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Abstract. We study the mixing of a passive scalar field dispersed in a solution of rodlike polymers in two
dimensions, by means of numerical simulations of a rheological model for the polymer solution. The flow
is driven by a parallel sinusoidal force (Kolmogorov flow). Although the Reynolds number is lower than
the critical value for inertial instabilities, the rotational dynamics of the polymers generates a chaotic
flow similar to the so-called elastic-turbulence regime observed in flexible polymer solutions. The temporal
decay of the variance of the scalar field and its gradients shows that this chaotic flow strongly enhances
mixing.

PACS. 47.51.+a Mixing – 47.57.Ng Polymers and polymer solutions – 47.85.lk Mixing enhancement

1 Introduction

The mixing properties of laminar flows are generally poor.
In microfluidic applications, where the Reynolds numbers
are typically very low, various methods have been devel-
oped to enhance the mixing efficiency of the flow. These
include the design of grooved walls, the introduction of
obstacles, the use of a local forcing, or the addition of
flexible polymers (e.g., Ref. [1]). In this latter case, elastic
stresses can generate instabilities at vanishing fluid inertia
that in turn lead to a chaotic flow known as elastic tur-
bulence [2,3]. It was shown in Ref. [4] that a regime with
features similar to those of elastic turbulence can also be
obtained via the addition of rigid rodlike polymers, i.e.
polymer stretching is not essential for the generation of a
chaotic flow at small Reynolds numbers.

The system considered in Ref. [4] is a dilute solution of
rodlike polymers driven by a sinusoidal parallel body force
(the Kolmogorov force) at a Reynolds number lower than
the critical value for inertial hydrodynamic instabilities.
A similar setting was used previously to study elastic tur-
bulence induced by flexible polymer solutions [5]. For low
rodlike polymer concentrations, the flow is laminar and
only displays small deviations from the Newtonian regime.
However, when the concentration is increased beyond a
critical value, the flow becomes chaotic, the streamlines
oscillate and thin vorticity filaments form. An inspection
of the snapshots of the vorticity and polymer-orientation
fields show that perturbations in the flow are associated
with strong deviations of the polymer orientation from the
mean-flow direction. The kinetic energy fluctuates around
a stationary value lower than that of the laminar case and
the mean power required to maintain the mean flow grows

with the concentration, which signals a corresponding in-
crease of the kinetic-energy dissipation. In this regime, the
Reynolds stress is negligible compared to the polymer and
viscous ones. In particular, the polymer stress increases as
a function of polymer concentration. Thus, the chaotic dy-
namics is entirely due to the rotation of polymers, while
fluid inertia plays no role. This is further confirmed by the
analyis of the kinetic-energy balance in Fourier space. The
nonlinear coupling between different Fourier modes due
to inertia is indeed negligible; the dynamics of the flow
rather results from a scale-by-scale balance between poly-
mer transfer and viscous dissipation. Finally, the kinetic-
energy spectrum displays a power law k−α with α 6 3,
where k is the wave number. A large number of Fourier
modes are thus excited, but the energy is concentrated on
the large scales and fluctuations decay rapidly with the
wave number. It should be noted that the exponent α is
not universal, since it depends on polymer concentration
and the details of the forcing.

Even though the chaotic regime described above is not
generated by polymer stretching, it is similar to elastic
turbulence in solutions of flexible polymers. The goal of
this paper is to show that the addition of rodlike poly-
mers can be effectively used to enhance mixing at small
Reynolds numbers.

2 Passive-scalar dispersion in a solution of
rodlike polymers

The mixing efficiency of a flow can be quantified by study-
ing its ability to disperse a passive scalar field, such as a
colorant injected in the fluid.
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(a1) ηp = 0, t = 0 (a2) ηp = 0, t = 0.6 (a3) ηp = 0, t = 1.2

(b2) ηp = 5, t = 0 (b3) ηp = 5, t = 0.6 (b4) ηp = 5, t = 1.2

Fig. 1: Snapshots of the passive scalar field θ(x, t) at t = 0, 0.6, 1.2 (from left to right) for ηp = 0 (top) and ηp = 5
(bottom) and initial condition B. Here Pe = 1000.

We consider a scalar field θ(x, t) with diffusivity D
in a two-dimensional solution of rodlike polymers. The
dynamics of θ is ruled by the advection–diffusion equation

∂tθ + u · ∇θ = D∆θ , (1)

with u(x, t) being the incompressible velocity field of the
solution. The polymer phase is described by the unit-
trace symmetric tensor field R(x, t), the first eigenvector
of which yields the average orientation of polymers in a
volume element centred at x at time t. In Doi and Ed-
wards’ decoupling approximation the fluid and polymer
phases evolve according to the following equations [6]:

∂tu + u · ∇u = −∇p+ (ν + νp)∆u (2)

+6νηp∇ · [(∇u : R)R] + f ,

∂tR + u · ∇R = (∇u)R + R(∇u)> (3)

−2(∇u : R)R− 2α(2R− I),

where (∇u)ij = ∂ui/∂xj , p is pressure, ν is the kinematic
viscosity of the solvent, I is the identity matrix, and νp

and α are proportional to the orientational diffusivity of
polymers. In numerical simulations a diffusive term κ∆R
(we used κ = 3 × 10−3) is added to Eq. (3) in order to
improve stability [7]. The parameter ηp determines the
coupling between the polymer phase and the fluid and is
an increasing function of the polymer concentration. The
values of ηp considered here (ηp 6 5) correspond to a di-
lute solution [4,8]. The above polymer model was studied
extensively in the turbulent-drag-reduction regime at high
Reynolds number [9].

The system is driven by the Kolmogorov force f(x) =
(0, F sin(Kx)), where F and K are the amplitude and
the wave number of the force, respectively. In the New-
tonian case (ηp = 0), the Navier–Stokes equations admit
the laminar solution u(x) = (0, U0 sin(Kx)) with U0 =
F/νK2. This solution is stable if the Reynolds number

Re = U0/νK is smaller than the critical value Rec =
√

2
(e.g., Ref. [10]). In the following, we take Re = 1 < Rec
in order to ensure that inertial effects are negligible and
that the chaotic regime arises solely from the rotational
dynamics of the rodlike polymers.
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Fig. 2: Temporal decay of the variance 〈θ2〉(t), normalized
with its initial value at t = 0, for ηp = 0 (squares), ηp = 3
(circles), ηp = 5 (triangles), and for initial conditions A
(empty symbols) and B (filled symbols). Here Pe = 1000.

Equations (1), (2) and (3) are solved on a 2π×2π- do-
main periodic in both directions by using a 1/2-dealiased
pseudospectral method on a grid with 10242 mesh points.
Time integration is performed via a fourth-order Runge–
Kutta scheme. In the numerical simulations presented be-
low, we use K = 8, F = 512 and ν = 1. The molecular dif-
fusivity is D = 10−3 for most of the simulations reported
in Sect. 3. The corresponding Péclet number Pe = U0/KD
is Pe = 1000. For the study of the Péclet number effects we
also considerD = 5×10−4 (Pe = 2000) andD = 2.5×10−4

(Pe = 4000). In addition, the orientational diffusion of
polymers is disregarded (i.e., we take νp = 0 and α = 0)
for two reasons: 1) it is expected to play a minor role in the
chaotic regime and 2) we wish to ensure that the chaotic
regime is not triggered by Brownian fluctuations.

In the Newtonian case (ηp = 0), the dynamics of the
velocity field is independent of R and the laminar solu-
tion is stable at Re = 1. Therefore we simply integrate
Eq. (1) with u(x) = (0, U0 sin(Kx)). Conversely, in the
non-Newtonian case (ηp > 0), we performed a prelimi-
nary set of simulations by integrating Eqs. (2) and (3)
with initial condition for the velocity field obtained as a
small perturbation of the Newtonian stable flow and with
the components of R initially distributed randomly. Once
the flow has reached the statistically stationary chaotic
regime, we start to integrate the dynamics of the scalar
field θ.

The initial condition for the scalar field, θ(x, 0), is
taken independent of y, so that the initial scalar gradient
∇θ is oriented in the x direction, i.e, perpendicular to the
direction of the laminar flow for ηp = 0. This choice en-
sures that the mixing in the absence of polymers is solely
due to molecular diffusion. Two different initial conditions
are considered: A) the monocromatic function θ(x) =
cos(Kx) and B) the step function θ(x) = sign[cos(Kx)].
In both cases we fix K = 8, i.e., the same wavenumber
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Fig. 3: Temporal evolution of the variance of the scalar
gradients, 〈(∇θ)2〉(t), for ηp = 0 (squares), ηp = 3 (cir-
cles), ηp = 5 (triangles), and for initial conditions A
(empty symbols) and B (filled symbols). Here Pe = 1000.

of the base flow. For the former initial condition and in
the Newtonian case (ηp = 0), the exponential decay rate
of the scalar variance 〈θ2〉(t) ≡

∫
θ2(x, t)dx is known an-

alytically as β0 = −d log[〈θ2〉(t)]/dt = 2DK2. The latter
initial condition is chosen to mimic the experimental set-
ting in which two differently coloured fluids are injected
in a microchannel [3].

3 Mixing enhancement

In Figure 1 we compare the temporal evolution of the
scalar field with and without polymers starting from ini-
tial condition B. In the absence of polymers, molecular
diffusion simply blurs the borders between the white and
black stripes, and even after a long time the scalar field
remains essentially unmixed. Conversely, over a compara-
ble time interval the chaotic flow induced by the rodlike
polymers mixes the scalar field efficiently.

To quantify the gain in mixing efficiency, we study
the temporal behaviour of the variance of the scalar field
and of its gradients. As shown in Fig 2, after an initial
transient, the decay rate of 〈θ2〉 becomes independent of
the specific choice of the initial condition. In the Newto-
nian case, we recover the analytical prediction 〈θ2〉(t) ∝
exp(−β0t). For ηp > 0, we find that the decay is much
faster. The similar decay observed for the cases ηp = 3
and ηp = 5 suggests a weak dependence of the decay rate
on the concentration of polymers. In Ref. [4], it was found
that increasing ηp at fixed forcing amplitude F the re-
sulting chaotic flow displays stronger fluctuations, but the
amplitude of the mean flow (which remains sinusoidal) is
reduced. Likely, the combined effect of the reduction of the
mean flow and the growth of the fluctuations, results in a
comparable mixing efficiency for the two cases considered
here.
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Fig. 4: Instantaneous exponential decay rate βp(t), nor-
malized with β0 = 2DK2, for ηp = 0 (squares), ηp = 3
(circles), ηp = 5 (triangles), and for initial conditions A
(empty symbols) and B (filled symbols). Here Pe = 1000.

The time behaviour of 〈θ2〉 is closely related to that of
the scalar gradients. In the absence of polymers, 〈(∇θ)2〉
asymptotically decays with the same rate as the variance
of the field. At short times, however, the decay of 〈(∇θ)2〉
depends on the initial condition (Fig. 3). In case A, which
is monochromatic, the decay is purely exponential from
the beginning, whereas in case B the decay is faster, since
each Fourier mode k of the scalar field decays with a differ-
ent exponential rate −2Dk2. In the presence of polymers
and in case A, 〈(∇θ)2〉 initially grows because mixing cre-
ates thin scalar filaments (the so-called direct cascade of
passive scalars); at later times when the gradient scale
reaches the diffusive scale we observe a rapid decay, with
a rate similar to that of 〈θ2〉, which indicates that the
increased mixing efficiency of the polymer solution with
respect to the Newtonian fluid. Case B is similar to case
A, except for an initial transient characterized by the fast
diffusive decay of the high Fourier modes of the initial
condition.

To accurately measure the asymptotic decay of the
scalar variance, it is useful to introduce the instantaneous
exponential decay rate

βp(t) = − d

dt
log〈θ2〉 = β0

〈(∇θ)2〉
K2〈θ2〉

. (4)

The ratio βp(t)/β0 quantifies the increase of the mixing
efficiency due to the addition of polymers with respect to
molecular diffusion only. As shown in Fig 4, the two ini-
tial conditions A and B recover the same values of βp(t)
after an initial transient. For ηp = 3 we observe initially a
rapid increase of βp(t), which reaches values much larger
than β0. However, at long times, when the scalar field is
almost completely homogeneized, βp(t) reduces and even-
tually returns close to β0. For ηp = 5, after an initial
growth similar to the ηp = 3 case, βp(t) seems to fluctu-
ate around a constant mean value β∗ in the time interval
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Fig. 5: Temporal evolution of the variance 〈θ2〉(t) for
Pe = 1000 (triangles), Pe = 2000 (circles) and Pe =
4000 (squares). Here ηp = 5 and the initial condition is
monochromatic (case A). Inset: Temporal evolution of the
variance of the scalar gradients 〈(∇θ)2〉(t).

t ∈ [2, 4]. At later times βp(t) decreases, but its decay is
slower than for ηp = 3.

We notice that an exponential decay of the passive
scalar variance with a constant rate βp(t) implies that
〈(∇θ)2〉 must become proportional to 〈θ2〉, meaning that
the typical scale of the scalar gradients, defined as ` =
[〈θ2〉/〈(∇θ)2〉]1/2, remains constant. For ηp = 5 we have
that the scale separation between the large scale of the
base flow Lu = 2π/K and ` is Lu/` ' 3 for t ∈ [2, 4].

Theoretical predictions on the asymptotic decay of the
scalar field have been derived by exploiting the relation
between the statistics of Lagrangian trajectories and the
statistics of the passive scalar [11,12]. In particular, it has
been shown that for smooth, statistically homogeneous
and isotropic flows, in the limit Pe → ∞ and for large
times, the moments of the passive scalar decays exponen-
tially 〈|θ|n〉 ∝ exp(−γnt), with γn linked to the stretching
rate statistics. In our notation β corresponds to γ2. The
fact that we observe an exponential decay with constant β
only for intermediate times could be due to various causes.
The mechanism for the exponential decay [11] originates
from the chaotic stretching of the passive scalar, which
is effective when there is a large scale separation between
the typical scale of the flow Lu and the diffusive scale (i.e.,
in the limit Pe → ∞). In the following we will show that
the asymptotic decrease of βp(t) observed in Fig 4 could
be related to the finite values of D required by the nu-
merical simulations. Further, the Kolmogorov flow is nei-
ther homogeneous nor isotropic. Moreover, in our case the
characteristic large scale of the passive scalar Lθ = 2π/K
is equal to that of the base flow Lu. When Lθ ∼ Lu it
has been shown that the decay, though still exponential,
is dominated by “strange eigenmodes” of the advection-
diffusion operator [13], and its connection to Lagrangian
stretching rate become more complex [12].
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Fig. 6: Instantaneous exponential decay rate βp(t), nor-
malized with β0 = 2DK2, for Pe = 1000 (triangles),
Pe = 2000 (circles) and Pe = 4000 (squares). Here ηp = 5
and the initial condition is monochromatic (case A). In-
set: Average exponential decay rate β∗ as a function of Pe
(circles). The line represents the scaling Pe0.8.

On the basis of the previous observations, we expect
that the gain in mixing efficiency due to the addition
of polymers should depend on the Péclet number Pe =
U0/KD. Increasing Pe at fixed Re reduces β0 but increases
the generation of smaller scales in the scalar field, thus
leading to higher values of 〈(∇θ)2〉.

In order to investigate the dependence on Pe, we have
compared three simulations with initial condition A at
ηp = 5 and Re = 1 with different diffusivities: D = 10−3

(Pe = 1000) D = 5 × 10−4 (Pe = 2000) and D = 2.5 ×
10−4 (Pe = 4000). The decay of the variance for the three
cases is shown in Fig. 5. Although an increase of 〈(∇θ)2〉
is observed as a function of Pe at all times (see inset of
Fig. 5), the decay of 〈θ2〉 is slower at greater Pe because
β0 is reduced. Nevertheless, Fig. 6 shows that the gain
in mixing efficiency increases with Pe. A power-law fit of
β∗, obtained by averaging βp(t)/β0 in the interval 2.5 <

t < 4, indicates a growth proportional to Pe0.8. At present
we do not have a clear understanding of this power law
dependence. We notice that at increasing Pe, the regime in
which βp(t) is almost constant continues for longer times.
This suggests that the asympotic decay of βp(t) might be
a finite-Pe effect.

4 Conclusions

The addition of rodlike polymers to a low-Reynolds-num-
ber Newtonian fluid generates a chaotic flow, similarly to
the elastic turbulence regime observed in flexible poly-
mers solutions. We have shown that this regime strongly
enhances the mixing of a passive scalar dispersed in the
solution. In particular, the variance of the scalar field and
of its gradients decays much faster than in the purely dif-

fusive case. Moreover, we found that this effect increases
with the Péclet number. In order to quantify the gain in
the mixing efficiency we introduced the instantaneous ex-
ponential decay rate βp(t). The rapid initial growth of
βp(t) to values much higer than the diffusive decay rate
β0 provides a precise measure of the increased mixing.
Our results also show that for high Péclet number and
high polymer concentrations, the decay of the scalar vari-
ance displays an almost exponential regime, in which βp(t)
fluctuates around a constant mean value.

Although our study is conducted in an idealized set-
ting, we hope that it can motivate experimental investi-
gations of the gain in mixing efficiency obtained via the
addition of rodlike polymers to a Newtonian fluid at low
Reynolds number. In future investigations it would also
be interesting to compare the gain in mixing efficiency ob-
tained with rodlike or flexible polymer solutions at similar
concentrations.
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