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1 Introduction

Effective Field Theories (EFTs), are characterized by the presence of irrelevant fields in

the Lagrangian which usually make quantization and the physical interpretation of the

high-energy regime very problematic. In two spacetime dimensions, the study of EFTs is

experiencing a period of renewed interest thanks to the discovery of surprising integrable-

like properties of the TT̄ composite operator, rigorously defined by Zamolodchikov [1] as

the determinant of the stress-energy tensor.

While the main source of inspiration of [1] were the non-perturbative factorization

properties detected, within the Form-Factor approach, in [2], the TT̄ perturbative contri-

butions to the finite-size spectrum first emerged from the study of the RG flow connecting

the Tricritical Ising (TIM) to the Ising model (IM) [3]. The analysis of [3], was based on a

combination of powerful techniques such as conformal perturbation theory, exact scattering

theory and the Thermodynamic Bethe Ansatz (TBA).

The scattering among right and left mover massless excitations along the TIM → IM

critical line is described by a pure CDD [4] factor which, therefore, should contain infor-

mations on irrelevant fields. This observation triggered early studies on TBA models with

modified CDD kernels and lead to the conclusion that, in many cases, they were affected

by short-distance instabilities [5, 6] (see the related discussion in section 9 of [7]). The

fact that seemingly consistent exact S-matrix models1 may display ultraviolet pathologi-

cal behavior was first detected in [9]. The interest towards this research topic remained

very limited for many years until an important step forward was made in [10, 11]: a link

between the TBA equations for free massless bosons, modified by a specific CDD factor,

and the spectrum of effective bosonic closed strings was discovered. The generalization

to open strings, to other conformal field theories and the observation that the effective

1For example, the wide family of scattering models proposed in the final discussion section of [8].
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action describing the confining flux tube of a generic gauge theory was described, at least

at leading order, by a TT̄ perturbation was made in [12]. The connection between these

observations and the paper [1] was further clarified in [7, 13] where, among many other

results, an inviscid Burgers equation for the spectrum was identified, and the corresponding

equation for the action [7] lead to the reconstruction of the whole bosonic Born-Infeld (BI)

Lagrangian in 2D [13].

Triggered by these works, remarkable connections have emerged with the AdS/CFT

duality [14–23] and flat space Jackiw-Teitelboim (JT) gravity [24, 25], together with gen-

eralizations to non Lorentz-invariant perturbations [26–29].

The study of partition functions of TT̄-deformed models was started in [13] and further

developed in [25, 30, 31].2 Interesting results on entanglement were recently obtained

in [34, 35]. Finally, a link with stochastic processes was established and generalizations to

higher spacetime dimensions proposed in [30] (see also [36, 37]).

The purpose of this article is to further investigate the properties of TT̄-deformed field

theories. Firstly, we shall review some of the results reported in [13], concerning classical

bosonic Lagrangians with interacting potentials. We will prove that the fairly complicated

expression for the perturbed Lagrangian, given in [13], can be recast into a much simpler

Born-Infeld type form. We shall also comment on the similarity between the inclusion of

the potential term and a transformation property for the spectrum first spotted in [7], as

the coefficient of the bulk contribution of the unperturbed energy is modified. The latter

results were anticipated in [38] and are partially connected, with some minor overlap, to

the papers [22, 36]. The TT̄-deformed sine-Gordon model is also discussed in detail and

the corresponding Lax operators are constructed.

Furthermore, motivated by the observations made many years ago in [39, 40] which con-

nect plane wave scatterings in the 4D Maxwell-Born-Infeld (MBI) theory to a 2D bosonic

Born-Infeld model, we shall show that the MBI Lagrangian satisfies a simple generalization

of the equations described in [7, 13], similar but different from the higher dimensional pro-

posals of [30, 36, 37]. The introduction of a mass term or a derivative independent potential

in the original field theory affects the TT̄-deformed Lagrangian as in the 2D examples.

Finally, we will briefly discuss the exactly solvable example of 2D Yang-Mills and con-

jecture a simple modification that includes the TT̄ contribution in the partition functions,

and more generally in the heat kernel for a generic surface with genus p and n boundaries.

2 Deformed interacting bosonic Lagrangians from the Burgers equation

In [7, 13] it was proven that the energy levels En(R, τ) associated to the stationary states

|n〉 with spatial momenta Pn(R) = 2πkn
R , (kn ∈ Z), satisfy the following inhomogeneous

Burgers equation

∂τEn(R, τ) =
1

2
∂R
(
E2
n(R, τ)− P 2

n(R)
)

= − R
π2
〈n|TT̄|n〉R , (2.1)

2See also [32, 33] for earlier results on partition functions for the bosonic Born-Infeld models, in the

context of effective flux-tube theories.
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where τ3 denotes the coupling associated to the TT̄ deformation, and R is the finite radius

of the cylinder on which the theory is quantized. In (2.1), the composite operator TT̄ is

defined up to total derivative terms as

TT̄(z, z̄) := lim
(z′,z̄′)→(z,z̄)

T (z, z̄)T̄ (z′, z̄′)−Θ(z, z̄)Θ(z′, z̄′) , (2.2)

and the complex components T , T̄ and Θ of the stress-energy tensor are related to the

Euclidean components T11, T22 and T12 through the following relations:

(x1, x2) = (x, t) , (z, z̄) = (x1 + ix2 , x1 − ix2) , (2.3)

T11 = − 1

2π
(T̄ + T − 2Θ) , T22 =

1

2π
(T̄ + T + 2Θ) , T12 = T21 =

i

2π
(T̄ − T ) . (2.4)

At finite volume R, the expectation values of the Euclidean components of the stress-energy

tensor are related to En and Pn through [41]:

En(R, τ) = −R 〈n|T22 |n〉 , ∂REn(R, τ) = −〈n|T11 |n〉 , Pn(R) = −iR 〈n|T12 |n〉 . (2.5)

Since (2.1) holds for any n, in the following we will drop the subscript n: En(R, τ) = E(R, τ)

and Pn(R) = P (R) = 2πk
R , (k ∈ Z). As a side remark, let us comment briefly on the

expression of the solution to (2.1). We notice that from [13] it follows(
E(R, τ)

P (R)

)
=

(
cosh (θ0) sinh (θ0)

sinh (θ0) cosh (θ0)

)(
E(R0, 0)

P (R0)

)
, (2.6)

with

sinh θ0 =
τ P (R)

R0
=
τ P (R0)

R
, cosh θ0 =

R+ τ E(R, τ)

R0
=
R0 − τ E(R0, 0)

R
, (2.7)

and

R2
0 = (R+ τ E(R, τ))2 − τ2P 2(R) , R2 = (R0 − τ E(R0, 0))2 − τ2P 2(R0) . (2.8)

Therefore the solution to (2.1) can be written in implicit form as

E2(R, τ)− P 2(R) = E2(R0, 0)− P 2(R0, 0) . (2.9)

It would be interesting to check if there exists an extension to higher spacetime dimensions

of the Lorentz-type transformation (2.6) corresponding to the generalizations of the TT̄

deformation proposed in [30, 36, 37] and/or to the quantum version of the Maxwell-Born-

Infeld model discussed in section 4.

If the boundary conditions at τ = 0 are the energy levels of a CFT, i.e. of the form:

E(R, 0) =
A

R
, (2.10)

3Here τ corresponds to t or −α in the notation of [13] and [7], respectively.
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the general solution to (2.1) is

E(R, τ) =
R

2τ

(
−1 +

√
1 +

4τ

R2
A+

4τ2

R2
P 2(R)

)
=

R

2τ

(
−1 +

√
1 +

4τ

R2
A+

4τ2

R4
(2πk)2

)
.

(2.11)

The consequence, on the latter expression, of an additional bulk term in the unperturbed

energy (2.10),

E(R, 0) =
A

R
+ F0R , (2.12)

was considered in [7]. Imposing the initial condition (2.12), the solution to (2.1) becomes:

E(R, τ) =
F0R

1− τ F0
+
R

2τ̃

(
−1 +

√
1 +

4τ̃

R2
A+

4τ̃2

R2
P 2(R)

)
, (2.13)

with τ̃ = τ(1−τF0), that is a reparametrization ∆En(R, τ)→ ∆En(R, τ̃) of the perturbing

parameter τ in the energy differences ∆En(R, τ) = En(R, τ)− E0(R, τ).

Furthermore, it was argued in [7] that (2.1) is equivalent, up to total derivative terms,

to the following fundamental equation for the Lagrangian:

∂τL(τ) = det[Tµν(τ)] , TT̄(τ) = −π2det[Tµν(τ)] , (2.14)

with µ, ν ∈ {1, 2} and Euclidean coordinates (x1, x2). By solving perturbatively (2.14)

with initial condition

L(~φ, 0) = ∂~φ · ∂̄~φ , ~φ = (φ1(z, z̄), . . . , φN (z, z̄)) , (2.15)

it was proved in [13] that the deformed Lagrangian L(~φ, τ) coincides with the bosonic

Born-Infeld model or, equivalently, the Nambu-Goto Lagrangian in the static gauge:

L(~φ, τ) =
1

2τ

(
−1 +

√
1 + 4τL(~φ, 0)− 4τ2B

)
=

1

2τ

(
−
√

det[ηµν ] +
√

det [ηµν + τ hµν ]

)
,

(2.16)

with hµν = ∂µ~φ · ∂ν~φ and

B = |∂~φ× ∂̄~φ|2 = −1

4
det [hµν ] . (2.17)

Here, we would like to extend the result (2.16) to generic interacting bosonic Lagrangians

of the form:

LV (~φ, 0) = ∂~φ · ∂̄~φ+ V (~φ) , (2.18)

where V (~φ) is a generic derivative-independent potential. Instead of solving (2.14) us-

ing a perturbative brute-force approach, as in [13], we proceed by postulating that the

evident similarity between equations (2.11) and (2.16), may be extended also to the TT̄-

deformation of (2.18). Concretely, by comparing (2.16) with (2.11), it is easy to check that

the following rescaled Lagrangian

Lχ(~φ, τ) =
1

χ
L
(
~φ,

τ

χ2

)
, (2.19)
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also satisfies a Burgers equation

∂τLχ(~φ, τ) = Lχ(~φ, τ) ∂χLχ(~φ, τ)− B
χ3

, (2.20)

with initial condition Lχ(~φ, 0) = 1
χ ∂

~φ · ∂̄~φ. Notice that the introduction of the auxiliary

adimensional scaling parameter χ allows us to establish a link between (2.14), i.e.

∂τLχ(~φ, τ) = − 1

π2

1

χ
TT̄χ(τ) , TT̄χ(τ) = −π2det[Tµνχ (τ)] , (2.21)

and the Burgers equation (2.20) for Lχ(~φ, τ). Motivated by this simple observation, we

solve now (2.20) with τ = 0 initial condition

LVχ (~φ, 0) = Lχ(~φ, 0) + χV (~φ) , (2.22)

the result is

LVχ (~φ, τ) =
χV (~φ)

1− τ V (~φ)
+

χ

2τ̄

(
−1 +

√
1 +

4τ̄

χ2
L(~φ, 0)− 4τ̄2

χ4
B

)
, (2.23)

with τ̄ = τ(1 − τV (~φ)). It is now straightforward to check that LVχ (~φ, τ) still fulfills the

fundamental equation (2.21).

In the N = 1 case, we first obtained the compact form (2.23) performing a resummation

of the more complicated, but equivalent, expression given in [13] and subsequently we

developed the more direct approach, which again maps (2.21) to a Burgers-type equation.

The latter technique was independently proposed in [36] and applied to different classes

of systems and also to models in higher spacetime dimensions. We address the interested

reader to [36] for a detailed description of this alternative method. The result (2.23) is in

perfect agreement with [42], where the first two perturbative contributions of the deformed

free massive boson action were determined using diagrammatic techniques.

It is also instructive to derive the classical Hamiltonian density HV (~φ, ~π, τ) associated

to the Lagrangian density LV (~φ, τ) = LVχ=1(~φ, τ) and compare it with the expression of

the quantized energy spectrum (2.13). Using the shorthand notation ~φ′ = ∂1
~φ and ~̇φ =

∂2
~φ for the derivatives w.r.t. the Euclidean space and time respectively, the conjugated

momentum is

~π =
∂LV (~φ, τ)

∂~̇φ
, (2.24)

and the Hamiltonian density is a straightforward generalization of the single boson case

reported in [20]

HV (~φ, ~π, τ) =
V (~φ)

1− τ V (~φ)
+

1

2τ̄

(
−1 +

√
1 + 4τ̄ H(~φ, ~π, 0) + 4τ̄2 P2(~φ, ~π)

)
, (2.25)

where H(~φ, ~π, 0) = 1
4 |~φ
′|2 − |~π|2 = −T22(0) is formally the Hamiltonian density of the free

undeformed theory, while P(~φ, ~π) = −i~π · ~φ′ = −iT12(τ) is the conserved momentum

density of the deformed theory, following the convention (2.5).
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Notice that expression (2.25) has the same formal structure of (2.13). It is then easy to

show that, introducing the auxiliary variable χ in HV (~φ, ~π, τ) exactly in the same way as

in LV (~φ, τ), the Hamiltonian density fulfills an inhomogeneous Burgers equation analogous

to (2.1) with the replacements

R→ χ , P 2 → P2 . (2.26)

Finally let us make some concluding remarks concerning the structure of the energy spec-

trum (2.13). Looking at expression (2.13), we notice the appearance of new special points

in the parameter τ , beside the square-root singularity already discussed in [7, 10–13].

• The deformed bulk term F (τ) = F0R
1−τ F0

in (2.13) diverges at τLP = 1
F0

which repre-

sents a Landau-type pole singularity.

• There exists a unique value τ0 = 1
2F0

such that the energy spectrum reduces exactly

to a pure square-root form, without any additional term

E(R, τ0) =
R

2τ̃0

√
1 +

4τ̃0

R2
A+

4τ̃0
2

R2
P 2(R) , τ̃0 = τ0(1− τ0F0) . (2.27)

As noticed in [12], in this case the finite-size expectation value of the TT̄ becomes size and

state independent:

〈TT̄(τ0)〉R = − π
2

2R
∂R
(
E2(R, τ0)− P 2(R)

)
= −

(
π

2τ̃0

)2

. (2.28)

Here we would like to make the additional remark that, with the choice of a constant po-

tential V (~φ) = F0 in (2.23), the TT̄ composite field itself becomes ~φ-independent at τ = τ0:

TT̄(τ0) = −
(
π

2τ̃0

)2

. (2.29)

3 The TT̄-deformed sine-Gordon model

Out of all possible bosonic theories corresponding to the Lagrangian density (2.23), in this

section we will focus on the TT̄-deformed classical sine-Gordon model, which corresponds

to the case of a single boson field φ interacting with a sine potential. We will first derive

the exact expression of the single kink solution at any value of the perturbing parameter τ

and discuss the effect of the deformation, as τ is varied. The main objective of this section

is to prove that the TT̄ deformation preserves the classical integrability of the sine-Gordon

model, by explicitly constructing the Lax pair of the deformed theory.

3.1 Simple kink-like solutions

Consider the sine-Gordon Lagrangian in Minkowski coordinates (x, t) with signature ηµν =

diag(+1,−1) defined as

LSG(φ) =
1

4
(φ2
x − φ2

t ) + V (φ) , V (φ) = 4 sin2(φ/2) , (3.1)

– 6 –
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and the TT̄-deformed sine-Gordon Lagrangian

LSG(φ, τ) =
V

1− τV
+

1

2τ (1− τV )

(
−1 +

√
1 + τ (1− τ V )(φ2

x − φ2
t )

)
, (3.2)

where the shorthand notation φµ = ∂µφ for spacetime derivatives will be used hereafter.

The equations of motion (EoMs) associated to (3.2) can be compactly written as

(1− τV )2 (φxx − φtt) − τ (1− τV )3 (φxxφ2
t − 2φxtφxφt + φttφ

2
x

)
=

1

2
τV ′ (1− τV ) (3 + 2S)

(
φ2
x − φ2

t

)
+ (1 + S)V ′ , (3.3)

where we have set

S =
√

1 + τ (1− τV )
(
φ2
x − φ2

t

)
. (3.4)

In order to find a solution φ(x, t) to (3.3), we proceed by parametrizing it using three

generic functions F , X and T as follows

F (φ) = X (x) + T (t) . (3.5)

Then all the derivatives of φ can be expressed in terms of F , X and T

φx =
Xx

F ′
, φt =

Tt
F ′

, φxx =
Xxx

F ′
−X2

x

F ′′

F ′3
,

φtt =
Ttt
F ′
− T 2

t

F ′′

F ′3
, φxt = −XxTt

F ′′

F ′3
,

(3.6)

so that the (3.3) becomes

(1−τV )2F ′2 (Xxx−Ttt)−τ (1−τV )3 (XxxT
2
t +TttX

2
x

)
= (1−τV )2F ′′

(
X2
x−T 2

t

)
+

1

2
τV ′ (1−τV )(3+2S)F ′

(
X2
x−T 2

t

)
+(1+S)V ′F ′3 , (3.7)

and (3.4) reads

S2 = 1 + τ
1− τV
F ′2

(
X2
x − T 2

t

)
. (3.8)

We can now solve (3.8) for the combination X2
x−T 2

t and compute its higher order derivatives

using the chain rule,4 thus obtaining

X2
x−T 2

t =
S2−1

τ (1−τV )
F ′2 , (3.9)

Xxx =−Ttt =
F ′
[
2SS′ (1−τV )+τ

(
S2−1

)
V ′
]
+2F ′′

(
S2−1

)
(1−τV )

2τ (1−τV )2 F ′ . (3.10)

Equation (3.10) implies Xxx = −Ttt = c0, where c0 is an arbitrary constant. Setting c0 = 0

and using (3.9), equations (3.7) and (3.10) become respectively

2
(
S2 − 1

)
(1− τV )F ′′ + τV ′F ′ (S + 1)2 (2S − 1) = 0, (3.11)

2
(
S2 − 1

)
(1− τV )F ′′ +

[
2SS′ (1− τV ) + τ

(
S2 − 1

)
V ′
]
F ′ = 0, (3.12)

4This part relies fundamentally on the fact that the variables are separate.
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which can be combined to give

S′ (1− τV ) = τS (S + 1)V ′ −→ S (φ) =
1− c

c− τV (φ)
, (3.13)

where c is an arbitrary integration constant. Plugging expression (3.13) for S(φ) into (3.11),

or equivalently (3.12), we obtain the following equation

2 (c− τV ) (2c− 1− τV )F ′′ + τ (3c− 2− τV )V ′F ′ = 0 , (3.14)

whose solution is

F ′(φ) = k̃
c− τV (φ)√

1− 2c+ τV (φ)
, (3.15)

F (φ) = 2k ± k̃
(1 + 4τκ) F

(
φ
2 | −

1
κ

)
− 8τκE

(
φ
2 | −

1
κ

)
2
√
τκ

. (3.16)

In (3.16), k and k̃ are integration constants and κ is related to c via c = 1
2 − 2τκ, while F

and E are elliptic integrals of the first and second kind, respectively.

From the choice c0 = 0 it follows that Xx = 2α and Tt = 2β with α and β arbitrary

constants. Plugging this expression for Xx and Tt together with (3.15) into (3.8) one gets

the following equation(
1− c

c− τV (φ)

)2

= 1 + 4τ (1− τV (φ))
(
α2 − β2

) 1− 2c+ τV (φ)

k̃2 (c− τV (φ))2 , (3.17)

which allows to fix k̃ as

k̃ = ±2
√
τ
√
α2 − β2 . (3.18)

In conclusion, we have found a class of moving soliton solutions

(1 + 4τκ) F
(
φ
2 | −

1
κ

)
− 8τκE

(
φ
2 | −

1
κ

)
√
κ

= ±2
αx+ βt− k√

α2 − β2
, (3.19)

which correspond to the TT̄ deformation of a particular family of elliptic solutions to the

sine-Gordon equation [43, 44]. The deformed single kink, is probably the most physically

interesting solution belonging to (3.19). With an appropriate scaling of the parameters,

we find:

8τ cos

(
φ

2

)
+ log

(
tan

(
φ

4

))
= ±2

αx+ βt− k√
α2 − β2

. (3.20)

In figure 1, the stationary kink-solution is depicted for four different values of the perturbing

parameter τ , where τ = 1/8 corresponds to a shock-wave singularity. Finally, notice

that (3.20) fulfills 
∂φ (z, z) =

2α sin
(
φ(z,z)

2

)
1− 4τ + 4τ cos (φ (z, z))

,

∂φ (z, z) =

2
α sin

(
φ(z,z)

2

)
1− 4τ + 4τ cos (φ (z, z))

.

(3.21)
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Figure 1. The TT̄-deformed stationary kink solution (3.20) (α = 1, β = 0) for different values of

the perturbation parameter τ . The critical value τ = 1/8 (c) corresponds to a shock wave singularity.

Since the TT̄ perturbation does not spoil integrability, it is tempting to identify (3.21)

as the first-step Bäcklund transformation from the vacuum solution. Unfortunately, equa-

tions (3.21) do not contain much information about integrability, and the complete form

of the Bäcklund transformation is expected to be very complicated. A first, more concrete,

step toward a fully satisfactory understanding of the classical integrability of this system

will be taken in section 3.2 below, where the Lax operators are explicitly constructed. Fi-

nally, let us conclude this section with a brief discussion on the more complicated examples

within the family of solutions (3.19). Without much loss in generality we consider only the

stationary (β = 0, α = 1) cases. At τ = 0, equation (3.19) reduces to:

x (φ) = k ±
F
(
φ
2 | −

1
κ

)
√
κ

−→ φ (x) = ±2 am

(√
κ (x− k)

∣∣∣− 1

κ

)
, (3.22)

where am
(
x
∣∣∣k) is the amplitude of Jacobi elliptic function. They correspond to staircase
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τ = 0 , κ = 10-5
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τ = 1
2
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-15

-10
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10

15

ϕ

(b)

Figure 2. The general solution (3.19) for the undeformed (a) and the deformed (b) theory, for

small values of κ.

type solutions, see figure 2. At τ 6= 0 they display a deformed shape similar to that observed

for the single kink solution, with a shock-wave singularities at τ ' 1/8.

3.2 Integrability: the TT̄-deformed Lax pair

As a first step towards the expression of the Lax operators for the TT̄-deformed sine-

Gordon model, let us look at the Euler-Lagrange equations in complex coordinates:

∂

(
∂LSG (φ, τ)

∂(∂φ)

)
+ ∂̄

(
∂LSG (φ, τ)

∂(∂̄φ)

)
=
∂LSG (φ, τ)

∂φ
, (3.23)

with the Lagrangian given by

LSG (φ, τ) =
V (φ)

1− τV (φ)
+

−1 + S (φ)

2τ (1− τV (φ))
, S(φ) =

√
1 + 4τ (1− τV ) ∂φ ∂̄φ . (3.24)

The potential V (φ) is defined in (3.1), and from the explicit expression of S (we omit the

explicit dependence on φ hereafter) we see that

∂S

∂φ
= −τ V ′

1− τ V
S2 − 1

2S
, (3.25)

∂S

∂(∂φ)
=

4τ (1− τV ) ∂̄φ

2S
,

∂S

∂(∂̄φ)
=

4τ (1− τV ) ∂φ

2S
. (3.26)

Equation (3.23) can be immediately recast into the following form

∂

(
∂̄φ

S

)
+ ∂̄

(
∂φ

S

)
=
V ′

4S

(
S + 1

1− τV

)2

. (3.27)
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With this expression for the equations of motion, we can proceed and search for a pair

of matrices

L =

(
−a b
c a

)
, L̄ =

(
ā b̄

c̄ −ā

)
, (3.28)

such that the zero-curvature condition

∂L̄− ∂̄L =
[
L, L̄

]
, (3.29)

is satisfied iff φ solves (3.27). In terms of the Lax pair’s components, (3.29) is equivalent

to the following three equations

∂ā+ ∂̄a = bc̄− cb̄ , (3.30a)

∂̄b− ∂b̄ = 2ab̄+ 2āb , (3.30b)

∂c̄− ∂̄c = 2ac̄+ 2āc . (3.30c)

We choose (rather arbitrarily) the first (3.30a) to correspond exactly to the equation of

motion for φ. It is then reasonable to choose

a = γ
∂φ

2S
, ā = γ

∂̄φ

2S
, (3.31)

with κ an arbitrary constant to be determined later. The equations (3.30) become

bc̄− cb̄ = γ
V ′

8S

(
S + 1

1− τV

)2

, (3.32a)

∂̄b− ∂b̄ = γ
∂φ

S
b̄+ γ

∂̄φ

S
b , (3.32b)

∂c̄− ∂̄c = γ
∂φ

S
c̄+ γ

∂̄φ

S
c . (3.32c)

Now it comes the most tricky part of our construction: determining the form of the re-

maining functions b, c, b̄ and c̄. We can proceed by making a perturbative expansion in

τ , solving the equations and trying to recognize some pattern in the terms. Sparing the

reader the boring details, one arrives at the following Ansatz:

b =
[
µei

φ
2B+ (V, S) + µ̃e−i

φ
2 (∂φ)2B− (V, S)

]
, (3.33a)

c =

[
1

µ̃
e−i

φ
2B+ (V, S) +

1

µ
ei
φ
2 (∂φ)2B− (V, S)

]
, (3.33b)

b̄ =
[
µ̃e−i

φ
2B+ (V, S) + µei

φ
2
(
∂̄φ
)2
B− (V, S)

]
, (3.33c)

c̄ =

[
1

µ
ei
φ
2B+ (V, S) +

1

µ̃
e−i

φ
2
(
∂̄φ
)2
B− (V, S)

]
, (3.33d)

γ =
i

2
. (3.33e)

Here the parameters µ and µ̃ are completely arbitrary complex numbers. They can be, in

principle, regarded as two independent spectral parameters. However, as we will shortly

– 11 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
7

see, there really exists a single independent spectral parameter, up to global SL (2,C)

rotation. The expressions above, when inserted into the equations (3.32), give

B+ =
(S + 1)2

8S (1− τV )
, B− =

τ

2S
. (3.34)

We thus arrive to the following form of the Lax pair for the TT̄-deformed sine-Gordon

model:

L =

 −i
∂φ
4S µei

φ
2

(S+1)2

8S(1−τV ) + µ̃e−i
φ
2 (∂φ)2 τ

2S

1
µ̃e
−i

φ
2

(S+1)2

8S(1−τV ) + 1
µe

i
φ
2 (∂φ)2 τ

2S i
∂φ
4S

 ,

L̄ =

 i
∂̄φ
4S µ̃e−i

φ
2

(S+1)2

8S(1−τV ) + µei
φ
2

(
∂̄φ
)2 τ

2S

1
µe

i
φ
2

(S+1)2

8S(1−τV ) + 1
µ̃e
−i

φ
2

(
∂̄φ
)2 τ

2S −i
∂̄φ
4S

 . (3.35)

There is one final manipulation that we wish to perform. As we mentioned above, the

presence of two independent spectral parameters µ and µ̃ is redundant and we can fix the

dependence of the Lax pair on a single parameter λ =
√
µ/µ̃ by applying the following

global SL (2,C) rotation:

L −→ L̃ = S−1LS , L̄ −→ ˜̄L = S−1L̄S , (3.36)

where

S =

(√
µ̃λ 0

0 1√
µ̃λ

)
≡

(
(µ̃µ)

1
4 0

0 (µ̃µ)−
1
4

)
. (3.37)

We end up with the following expressions (omitting the tildas on the transformed Lax

operators)

L =

 −i
∂φ
4S λei

φ
2

(S+1)2

8S(1−τV ) + 1
λe
−i

φ
2 (∂φ)2 τ

2S

λe−i
φ
2

(S+1)2

8S(1−τV ) + 1
λe

i
φ
2 (∂φ)2 τ

2S i
∂φ
4S

 ,

L̄ =

 i
∂̄φ
4S

1
λe
−i

φ
2

(S+1)2

8S(1−τV ) + λei
φ
2

(
∂̄φ
)2 τ

2S

1
λe

i
φ
2

(S+1)2

8S(1−τV ) + λe−i
φ
2

(
∂̄φ
)2 τ

2S −i
∂̄φ
4S

 . (3.38)

Now, by using the following limiting behaviours

S −→
τ→0

1 , B+ −→
τ→0

1

2
, B− −→

τ→0
0 , (3.39)

we easily verify that, in the vanishing perturbation limit τ → 0, we recover, as expected,

the usual Lax pair for the sine-Gordon model:

L =

(
−i

∂φ
4

λ
2 e

i
φ
2

λ
2 e
−i

φ
2 i

∂φ
4

)
, L̄ =

(
i
∂̄φ
4

1
2λe
−i

φ
2

1
2λe

i
φ
2 −i

∂̄φ
4

)
. (3.40)

Therefore, we have proved that the classical integrability of sine-Gordon model survives the

TT̄ deformation, by displaying the existence of the Lax pair (3.38). We wish to conclude
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this section by remarking that the knowledge of the Lax pair for the TT̄-deformed sine-

Gordon model comes with two additional results:

• Single boson BI Lax pair, obtained by simply looking at the Euler-Lagrange equa-

tions (3.23) with V = V ′ = 0:

L =

(
−i

∂φ
4S 0

0 i
∂φ
4S

)
, L̄ =

(
i
∂̄φ
4S 0

0 −i
∂̄φ
4S

)
. (3.41)

• sinh-Gordon Lax pair, which can be derived from (3.35) by simply redefining the field

ϕ = iφ

L =

 −∂ϕ

4S̃
λe

ϕ
2

(S̃+1)
2

8S̃(1−τṼ )
− 1

λe
−ϕ

2 (∂ϕ)2 τ
2S̃

λe−
ϕ
2

(S̃+1)
2

8S̃(1−τṼ )
− 1

λe
ϕ
2 (∂ϕ)2 τ

2S̃

∂ϕ

4S̃

 ,

L̄ =

 ∂̄ϕ

4S̃
1
λe
−ϕ

2
(S̃+1)

2

8S̃(1−τṼ )
− λe

ϕ
2

(
∂̄ϕ
)2 τ

2S̃

1
λe

ϕ
2

(S̃+1)
2

8S̃(1−τṼ )
− λe−

ϕ
2

(
∂̄ϕ
)2 τ

2S̃
− ∂̄ϕ

4S̃

 , (3.42)

where we introduced

Ṽ = 2 (1− coshϕ) , S̃ =

√
1− 4τ

(
1− τ Ṽ

)
∂ϕ∂̄ϕ . (3.43)

This proves that both theories, as expected, retain their integrable structure along the

TT̄ flow.

4 Maxwell-Born-Infeld electrodynamics in 4D

Two-photon plane wave scattering in 4D Maxwell-Born-Infeld (MBI) electrodynamics was

considered by Schrödinger and others in pre-QED times (see, for example, [45] for a nice

historical review on the early period of non-linear electrodynamics theories). Later, in [39,

40] it was shown that the scattering of two plane waves in MBI electrodynamics can be

mapped onto a specific solution of the 2D bosonic BI equations of motion, the N = 2

model in equations (2.15) and (2.16). In particular, it is extremely suggestive that the

resulting phase-shift can be nicely interpreted as being the classical analog of the TT̄-

related scattering phase. Compare, for example, the results of [39, 40] with the discussion

about the classical origin of the time delay in [10].

Motivated by these observations, in this section we investigate the 4D MBI theory of

electrodynamics and show that interestingly it shares a lot of common aspects with the

2D bosonic BI models studied in section 2. In particular we will see that it arises as a

deformation of the Maxwell theory induced by the square root of the determinant of the

Hilbert stress-energy tensor.
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Consider the MBI Lagrangian in 4D defined on a generic background metric gµν as

LMBI
g (A, τ) =

−
√
| det [gµν ] |+

√
det
[
gµν +

√
2τFµν

]
2τ

, (µ, ν = {1, 2, 3, 4}) , (4.1)

where Fµν = ∂µAν − ∂νAµ is the field strength associated to the abelian gauge field Aµ.

In Euclidean spacetime (gµν = ηµν ≡ diag(+1,+1,+1,+1)), (4.1) takes the form

LMBI(A, τ) =
−1 +

√
1− τ Tr [F 2] + τ2

4

(
Tr[FF̃ ]

)2

2τ
, (4.2)

where F̃µν = 1
2εµνρσF

ρσ is the Hodge dual field strength. From the expansion of (4.2) in

powers of τ around τ = 0

LMBI(A, τ) ∼
τ→0
−1

4
Tr[F 2] +

τ

16

(
Tr[F 2]2 − 4Tr[F 4]

)
+O(τ2)

= LM + τ
√

det[TM] +O(τ2) , (4.3)

one recognizes the Maxwell Lagrangian

LM(A) =
1

4
FµνF

µν = −1

4
Tr[F 2] , (4.4)

at the order O(τ0). The O(τ) contribution in (4.3) is instead related to the determinant of

the Hilbert stress-energy tensor of the Maxwell theory TM, which can be computed from

the Noether theorem adding the Belinfante-Rosenfeld improvement to make it symmetric

and gauge invariant, i.e.

(
TM
)µν ≡ ∂LM

∂ (∂µAρ)
F νρ − ηµνLM = FµρF νρ − ηµνLM . (4.5)

Formula (4.3) hints that LMBI may arise from a deformation of Maxwell electrodynamics

effected by the operator O ≡
√

det[TMBI] according to the flow equation

∂τLMBI =
√

det[TMBI] , (4.6)

where TMBI is the Hilbert stress-energy tensor associated to the MBI Lagrangian. Using

the general definition

(
TMBI

)µν
=
−2
√
g

δLMBI
g

δgµν
,
√
g ≡

√
| det[gµν ]| , (4.7)

it is possible to show that, in euclidean spacetime (gµν = ηµν), the following relation holds

O =
−1 + S(τ)− 2τ LM

2τ2S(τ)
= ∂τLMBI , S(τ) ≡

√
det
[
ηµν +

√
2τFµν

]
, (4.8)

thus proving the validity of (4.6).
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As noticed in [22], the presence of an internal symmetry (in the current case the

U(1) gauge symmetry) makes the definition of the stress-energy tensor ambiguous. As

already appears at the perturbative level in (4.3), here the symmetric and gauge invariant

Hilbert stress-energy tensor seems to be the natural choice to get the BI Lagrangian as

a deformation of the Maxwell electrodynamics. However let us point out that there is

no reason to rule out a priori a deformation induced by the Noether stress-energy tensor,

which is neither symmetric nor gauge invariant.

Driven by the formal analogy between (4.2) and the bosonic 2D BI Lagrangian (2.16),

now we apply the same strategy of section 2 to put interactions in the theory.

Recasting (4.2) into a more compact form

LMBI(A, τ) =
−1 +

√
1 + 4τ LM(A) + 4τ2BMBI

2τ
, BMBI = det[F ] , (4.9)

one immediately sees that the quantity

LMBI
χ (A, τ) =

1

χ
LMBI

(
A, τ

χ2

)
, (4.10)

where χ is again an auxiliary adimensional parameter, satisfies the inhomogeneous Burgers

equation

∂τLMBI
χ (A, τ) = LMBI

χ (A, τ) ∂χLMBI
χ (A, τ) +

BMBI

χ3
, (4.11)

with boundary condition

LMBI
χ (A, 0) =

1

χ
LM(A) . (4.12)

Now it is straightforward to introduce interactions in the theory. Starting from a boundary

condition of the form

LMBI,V
χ (A, 0) =

1

χ
LM(A) + χV (A) , (4.13)

where V (A) is a derivative-independent potential,5 the solution to (4.11) becomes

LMBI,V
χ (A, τ) =

χV

1− τ V
+

χ

2τ̄

−1 +

√
det

[
ηµν +

√
2τ̄

χ2
Fµν

] , (4.14)

where τ̄ = τ(1− τ V (A)) is the usual (local) redefinition of the deformation parameter. A

posteriori it is easy to check that LMBI,V
χ=1 (A, τ) is indeed solution to (4.6), i.e.√

det[TMBI,V ] = −
S(τ̄)(2τ̄ V − 1)− (2τ V − 1)

(
1 + 2τ̄ LM

)
2τ̄2 S(τ̄)

= ∂τLMBI,V (A, τ) . (4.15)

Following section 2, it is interesting to perform a Legendre transformation on LMBI,V (A, τ)

to get the Hamiltonian density HMBI,V (Π,A, τ). Again, using a shorthand notation for the

time derivative Ȧµ = ∂4Aµ, the conjugated momentum is

Πi =
∂LMBI,V (A, τ)

∂Ȧi
, Π4 ≡ 0 , (i = 1, 2, 3) , (4.16)

5For instance V could be a mass term of the form V (A) = m2AµAµ which gives the Proca Lagrangian

describing a massive spin-1 field Aµ.
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and the Hamiltonian density takes the form

HMBI,V (Π,A, τ) =
V (A)

1− τ V (A)
+

1

2τ̄

(
−1 +

√
1 + 4τ̄ HM(Π,A) + 4τ̄2 |~PMBI(Π,A)|2

)
,

(4.17)

where HM(Π,A) = −1
2ΠiΠ

i + 1
4FijF

ij = −TM
44 is formally the Hamiltonian density of

the Maxwell theory and PMBI
i (Π,A) = −iTMBI

4i , (i = 1, 2, 3), is the i-th component of

the conserved momentum density of the deformed theory, following the same convention

of section 2. Notice that HMBI,V (Π,A, τ) is formally identical to the Hamiltonian den-

sity reported in section 2 for the 2D bosonic theory, and again it satisfies an analogous

inhomogeneous Burgers equation.

Furthermore, let us stress that setting a field-independent constant potential V (A) =

F0, also in this case there exists a special value of the parameter τ , i.e. τ0 = 1
2F0

, such that

the determinant of the Hilbert stress-energy tensor takes a constant value

det[TMBI(τ0)] =

(
π

2τ̄0

)4

, τ̄0 = τ0(1− τ0 F0) . (4.18)

Finally, we would like to make some comments about the generalization of the TT̄ deforma-

tion to higher dimensions. Here we found that a 4D theory arises as a deformation induced

by a power 1/2 of the determinant of the stress-energy tensor. This result apparently does

not agree with the generalization to higher dimensions proposed in the first version of [30],

from which one would expect a power 1/(D − 1) = 1/3 instead. Interestingly, notice also

that the operator
√

det[TMBI] can be written in this form√
det[TMBI] =

1

4

(
1

2
Tr
[
TMBI

]2 − Tr
[(
TMBI

)2])
, (4.19)

which strongly resembles the generalization of the TT̄ operator to higher dimensions

recently proposed in [37], except for the factor 1/2 in front of Tr
[
TMBI

]2
instead of

1/(D − 1) = 1/3.

Although in this section we have seen that there are many similarities at the classical

level between the 4D Maxwell-Born-Infeld model and the 2D bosonic model discussed

in section 2, the situation at the quantum level is in principle much more complicated.

However it would be remarkable if a structure similar to that reviewed in section 2 could

emerge for the quantized energy spectrum.

5 Deformed 2D Yang-Mills

The 4D electrodynamics case turns out to be quite special, since in other dimensions the

MBI Lagrangian seems not to arise from a deformation of the Maxwell theory driven

by any power of the determinant of the Hilbert stress-energy tensor. Solving perturba-

tively equation (2.14), with initial condition the Maxwell Lagrangian at τ = 0, only for

the two-dimensional case we were able to recover the full analytic expression for the de-

formed Lagrangian:

LM2(A, τ) =
3

4τ

(
3F2

(
−1

2
,−1

4
,

1

4
;

1

3
,

2

3
;

256

27
τ LM2(A, 0)

)
− 1

)
, (5.1)
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where LM2(A, 0) = 1
2F21F

21 is the 2D Maxwell Lagrangian, and F21 = −F12 is the only non-

vanishing component of the field strength. Expression (5.1) is unexpectedly complicated,

however, since the quantized energy spectrum should still satisfy the Burgers equation (2.1),

simplifications may appear at the level of the classical Hamiltonian density. As before,

denoting the time derivative as Ȧµ = ∂2Aµ, the conjugated momenta are

Π1 =
∂LM2(A, τ)

∂Ȧ1

, Π2 = 0 , (5.2)

and the explicit form of the Legendre map can be obtained using the Lagrange inversion

theorem to invert the relation (5.2). One finds that F21 can be expressed in terms of Π1 as

F21 =
4Π1(

2 + τ (Π1)2
)2 , (5.3)

and “surprisingly” the Hamiltonian density takes a very simple form

HM2(Π, τ) =
HM2(Π, 0)

1− τ HM2(Π, 0)
, (5.4)

where HM2(Π, 0) = −1
2(Π1)2 = −TM2

22 is the 2D Maxwell Hamiltonian. The results (5.1)

and (5.4) can be straightforwardly generalized to encompass the non-abelian 2D Yang-Mills

(YM2) theory with generic gauge group G. In fact, using the following definition for the

Hilbert stress-energy tensor of the YM theory

(
TYM

)µν ≡ ∂LYM

∂
(
∂µAaρ

)F νρa − ηµνLYM , (5.5)

where LYM(Aa) = 1
4F

a
µνF

µν
a is the YM Lagrangian and F aµν = ∂µAaν − ∂νAaµ + fabcAbµAcν

is the field strength associated to the non-abelian gauge field Aaµ, it is easy to prove that

the deformed non-abelian Lagrangian and Hamiltonian densities, i.e. LYM2(Aa, τ) and

HYM2(Πa, τ), have again the form (5.1) and (5.4) respectively with the formal replacement:

LM2(A)→ LYM2(Aa) ,HM2(Π)→ HYM2(Πa) , (5.6)

where LYM2(Aa) = 1
2F

a
21F

21
a and HYM2(Πa) = −1

2Π1 aΠ1
a = −TYM2

22 are the Lagrangian

and Hamiltonian density of YM2 respectively. Although the deformed Lagrangian is very

complicated, the Hamiltonian HYM2(Πa, τ) fulfills

∂τHYM2
χ (Πa, τ) = HYM2

χ (Πa, τ) ∂χHYM2
χ (Πa, τ) , (5.7)

with initial condition HYM2
χ (Πa, 0) = χHYM2(Πa), which means thatHYM2(Πa, τ) behaves,

under the TT̄ deformation, as a pure potential term (cf. section 2). The latter property

can be interpreted as an explicit manifestation of the well known topological character

of YM2.

This simple observation directly motivated the following proposal for the deformed

versions of the partition functions/heat kernels [46–49] which is compatible with all known
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consistency constraints [7, 13, 30]. The partition function of YM2 defined on an orientable

2D manifold M with genus p and metric gµν is

ZM(A) =

∫
DAµ e

− 1
4g̃2

∫
M dx2

√
gTr[FaµνF

µν
a ]

=
∑
R
d2−2p
R e−

g̃2

2
AC2(R) , (5.8)

where we have restored the explicit dependence on the Yang-Mills coupling constant g̃.

In (5.8), A is the total area of M, the sum is over all equivalence classes of irreducible

representations R of the gauge group G, dR is their dimension and C2(R) is the quadratic

Casimir in the representation R. The generalization of (5.8) to a manifold with genus p

and n boundaries corresponds to the so-called heat kernel:

ZM(g1, . . . , gn|A) =
∑
R
d2−2p−n
R χR(g1) . . . χR(gn)e−

g̃2

2
AC2(R) , (5.9)

where gi are the Wilson loops evaluated along the boundaries, and χR denotes the Weyl

character of the representation R. According to (5.4), the TT̄ contribution is then included

through a simple redefinition, in the heat kernel (5.9), of the eigenvalues of the quadratic

Casimir operator:

C2(R)→ C2(R, τ) =
C2(R)

1− τ g̃2

2 C2(R)
, (5.10)

where the dressed operator C2(R, τ), also fulfills equation (5.7). Since (5.9) depends only

on the surface area A of the manifold, the deformed version ZM(g1, . . . , gn; τ |A) satisfies

− ∂τZM(g1, . . . , gn; τ |A) = A∂2
AZ
M(g1, . . . , gn; τ |A) . (5.11)

With the prescription (5.10), all the diffusion-type relations introduced in [30] (see also [25,

31]) for the partition functions on various geometries are automatically fulfilled:

• Cylinder. The cylinder partition function ZCyl(g1, g2|A) corresponds to the n = 2,

p = 0 case of (5.9). Setting A = RL, and implementing the prescription (5.10),

ZCyl(g1, g2; τ |A) trivially satisfies Cardy’s equation:

− ∂τZCyl(g1, g2; τ |A) = (∂L − 1/L)∂RZ
Cyl(g1, g2; τ |A) . (5.12)

• Torus. The partition function on the torus, ZT(A) corresponds to the n = 0, p = 1

case of (5.9) with A = L1L
′
2−L2L

′
1, while the consistency equation for the deformed

partition function is:

−∂τZT(τ |A) =

[
∂L1∂L′

2
−∂L2∂L′

1
− 1

A

(
L1∂L1 +L′1∂L′

1
+L2∂L2 +L′2∂L′

2

)]
ZT(τ |A) .

(5.13)

• Disk and cone. In the case of a disk, or more in general of a cone with opening angle

X , the deformed partition function ZCone(g1; τ |A) corresponding to n = 1, p = 0 and

area A = 1
2 XR

2 satisfies

− ∂τZCone(g1; τ |A) =
1

R
X∂X

(
1

X
∂RZ

Cone(g1; τ |A)

)
. (5.14)
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Finally, let us stress again that the modification (5.10) in (5.9) is expected to hold in

general for any value of p and n, possibly leading to a consistent deformation of the whole

YM2 setup.

6 Conclusions

The Maxwell-Born-Infeld model is still playing an important role in modern theoretical

physics. It was initially proposed as a generalization of electrodynamics, in the attempt

to impose an upper limit on the electric field of a point charge, and it corresponds to the

only non-linear extension of Maxwell equations that ensures the absence of birefringence

and shock waves. Another important feature of this special non-linear field theory is its

electric-magnetic self-duality.

The Maxwell-Born-Infeld theory emerges, from this work, as a natural 4D generaliza-

tion of the TT̄-deformed 2D models, as it shares with them some of the properties that

make this perturbation so interesting. There are many aspects that deserve further inves-

tigation. First of all, it would be nice to extend the ideas of [30] to this 4D theory and try

to derive an evolution-type equation for the quantum energy spectrum at finite volume.

It would be important to explore the classical and quantum properties of the models

corresponding to the deformed Lagrangians (4.14) and to extend the analysis to more

general gauge theories.

Considering the interpretation of the 2D examples within the AdS3/CFT2 framework

given in [14], the search for analog deformations that preserve integrability in the ABJM

model and N = 4 super Yang-Mills, could lead to important progresses in our understand-

ing of quantum gravity.

Investigating, at a deeper level, the geometrical meaning of the TT̄ deformation in the

2D setup by continuing the study of classical integrable models started in section 3 appears

to be a more feasible but equally important objective. We have now a good control on

the deformed quantum spectrum but we have not yet reached an equally satisfactory level

of understanding about the influence that this deformation has on classical solutions such

as multi-kink or breather configurations. Adapting Bäcklund’s, Hirota’s and the Inverse

Scattering methods to the current setup would correspond to a natural extension of some

of the results presented in this paper. Finally, it is important to proceed with concrete

applications of the YM2 heat kernel proposal of section 5 and in particular with the study of

the large N limit, which might display novel physical and mathematical features compared

to the unperturbed cases.
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