp® the original core was considerethsUCS and UPV-UCS relationships are
mechanical parameters (Fig. 16). In general, it banobserved that, shown in Fig. 17 and summarized in Table 3, in terai linear,
similarly to the distribution of chemical indicasorfine-grained materials exponential and logarithmic regressions. Exponkngigression gave the
cluster in the higher part of the graphs, whilerseayrained samples higher correlation coefficienf = 0.97) forlsscUCS data, while the best
fitting for UPV-UCS data was found with linear aridgarithmic
regressionskE = 0.68 and 0.65, respectively).

correspond to the lower strength data.

6. Discussion

6.1. Correlation between mechanical features

Correlation between UCS values and PLT and UPV uoreasents
has been attempted. For these analyses, only ofer&dult for each



3500 In agreement with previous observations on weaksd¢Palchik and
lm\ . Hatzor, 2004; Kaharman et al., 2005; Sabatakakas.e2008), the linear
Nt correlation factor between PLT and UCS tests healge approximately
2500 1ol i half of the standard valu®&CSlsso = 24.5), which is proposed as a good
. J;i approximation for all the rock types by ASTM D57317-(2007). The
i ilia strength-dependent relationship betwagnand UCS is confirmed by the
}.lv“%‘ best fitting of the measurements with an exponkenéigression, which
.. —— should be considered as a general regression &omike studied facies
1000 Lioiot’ @ of gypsum.
.’ Since the compositional and textural variationghef material were
500 likely to have a significant influence on the meuisal behavior (Figs. 13
and 16), two material classes were defined basechemical indicators
and grain size features. To quantitatively desctiiteecoarse-grained and
Sample the fine-grained materials, we used the parambtgr(the grain size
14 corresponding to the 10% of passing material),esiwe noted that the
discriminant factor among the two groups of matdsahe size of finer

3000

2000

UPV (m/s)

1500

4.2 f grains.

o The two groups showed different mechanical featuaesl the
" ° corresponding mechanical thresholds were identd®dCS= 6 MPa and
Isso= 0.6 MPa. Consequently, a UPV threshold valuelesn estimated
...4- through the UCS-UPV relationship in Table 3. Asault, a summary of
mechanical parameters, composition and grain sizeéhe two material

Isso (MPa)
o
®
L ]
@
i

¥

oa .'_,,..---' classes is reported in Table 4.
.." Due to the difference in the geological constitgtifactors and
02 "...“"_‘—-coarse mechanical features, two UGSy specific relationships could potentially
,.--""’\m‘ more correctly define the two material classesaliatve been therefore
00 0' o o - o o o  Preliminary interpolated by two linear regressi¢hy. 18 and Table 5),
b, sample with different slopes. Chemical indicators and graize features are

overlapped to the graph, underling the division.e Thorrelation

coefficient of the coarse grain samples (Classstill high & = 0.9).
18 ® Constant Stress Rate . i X - . .
Even if the correlation coefficient for the fineagned class (Class B =
® Constant Strain Rat
16— e e fine] 0.67) is much lower than the one of the exponeinigirpolation of the
14 entire datasetR? = 0.97), the two proposed equations are based on
T 2 - uniformity of features, offering a more realistiepresentation of the
-9 .
S . material and avoiding to classify both materialsthwitoo high
g . heterogeneity.
6.2. Dependence of mechanical behavior from geological features
° |coarse In Fig. 19, all the results of the compositionahlgees are compared
¢ L - to the corresponding UCS values, obtained eitheectly from the
2 . ‘ﬁc;me uniaxial tests or fromlss and UPV values, using the relationships
0 . . . . . . . . . proposed in Table 3. The thresholds (gypsum comt&@% andJCS= 6
0 2 4 6 8 10 12 14 16 18

MPa) used to divide the material classes are lygtéd in the graph.
Almost all the samples of Class 1 (gypsum conte®®%) fall in the area
Fig. 16. Data of (a) UPV, (bsso and (c) UCS, with associated grain size grougyith UCS < 6 MPa (violet), whereas samples of Class 2 (gypsontent

(labels). > 90%) mainly fall in the area witdCS> 6 MPa (blue). Only four points
fall outside the two classes.

c Sample
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Fig. 17. (a)lsscUCS and (b) UPV-UCS measurements, with linearpegptial and logarithmic regression curves.

|>1600| >0.65| >6 |

Table 3. Summary ofsscUCS and UPV-UCS relationships, obtained with limea |2 > 90 0.5-1 (fine)
exponential and logarithmic regressions, with aisdéed coefficients of
determination k). Table 5.1s5-UCS relationships, with associated coefficientddefermination i¢),
Relationship Equation R for the two identified material classes.
UCSH ss50 UCS = 1.98exp(1.78s0 0.97 Material class |[Equation R
UCS = 13.29550— 0.47 0.87 il UCS=5.99¢5+ 1.84 0.9
UCS = 3lnlgso + 11.22 0.47 2 UCS = 19.5655— 6.83 0.67
ucs-upv UCS=7.78JPV - 6.75 0.68
UCS = 14.05I0JPV — 0.36 0.65 Microscopic observations can help in explaining teeurrence of
UCS = 0.66exp(1.14UPV) 0.62 these outliers: letters referring to the thin setiof Fig. 14 are reported
in Fig. 19. Points wittUCS < 6 MPa and gypsum content > 90% may be
20.00 explained by textural and structural observationstlee thin section of
[fine \ Fig. 14f. Even if in this sample, the gypsum petaga is the highest
1800 among the considered samples (96.7%), and extretoely strength
1600 values are obtained both from PLT and UPV measumsneThis
anomalous behavior may be related to the grain #ize is coarser and
14.00 locally almost twice the one observed in the ottién sections, as
highlighted from the grain size distribution curire Fig. 15a. Larger
= e y =19.56x - 6.83 grains and intergranular voids promote the forrmatibfailure surfaces at
% 10.00 R=g67 the grain contacts and result in an average redstcedgth of the sample.
§ Conversely, samples with UCS > 6 MPa and gypsuntecor< 90%
800 y=5.95x + 1.84 can be explained by the microstructural observatiom the thin section
6.00 of Fig. 14b and related grain size distributionveuin Fig. 15a. This
sample shows the presence of extremely fine-simtetlocked crystals
4.00 with a very high compact structure. Fine-grained eompacted material
200 among crystals seems therefore to promote thegseria strength.
As observed, a decrease in grain size correspands tincrease in

0.00

0.60
Isso (MPa)

0.80 1.00

Fig. 18.1s5¢UCS relationships based on chemical and textuftdrences. Labels
refer to the percentages of gypsum content andgth@é sizes observed in thin
sections.

Table 4. Summary of mechanical, compositional anadctiral thresholds between

strength (see Fig. 16). Similarly, the presencdired-grained layers in
coarse material contributes to producing higher hrarical strength.
Indeed, poorly-sorted materials showed higher gtrethan well-sorted
samples, since the presence of different grainssatlows for a more
efficient structural organization, resulting incaver porosity and a higher
rock compactness.

Considering the high heterogeneity of this particufacies with

the two recognized material classes. PLT and UGSsehave been obtained by the"®SPeCt to other already investigated gypsum roeksn if the gypsum-

conjunction point between the two linear regressiorFig. 18.
Material clasgGypsum content (U/kvrain sizeDio (MM)|UPV (m/s)lsso (MPa)UCS (MP3g)
1 <90 |0.1-0.2 (coarse) <1600 <0.65 <6

content division of the material into two classesl\addresses the overall
variability of mechanical parameters,
peculiarities should be strongly considered foompglete understanding
of the specific material strength.

microstruaturand textural



material, were found to complementarily explain thaiability in the

20.00 mechanical behavior.
. ,V All these aspects have therefore to be considered fdrther
applications of specifidsscUCS and UPV-UCS relationships. More in
2600 ] detail, a preliminary subdivision in two linear agbnships was adopted
TG0 | ® for IsscUCS based on the two recognized material classdsotfering
new insights into grain size dependent conversamtofs for branching
= 1200 ® selenite gypsum rocks. Nevertheless, given the Iloumber of
% 10.00 o measurements used to retrieve the proposed cdooredatthe two
g introduced linear relationships have to be consiless a preliminary
. ‘@ result, to be confirmed and supported by furthedisss.
6.00 ;1‘(,] Since it was demonstrated that a large variabiitymechanical
200 ° . ° parameters could occur even within the same gypdaaies, the
availability of faster and cheaper testing methd®T and UPV
=00 ~ @ measurements) and UCS correlations potentiallysgaeeess to a larger
0.00 set of measurements in field applications. This banconsidered as a
60 65 L 4 £ £ 20 £ 100 powerful tool to improve the reliability of the nesial characterization in

Conteat of Gypsum (¥) engineering and mining works, with respect to thétéd number of UCS

Fig. 19. Relationship between gypsum content (peage over the total sample yeterminations in everyday practice.

weight) and UCS value, retrieved from either urdhxiests or PLT and UPV Future perspectives of this work include an enriehtnof the

measurements. Letters refer to the subsectionsign I8 (microscopic images presented data set with data on the mineralogimateat and microscale
related to the labeled samples). Violet and bleasirefer to material classes 1 an¢ypseryations with transmitted-light microscopy asehnning electron

2, respectively. microscopy (SEM). Further analyses on the influenteporosity and
natural water content of the material could intrmeluimportant
7. Conclusions modifications in the mechanical behavior.

Recent geological studies highlighted the preseincéhe whole conflict of interest
Mediterranean basin of different gypsum facies, @gnavhich the
branching selenite facies was investigated in #igly. This facies is We wish to confirm that there are no known cordlictf interest
considered a key sedimentological level for strapgic reconstruction aegqciated with this publication and there has beesignificant financial
and ore deposit evaluation. Despite the scierdifid economical (mining) support for this work that could have influenceigtitcome.
interest, it has been poorly geologically and medsly investigated. To
fill this gap, this study aimed at evaluating theamanical properties of Acknowledgements
this material and proposing specific correlatioeween standard UCS
values and more economical and expeditious tasth, & PLT and UPV The authors desire to thank the anonymous privatepany that
measurements. These relationships were establishadgeneral form, kindly provided the core materials for this study.
disregarding additional information on the sampdatent and structure,
with an exponential law linking PLT results and U@8ues and a linear peferences
regression for UPV-UCS measurements.

The proposed relationships have to be considertd ealy for the Aggistalis G, Alivizatos A, Stamoulis D, Stournaras G. Correfatiniaxial compressive
SpeCiﬁc branching selenite facies. Nevertheleske tbasin-scale strength with Schmidt hardness, point load index, Youngdutus, and mineralogy of
homogeneous peculiarities of this layer make treailte of this work gabbros and basalts (Northern Greece). Bulletin of thenkatienal Association of
potentially applicable to rock mechanics and ergjiimg geology issues Engineering Geology 1980:22(1): 3-11.
related to this facies all over the Mediterraneaa. S Akram MS, Farooq S, Naeem M, Ghazi S. Prediction of haeical behaviour from

Despite the choice of focusing on a well-definegsgym rock type, a mineralogical composition of Sakesar limestone, Central SalteR&akistan. Bulletin
large variability of mechanical parameters was deteby all the adopted Engineering Geology and the Environment 2017; 76(2:661
methods. The related wide range of representatikength values is Aladejare AE, Wang Y. Evaluation of rock property variabili®eorisk: Assessment and
mainly due to the facies inner heterogeneitiest¢imms of grain size, Management of Risk for Engineered Systems and Geoha2@tdsl1(1): 22—41.
composition, textural and structural organizatidrtte crystals) caused ASTM D3148-02. Standard test method for elastic moduli taicinrock core specimens in
by its depositional mechanism. uniaxial compression. West Conshohocken, Pennsylvania; BWSAM International;

As a consequence, to further constrain the oridithis mechanical 2002.
variability, additional information on the grainzeiand gypsum content oty p2gas-08. Standard test method for laboratory dutetion of pulse velocities
was retrieved from representative microscopic amefrgcal analyses on and ultrasonic elastic constants of rock. West Conshohodkemnsylvania, USA:
the tested materials. Although slight strength depece from the ASTM International: 2008,
gypsum content was noticed, given a similar gypsemtent, the grain ASTM D5731-07. Standard test method for determination opthet load strength index
size was found to be the key parameter influensingin features. Two of rock and application to rock strength classifications. Weshshohocken,
material classes were firstly identified on theidad these microscopic Pennsylvania, USA: ASTM International: 2007.
features, only partially addressing the dispersainthe mechanical
parameters. Further microstructural and texturpeets, linked to the
presence of local grain size heterogeneities anth¢osorting of the
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