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The six possible VNxHy defects in diamond (a vacancy surrounded by x = 1 to 3 a vacancy
surrounded by x=1 to 3 nitrogens and y=1 to 4-x hydrogens) are investigated at the quantum
mechanical level by using the periodic supercell approach (64 atoms), an all electron Gaussian-type
basis set, and hybrid functionals. It turns out that steric hindrance and short range repulsion is
not such to prevent hydrogen atoms (up to 3 in VNH3) from fitting in the V cavity and saturating
the dangling bonds of the carbon atoms first neighbors of the vacancy. All the investigated systems
present specific IR spectra, with bending and stretching peaks above the nearly continuous band
(from 400 to about 1340 cm−1) resulting from the perturbation of the perfect diamond spectrum by
the vacancy and the nitrogen substitutions. These peaks, ranging from 1340 to 1700 cm−1 (bending;
data refer to the harmonic approximation) and from 3100 to nearly 4000 cm−1 (stretching), might
be considered fingerprints of the various defects. The C–H anharmonicity, evaluated numerically,
turns out to be very sensitive to the N and H load, ranging from -202 cm−1 (red shift of the triplet
state of VNH) to +57 cm−1 (blue shift of the symmetric stretching in VNH3).

1. INTRODUCTION

Hydrogen is one of the most important impurities in di-
amond. It is included during the growth of natural di-
amond as well as in chemical vapour deposition (CVD)
processes. It is certainly present at the surfaces; a non
minor fraction, however, is also thought to be incorpo-
rated in the bulk. Hydrogen atoms are supposed to be
present in several defects1,2, involving vacancies and/or
nitrogen atoms isolated or aggregated. It is mostly iden-
tified through its infrared (IR) active modes (stretching
and bending), although probably not all hydrogen atoms
present in diamond are IR active.
In 2002 Briddon and coworkers3 published a review about
hydrogen in diamond, where a set of different defects con-
taining hydrogen are simulated. Five years later (2007)
an experimental review by Fritsch4 appeared, where an
overview of the peaks that “have been at least tenta-
tively attributed to H-related defects”4 is given. As a
matter of fact, the one-to-one correspondence between
the many peaks that can reasonably be attributed to the
presence of hydrogen in a specific local defect is still lack-
ing. For example, only very recently (2014) Briddon and
coworkers5 have been able to reliably attribute the exper-
imental peaks at 1405 and 3107 cm−1, that are observed
in almost all types of Ia natural diamonds1,4,6–8, to the
VN3H defect9 (a carbon vacancy where 3 of the 4 first
neighbors are nitrogen atoms and the fourth is saturated
with hydrogen).
In particular, we have been unable to find indications
concerning the IR spectra that can be generated by com-
bining H and N in the vacancy: how many H atoms can
fit in the vacancy when various N atoms are present?

Is there enough room for the progressive saturation of
the fraction of first neighbors of the vacancy occupied
by carbons? Is the progressive saturation with hydrogen
atoms exothermic for any concentration of nitrogens, or
is the steric and/or electronic hindrance (the latter due
to the presence of the lone-pairs on the N atoms) pre-
venting the high loading? How different is the IR spec-
trum of the various VNxHy compounds and spin states?
More important, is the intensity of the C-H bending and
stretching modes large enough to allow to recognize these
modes as a fingerprint of a specific defect, as it is the case
of VN3H (see Ref. 4)?

In 2015 Peaker and coworkers10 investigated electronic
and vibrational features of two of the systems discussed
in this work: VN2H2 and VN2H (the latter also in its
negative charged form). Their vibrational frequencies
are obtained through a finite difference approximation
for the evaluation of second derivatives of energy with
respect to atomic coordinates. As reported in their work,
“the eigenvalues of the dynamical matrix provide the fre-
quencies which are quasi-harmonic due to the inclusion of
small components of anharmonic incurred from the finite
displacement of the atoms”.10 According to their PBE
calculations, the C–H stretching modes are expected to
be at 3540 (symmetric) and 3370 (anti-symmetric) cm−1

for the former, and at 3050 cm−1 for the latter.

From the experimental side, it is clearly very difficult to
know how many different defects containing hydrogen are
present in the sample, and at which concentration, and
how they are combined with other defects.
From the simulation point of view it is possible to define
a priori the kind of defects present in the bulk. Other
limitations prevent however the simple identification of



2

the experimental peaks with the simulated ones. The
three most important are related to i) the use of function-
als (LDA, GGA) that are known to poorly perform with
open-shell systems, and in describing hydrogen atoms for
which the self-interaction error is particularly severe11;
ii) inaccuracies in the models for treating the vibrational
modes (harmonic approximation), that in this particu-
lar case clearly fail due to the strong anharmonicity of
the C–H stretching; iii) unavailability of the IR intensi-
ties. Some of these limitations deeply affect the previous
quantum-mechanical simulations of hydrogen-containing
defects.

In a series of previous works9,12–20 some of the present
authors have proposed the quantum-mechanical charac-
terization of several point-defects in diamond. Here we
extend our preliminary investigation on the structural,
electronic and spectroscopy features of the VN3H defect9

by considering the entire set of VNxHy (x= 1 to 3, y=1
to 3) situations. The present study represents, to our
knowledge, the most extensive investigation of this family
of compounds and of their spectroscopic features. More-
over, it also introduces important improvements with re-
spect to previous treatments (the three limitations men-
tioned above are totally or in part eliminated). Six dif-
ferent systems (namely VNH1, VNH2, VNH3; VN2H1,
VN2H2; VN3H), whose general structure is reported in
Figure 1, have been studied by using a hybrid functional
(B3LYP), a Gaussian-type basis set and the supercell
scheme (here the analysis is limited to cells containing
64 atoms, as the hydrogen related modes, on which we
focus here, are very localized and the effect of the lateral
interaction between defects belonging to different cells
on these modes is extremely small).9,19 All the inves-
tigated systems present specific IR spectra, with peaks
that can be used for the characterization of each one of
these defects. In particular, the C-H bending and stretch-
ing modes can be considered as spectroscopic fingerprints
of the system. These modes span about 300 (bending)
and 1000 cm−1 as a function of the number of hydrogen
and nitrogen atoms around the vacancy. Also anhar-
monicity (here investigated for the stretching modes) is
quite sensitive to the nitrogen and hydrogen load and to
the spin state of the system.

The paper is structured as follows. In Section 2 infor-
mation on the adopted computational setup is provided.
Subsection 2.1 is devoted to the vibrational frequencies
computed in the harmonic approximation, and to the
analytical estimation of the IR intensities. Subsection
2.2 illustrates how the anharmonic contribution to the
C-H stretching mode is computed by solving numerically
the corresponding one dimensional Schrödinger equation.
Section 3 is organized in two parts. Subsection 3.1 is de-
voted to the equilibrium geometry of the studied defects,
to their charge distribution and to their band structure.
In Subsection 3.2, the vibrational features of the defects
are reported and analyzed, both at the harmonic and an-
harmonic (for the stretching) level. Finally, in Section 4
some conclusions are drawn.
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FIG. 1: Schematic representation of the VNxHy conventional
cells. Red position can either be occupied by N (up to x,
spanning from 1 to 3) or C. The green positions are occupied
by H atoms down to 8-y. According to this scheme, for the
six systems here considered, we have: N in 1, C in 2 and 3, H
in 7 for VNH; N in 1 and 2, C in 3, H in 7 for VN2H; N in 1,
2 and 3, H in 7 for VN3H; N in 1, C in 2 and 3, H in 7 and 6
for VNH2; N in 1, C in 2 and 3, H in 7, 6 and 5 for VNH3; N
in 1 and 2, C in 3, H in 7 and 6 for VN2H2.

2. COMPUTATIONAL MODELS AND DETAILS

Calculations have been performed by use of the B3LYP
global hybrid functional,21,22 as implemented in the
Crystal program.23 In a recent work some of the present
authors have shown that weak dispersive interactions
only marginally affect the description of covalent system
as diamond.20

Turning now to the description of the electron density,
an all electron basis set of Gaussian-type functions has
been adopted (Pople’s 6-21G) for carbon and nitrogen
atomic species; the exponent of the most diffuse sp shell
is 0.23 (C) and 0.30 (N) Bohr−2. The 6-31G basis set24

has been used for hydrogen. In order to simulate the
presence of a vacancy in the defective structure, a com-
plete removal of the atom of interest (nucleus, electrons,
basis set) has been performed. We have shown in previ-
ous studies that a “ghost” atom approach whould lead
to similar results concerning structural, electronic and
spectroscopic features.12,13,20

The truncation of the Coulomb and exchange infinite lat-
tice series is controlled by five thresholds Ti (see Ref.
25 for more details), which have been set to 8 (T1-T4)
and 16 (T5). The convergence threshold on energy for
the self-consistent-field (SCF) procedure has been set to
10−8 Hartree for structural optimizations and to 10−10

Hartree for vibration frequency calculations.
The DFT exchange-correlation contribution to the Fock
matrix has been evaluated by numerical integration over
the unit cell volume. Radial and angular points for the
integration grid are generated through Gauss-Legendre
radial quadrature and Lebedev two-dimensional angular
point distributions. The default pruned grid with 75 ra-
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dial and 974 angular points has been used, whose accu-
racy can be measured by comparing the integrated charge
density of each system with the total number of electrons
in the unit cell: as an example, the charge density of
VNH1 is 380.004, while the total amount of electrons is
380.
Reciprocal space has been sampled using a Γ-centered
regular Pack-Monkhorst26 sub-lattice (controlled by the
SHRINK keyword, see the Crystal User’s Manual25) with
a “shrinking factor” (IS25) equal to 8, that corresponds to
8×8×8=512 k-points in the First Brillouin Zone (FBZ)
(260 by exploiting the time reversal symmetry). The six
defective systems here considered belong to one of the
following symmetry point-groups: C1, Cs, C2v and C3v.
Exploitation of symmetry reduces the k-points to be sam-
pled in the FBZ from 260 (C1) to 150 (Cs), 105 (C2v) and
65 (C3v).

2.1. Harmonic frequencies and the IR spectra

Frequencies at the Γ point are obtained within the har-
monic approximation by diagonalising the mass-weighted
Hessian matrix, W , whose elements are defined as27–31

WΓ
αi,βj =

H0
αi,βj√
MαMβ

with H0
αi,βj =

(
∂2E

∂u0αi∂u
0
βj

)
,

(1)
where Mα and Mβ are the masses of atoms associated
with the i and j atomic coordinates. Once the Hessian
matrix, Hαi,βj , has been calculated, frequency shifts due
to isotopic substitutions can be calculated readily, at no
computational cost, by changing masses in Eq. 1.
Energy first derivatives with respect to the atomic po-
sitions, vα,j = ∂E

/
∂uα,j , are calculated analytically for

all the uα,j coordinates (E is the total energy, uα,j is
the displacement coordinate with respect to the equilib-
rium, α labels each atom), whereas second derivatives at
~u = 0 are calculated numerically using a single displace-
ment along each coordinate (N=2, the central point and
one point on the right side of the parabola):[

∂vαj
∂uβi

]
≈ vαj(0, . . . , uβi, . . . )

uβi
(2)

or averaging two displacements (N=3):[
∂vαj
∂uβi

]
≈ vαj(0, . . . , uβi, . . . )− vαj(0, . . . ,−uβi, . . . )

2uβi

(3)
Previous calculations27,32,33have shown that in bulk sys-
tems the influence of both u andN is very small (less than
1 cm−1) when H atoms are not present; much larger ef-
fects have been found for the O-H stretching in katoite34,
brucite35,36 and diaspore37. More generally, anharmonic-
ity is large in all cases in which hydrogen atoms are
involved (vide infra)38,39. Integrated intensities for IR

absorption Ip are computed for each mode p by means
of the mass-weighted effective-mode Born-charge vector
~Zp

40,41 evaluated through a Coupled-Perturbed-Hartree-
Fock/Kohn-Sham (CPHF/KS) approach:42,43

Ip ∝
∣∣∣~Zp∣∣∣2 . (4)

2.2. The anharmonicity of the C-H stretching mode

When both the fundamental frequency ω01 and the first
overtone ω02 of a mode are available, the anharmonicity
constant ωeχe can be obtained through the formula (see
Ref. 36 for more details):

ωeχe =
(2ω01 − ω02)

2
(5)

that allows also the definition of the harmonic frequency
ωe as:

ωe = ω01 + 2ωeχe (6)

The importance of anharmonicity in H containing sys-
tems appears evident by looking at the anharmonicity
constant ωeχe of some simple diatomic molecules such as
H2, HF, HCl and HBr, where ωeχe is 121, 90, 53 and
45 cm−1, respectively.44 As regards the C-H stretching,
anharmonicity is estimated to be around 100-200 cm−1

for many organic molecules.45,46

The very large anharmonicity of the C-H, N-H and O-
H stretching modes can be estimated by taking ad-
vantage of their independence from the other normal
modes.33–35,39

A scheme has been implemented in the Crystal code
that solves numerically the one-dimensional Schrödinger
equation when the potential energy, evaluated for a set of
7 points along the C-H coordinate, is fitted with a sixth
order polynomial.47 The explored interval for the present
case goes from -0.8 to +1.0 Å with respect to the equi-
librium position. The explored energy range is about 1.1
eV. The results vary by less than 1 cm−1 when a much
richer set of points (26) is used in the same interval.
Unfortunately this simple and effective scheme cannot be
extended to the other hydrogen modes, such as bending,
because in this case the separability with respect to the
other modes is lost. In this case a full anharmonic treat-
ment is required.

3. RESULTS

Let us summarize the electronic situation of the systems
we are considering in the present study. In the vacancy
V there are 4 unpaired electrons, that can generate three
different states characterized by Sz=0, 1 and 2 (four spin
up, three up and one down, two up and two down);
we can call these states quintuplet, triplet and singlet.
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FIG. 2: B3LYP band structures of the open-shell VNxHy defects for the S64 supercells. The spin configuration is denoted by
the supercript: singlet (s), doublet (d) and triplet (t). Continuous black lines represent α energy levels, whereas dotted red
lines refer to β energy levels. The horizontal blue line marks the position of the Fermi energy level. The optical transition has
been represented by the black arrow.

It should be underlined that the unpaired electrons re-
main localized to a large amount on the carbon atoms,
as it should be, if and only if a sufficiently large amount
of “exact” Hartree Fock (HF) exchange is included in
the Hamiltonian or functional. In HF the localization
is complete (one electron on each carbon atom); in “hy-
brid” functionals, such as B3LYP or PBE0 (very rarely
adopted in previous studies for these systems), the local-
ization remains large (about 0.8 |e| on each unsaturated
carbon atom, according to a Mulliken partition of the
charge density). LDA and various versions of GGA, like
PBE, are unable to localize these electrons, and the so-
lution turns out, for many of the defects in diamond, to
be metallic, in contrast with experimental evidence. The
energy difference between the singlet and the triplet, eval-
uated at the B3LYP 6-21G level, is quite small (0.13 eV),

whereas the quintuplet is less stable by about 1.4 eV.12,13

At the other extreme with respect to the vacancy, in VN4

(the B defect), “border” atoms are nitrogens, with a lone
pair each protruding towards the vacancy, so that the
ground state has a closed shell configuration.

For the systems here investigated, the carbon atoms that
are first neighbors of the vacancy are progressively sub-
stituted by nitrogen, and the remaining carbon dan-
gling bonds are partially or totally saturated by hydrogen
atoms. When only one nitrogen is inserted, then three
VNHy systems can be generated, with y=1, 2 or 3. In
VNH1, two unpaired electrons remain, that can combine
to give a triplet (Sz=1) or a singlet (Sz=0) state. In
VNH2 the only spin state available is a doublet, whereas
VNH3 has a closed-shell ground state. When two nitro-
gen atoms are first neighbors of the vacancy, two cases
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are possible: VN2H1, with a doublet open-shell config-
uration, and VN2H2, a closed-shell. Also the last case
here considered, VN3H, has a closed-shell ground state.
The relative stability of the different spin states, and the
stability of the various defects when the number of nitro-
gen and hydrogen atoms in the vacancy is increasing, are
among the issues that will be discussed in this section.

3.1. Geometry, charge and spin densities, and band
structure

As we are mainly interested in the behavior of the C-H
groups, we reported in Table I only two geometrical data,
namely the C-H and the H-H distances (when applies).
The former is equal to 1.07 Å when a single hydrogen
atom is present, to 1.05 Å when there are two H atoms
in the cavity, and to 1.03 Å in the case with three H
atoms; the shortening is a consequence of the repulsion
between hydrogen atoms. The H-H distance in the cavity
is always around 1.26 Å, sufficiently short to generate
some repulsion. The polarity of the C-H bond is large
when a single hydrogen is present (+0.23 |e| on H and
-0.16 |e| on the C1 atom, linked to H, in the two VNH
states), and reduces progressively when the number of
H atoms increases (+0.21 and +0.17 |e|, -0.15 and -0.12
|e| in VNH2 and VNH3, respectively) so as to reduce the
mutual electrostatic repulsion among them. The polarity
increases, for fixed number of H atoms, when the number
of N atoms increases, (+0.23, +0.27, +0.31 |e| for H, and
-0.16, -0.17 and -0.18 |e| for C1 in going from VNHs to
VN2Hd and to VN3H). The net atomic charge of nitrogen
varies from -0.42 to -0.47 |e|, and is nearly completely
compensated by its three carbon first neighbors. When
the system is spin polarized, the spin density is essentially
localized on the unsaturated carbon atoms: the table
shows that the amount of spin density on H, N and C1

is very small, the maximum being +0.08 |e| for a system
with two uncoupled electrons (the VNHt case). Also the
C-H bond population is nearly constant along the series;
it is interesting to note the small but positive N-H bond
population (attractive) and the small and negative H-H
bond population (repulsive).
Three of the investigated systems present a closed-shell
electronic structure; their band structures are very simi-
lar, with band gaps that reduce from 5.50 eV (VNH3), to
5.30 eV (VN2H2) to 5.22 eV (VN3H) when the number
of nitrogen atoms increases from 1 to 3. The limiting
case VN4 (the so called B-center), has a band gap even
smaller (5.06 eV). In all cases, the energy levels of the
hydrogens are down in the occupied manifold, whereas
the valence bands are always due to the lone pairs of the
nitrogen atoms. The band structure of the closed-shell
systems are not further discussed.
The other three systems do have a spin polarized ground
state: VNH has 2 unpaired electrons, that can couple
to give a triplet (t) or a singlet (s); the latter is slightly
more stable than the former by 0.14 eV, as shown in

Table II. Their band structure is given in the two top
panels of Figure 2: the energy levels associated to α and
β electrons are represented by continuous black and dot-
ted red lines, respectively. Since there are two unpaired
electrons, the energy levels immediately below the Fermi
energy (marked by the horizontal blue line) are α and β
for the singlet, and both α for the triplet. The energy
dispersion of the levels occupied by the unpaired elec-
trons is roughly 0.7 eV for both the spin states and is a
measure of the interaction between defects belonging to
different cells; in larger supercells, i.e. when the defect
concentration reduces, the energy dispersion lowers. In
the Figure the energy transition (starting at Γ-point) in-
volving the highest occupied level of the defect and the
first unoccupied level of the diamond host are indicated
for all the reported band structures.

In the other two open shell-systems, VNH2 and VN2H,
there is just a single unpaired electron, so that their
ground state is a doublet (d). In these cases, then, there
will be only one α-electron level immediately below the
Fermi energy level, and one β-electron level above the
Fermi energy level. The energy dispersion of the un-
paired electron also in these cases is about 0.7 eV.

It is interesting to evaluate the energy required for the
homolytic dissociation of the VNxHy system to give
VNx (the vacancy surrounded by x N atoms) and y

2 H2

molecules, according to equation

VNxHy
EH−→ VNx +

y

2
H2 (7)

The EH energies are reported in Table II for all the con-
sidered systems. Looking at the series with a single ni-
trogen atom, i.e. VNHy, it turns out that the energy
required for breaking the C-H bond in VNH1 is 1.30 eV.
For the removal of the two hydrogens in VNH2 the en-
ergy required is 2.09 eV (that gives an average of 1.05
per atom), whereas the extraction of the 3 hydrogens in
VNH3 requires 2.54 eV, that is only 0.85 eV per atom. A
step-by-step homolytic dissociation procedure according
to the following reaction path:

VNH3
E1

H−→ VNH2 + H
E2

H−→ VNH + H
E3

H−→ VN + H

gives E1
H=0.45 eV, E2

H=0.79 eV and E3
H=1.30 eV, con-

firming that the mutual steric hindrance drastically re-
duces the strength of the C-H bonds. In spite of that,
these data show that it is energetically possible that three
H atoms fit in the vacancy cavity. Looking now to the se-
ries with a single hydrogen atom and an increasing num-
ber of nitrogens atoms (i.e., VNH, VN2H, VN3H), EH

increases from 1.30 to 1.42 and then to 1.66 eV; the C-H
bond becomes then stronger when the number of nitrogen
atoms around the vacancy increases, as a consequence of
the polarization induced by the x lone pairs on the C-H
bond. The effect of the lone pairs is evident also from the
comparison of EH for VNH2 and VN2H2, that increases
from 2.09 to 2.38 eV.
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TABLE I: B3LYP structural and Mulliken population data for the various VNxHz
y defects, where the z superscript indicates

the open-shell spin state (singlet, doublet and triplet). RCH and RHH are the shortest distances (in Å) between the indicated
atoms, while BCH, BNH and BHH are the corresponding bond populations (in |e| units). Atomic quantities QX and µX are
the net electronic and magnetic charges of atom X, respectively. C1 is (one of) the atom saturated by H. The N-H shortest
distance is always around 1.94-1.95 Å, the only exception being VNH3 for which the distance shortens to 1.91 Å.

System RCH RHH QH QC1
QN µH µC1

µN BCH BNH BHH

VNHs 1.072 - +0.23 -0.16 -0.43 0.00 0.00 0.00 +0.29 +0.03 -

VNHt 1.082 - +0.23 -0.16 -0.42 -0.01 +0.08 +0.04 +0.29 +0.03 -

VNHd
2 1.052 1.262 +0.21 -0.15 -0.45 -0.00 +0.03 +0.01 +0.32 +0.02 -0.04

VNH3 1.034 1.265 +0.17 -0.12 -0.47 - - - +0.33 +0.01 -0.06

VN2Hd 1.075 - +0.27 -0.17 -0.42 -0.01 +0.03 +0.02 0.30 +0.03 -

VN2H2 1.050 1.249 +0.25 -0.16 -0.45 - - - +0.33 +0.01 -0.04

VN3H 1.074 - +0.31 -0.18 -0.42 - - - +0.31 +0.02 -

3.2. Spectroscopic characterization

The Raman spectrum of pristine diamond is very simple:
it consists of a single, sharp peak at 1332 cm−1. The
collective modes of the perfect diamond structure, corre-

sponding to ~k points of the Brillouin Zone different from
Γ in the primitive cell, have lower wavenumbers. The
calculated perfect diamond single Raman peak is at 1317
cm−1 (B3LYP/6-21G level), 15 cm−1 below the experi-
mental one. The IR spectrum of pristine diamond is even
simpler because, due to symmetry constraints, no peaks
are observed.

TABLE II: B3LYP/6-21 total energies, in Hartree, of the
VNxHy and of the corresponding VNx systems. EH, in eV, is
the homolytic dehydrogenation and formation energies eval-
uated according to Equations 7. Data refer to the S64 super-
cell. B3LYP/6-21G total energies of the H2 and N2 molecules
(obtained with the Crystal code) are -1.1687 Hartree and
-109.3127 Hartree, respectively. If reference is done to the
isolated H atom, rather than to the H2 molecule, EH should
be increased by 2.38 eV per H atom.

System EVNxHy EVNx EH

VNHs -2414.5406 -2413.9086 1.30

VNHt -2414.5357 -2413.9086 1.16

VNHd
2 -2415.1540 -2413.9086 2.09

VNH3 -2415.7549 -2413.9086 2.54

VN2Hd -2431.1837 -2430.5471 1.42

VN2H2 -2431.8031 -2430.5471 2.38

VN3H -2447.8266 -2447.181094 1.66

The IR spectrum of the pure vacancy V (see the bottom
right panel of Figure 3) presents spectroscopic features
below the pristine diamond Raman peak at 1317 cm−1,
whereas no peaks appear above. The same holds for the
Raman spectrum, reported in Ref. 12.

The nitrogen substitution perturbs this situation only
marginally. The highest calculated peaks for VN1, VN2,
VN3 and VN4 are at 1337, 1335, 1338 and 1339 cm−1,
respectively, only slightly above, then, the isolated Ra-
man peak of perfect diamond at 1317 cm−1. For the
systems here considered, all peaks observed above 1340
cm−1 must then be attributed to the presence of hydro-
gen.

The IR spectra of the seven systems here investigated,
calculated at the harmonic level of approximation, are
shown in Figure 3. The VN3H case has already been
described elsewhere.9 All spectra show many peaks below
1340 cm−1, mainly as a consequence of the reduction of
the perfect diamond cubic symmetry by the vacancy, and
N substitutions. The hydrogen related modes (three for
each H atom) split (totally or partially) from the pure
diamond+V+N manifold, and are then easily identified.
The harmonic stretching and bending wavenumbers and
intensities are summarized in Table III.

We begin our analysis from the bending modes. We re-
call that, since hydrogen is very light, the corresponding
bending and stretching modes are expected to be clearly
identifiable, although the first is almost always coupled
to all the other modes. So we look for two “bending”
modes per hydrogen atom in the graphical animation of
the modes (see www.crystal.unito.it). In the cases in
which there are two or three H atoms, some of the bend-
ing modes are at low wavenumbers, well below the Ra-
man diamond peak: they appear at 476 cm−1 for VNH2,
at 471 for VN2H2 and at 451 cm−1 (twofold degenerate)
and at 446 cm−1 for VNH3. The table shows that all
these low wavenumber modes have extremely weak (or
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FIG. 3: B3LYP simulated infrared spectra of seven VNxHy defects with x equal 1, or 2 or 3. In the VNH case, two uncoupled
electrons remain on two of the carbon atoms around the vacancy, that can arrange in a high spin (triplet, indicated as t), or
low spin (singlet, s) configurations. In both VN2H and VNH2 cases there is a single uncoupled electron, and then the state is
a doublet (d). The bottom right spectrum is the one of the vacancy V in its singlet s state. Wavenumbers are computed at
the harmonic level. Calculations refer to the S64 supercell.

null) IR intensity, and cannot then be observed experi-
mentally.

All the remaining bending modes (three for VNH2,
VN2H2 and VNH3, two in all other cases, 17 in total) are
in the interval 1333 – 1701 cm−1 and are shown in Figure
4. Two of them have negligible intensity, and three other
have intensity smaller than 30% of the most intense peak
(at 205 km·mol−1), so that they are probably hardly de-
tectable in the experimental spectrum. The remaining
ones (11 in total) have relatively high intensity, and 5 of
them span from 50 to 90% of the most intense peak. The
latter belongs to VN3H, and is very well characterized
experimentally, as described in the Introduction.4,5,9 The
calculated wavenumber is at 1461 cm−1, 55 cm−1 above

the experimental value.9 A very preliminary investigation
of the anharmonic contribution, evaluated through VCI
or VSCF (see Ref. 9 for definitions), in which however
only the three hydrogen modes are coupled, reduces the
computed wavenumber to 1446-1442 cm−1. For all the
other systems, we are unable to estimate the anharmonic
shift of the bendings. It is fair enough to suppose that
anharmonicity of the bending modes is between 0 and 55
cm−1 (the VN3H value).

Combining the low intensity, and a hypothetical red shift
or 20-50 cm−1, that would merge some of the peaks with
the “bulk” V+N nearly continuous band, one might ex-
pect to find in the experimental spectrum the 1701 (153
km·mol−1) peak of VN2H2, the 1584 (159 km·mol−1) and
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TABLE III: B3LYP harmonic wavenumbers (ω, in cm−1) of the C–H stretching (Si) and bending (Bi) modes, and their relative
intensities (ISi and IBi , in km·mol−1). Numbers in parentheses in the VNH3 case indicate the degeneracy of the mode. When
y hydrogen atoms are present, y stretching and 2×y bending modes are reported.

Stretching Bending

ωS1
IS1

ωS2
IS2

ωB1
IB1

ωB2
IB2

ωB3
IB3

ωB4
IB4

VNHs 3224 129 - - 1501 17 1422 81 - - - -

VNHt 3096 7 - - 1421 58 1414 74 - - - -

VN2Hd 3213 122 - - 1479 42 1424 39 - - - -

VN3H 3250 621 - - 1461 205 1333 5 - - - -

VNHd
2 3615 52 3417 88 1653 50 1391 87 1372 23 476 4

VN2H2 3664 185 3469 346 1701 153 1398 114 1392 8 471 0

VNH3 3943 56 3704 (2) 189 1584 (2) 159 1529 189 451 (2) 0 446 0
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FIG. 4: Harmonic wavenumbers and intensities of the C–H
bending modes of the VNxHy defects. Calculations refer to
B3LYP/6-21G, and to the S64 supercell.

the 1529 cm−1 (189 km·mol−1) peaks, both of VNH3. Is
there something in the experimental spectra that might
be attributed to these two defects?

Before answering this question, let us consider the
stretching modes, that are reported in the top panel of
Figure 5. The ten peaks span 850 cm−1, and the intensi-
ties vary from 5 to 621 km·mol−1, so that in principle it
should be possible to distinguish each local situation from
the others. The absolute identification with respect to ex-
perimental data remains however difficult, both because
of the large variety of experimental situations spanned in
the literature, corresponding probably also to many more
combinations of defects than examined here, and because
the simulated data are affected by a large error related
to the harmonic approximation. We are in a position
to correct partially for this last point, as we solved nu-
merically the one-dimensional Schrödinger equation for
the C–H coordinate, an approximation that is a minor
one for this particular mode (see Subsection 2.2). The
results are shown in the lower panel of Figure 5, with
a horizontal arrow indicating the amount of anharmonic
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FIG. 5: B3LYP harmonic (top) and anharmonic (bottom)
wavenumbers for the C-H stretching mode(s) for the VNxHy

defects. When more than one hydrogen atom is present there
are two stretching modes (symmetric, at high wavenumber,
and antisymmetric, at low wavenumber, and marked with an
asterisk; in VNH3 two low wavenumber peaks are degenerate).
The height of each bar is the simulated IR intensity (evaluated
at the harmonic level).

shift. The latter is far from being constant, and varies
from -202 (redshift) to +57 (blueshift) cm−1. The reason
for this large difference is related to the competition be-
tween the various factors influencing the C–H stretching
that i) is by itself strongly anharmonic, with a consequent
red-shift; ii) the latter is enhanced by the presence of the
N lone pairs on the opposite side of the vacancy that at-
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tract electrostatically the H atom, that is bearing some
partial positive charge; iii) the steric hindrance and short
range (Pauli) repulsion, due to the presence of other H
atoms in the cavity, progressively compensate for i) and
ii); for the VNH3 case, the repulsive wall due to the other
H atoms is dominating and a blue shift is observed.
This large variation of anharmonicity from case to case
represents a severe warning for the attempt to interpret
the reasonable agreement obtained with pure DFT func-
tionals at the harmonic level, as the errors due to the
functional and to disregarding anharmonicity seem in
some cases to cancel each other. In a family of com-
pounds as the one discussed here, we can suppose that
the first error (the use of LDA or PBE, with a consequent
large self-interaction error, particularly severe for hydro-
gen) remains roughly constant, whereas Figure 5 shows
that the second one can differ from case to case by as
much as 260 cm−1.

3.3. Are the VNxHy defects visible in the IR
spectrum?

In Section 3.1 it has been shown that more than one
hydrogen atom can fit in the VNx cavity, and that the
process is exothermic, in particular if compared not with
the very stable H2 molecule, but with isolated hydrogen
atoms that might be present in diamond in interstitial
positions (see also Table II and its caption). However,
the following questions can be raised: are all these defects
visible in the IR spectrum? Are the stretching and bend-
ing peaks IR active, and their intensity large enough to
be visible in the experimental spectra, that are extremely
complex and rich of peaks, as shown for example in the
figures appearing in Ref. 4?
It is difficult to answer these questions, as many addi-
tional variables play an important role, including: i) the
nature of the diamond sample, ii) the concentration of N
and H in the sample, iii) the mechanisms for their mi-
gration to form the desired defect. As we do not have
enough information for trying to define these additional
conditions, we will adopt the (certainly not very realis-
tic) simplifying hypothesis that all the defects we are dis-
cussing here do have the same concentration. The next
step of the analysis is made easier by the fact that one
of the systems here investigated, VN3H, generates a cou-
ple of modes (a bending mode at 1405 and a stretching
mode at 3107 cm−1) that are very intense and observed in
most of the experiments (see Introduction and references
therein). The calculated anharmonic stretching mode of
VN3H (at 3133 cm−1 in Figure 5, bottom) is by far the
most intense one of the full set of 10 modes reported in
the figure (621 km·mol−1). The second largest intensity
(346 km·mol−1, the antisymmetric stretching of VN2H2)
is about 50% of the VN3H one, followed by the symmet-
ric mode of the same system (185 km·mol−1) and the
antisymmetric one of VNH3 (189 km·mol−1, one third
of VN3H). All the remaining modes have low intensity,

of the order of 20% of VN3H, or even smaller, so that
probably they are hardly detectable in the stretching re-
gion of the spectra. VN2H2 and VNH3 are also the most
visible in the bending region, as they have intensities not
much smaller that the one of VN3H, and wavenumbers
sufficiently far from the diamond+V+N continuous band
(at 1529, 1584 and 1701 cm−1). Hunting for similarities
with the present bending wavenumbers and intensities
in the many spectra reported in figure 2-6 of Ref. 4,
taking also into account an hypothetical red shift of our
wavenumbers, it is certainly possible to attempt some as-
signments. The situation appears however so undefined,
that we refrain from this game, waiting for clearer exper-
imental determinations.
As concerns previous theoretical predictions by Peaker
and coworkers10 for the C–H stretching modes, their PBE
value of 3050 cm−1 for the VN2H defect is not far from
our B3LYP anharmonic value of 3065 cm−1 (see Figure
5). Larger differences are observed, instead, when the
VN2H2 defect is considered: 3370 and 3540 cm−1 for
anti-symmetric and symmetric C–H stretching modes, to
be compared with the anharmonic values here reported
of 3470 and 3641 cm−1.
In summary, four of the seven systems here investigated
(VNH, both s and t, VN2H, VNH2), can be considered
hardly IR visible, or “invisible”; VNH3 and VN2H2 are
probably visible in the bending region but “hardly” vis-
ible in the stretching region, with the possible exception
of the antisymmetric stretching of the latter.

4. CONCLUSIONS

In this work a series of hydrogen-nitrogen defects in dia-
mond, for brevity named VNxHy, have been studied from
a computational point of view. They consist of a carbon
vacancy surrounded by at least one nitrogen atom, with
at least one of the remaining dangling bonds saturated
with hydrogen. This leads to 6 different models (VNH,
VN2H, VN3H, VNH2, VNH3, and VN2H2) and 7 spin
states (a triplet and a singlet state are possible for VNH,
with two uncoupled electrons). Two main issues have
been considered in the present study:

• are all the models here proposed realistic from the
energetic point of view? So can they be inserted in
the long list of defects in diamond?

• if they exist, are they also visible from the experi-
mental point of view, in particular do they produce
visible, intense IR peaks?

The answer to the first question is positive. If reference
is done to the series of VNx defects (x=1 to 3), then
the saturation with hydrogen of one of the carbon atoms
surrounding the vacancy is an exothermic process, also in
the less favorable case in which the H atom is obtained
by dissociation of H2. The bonds with neighboring C
atoms of the many isolated H atoms floating around in
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diamond (for example in interstitial positions) is weaker
than in H2, and then the hydrogenation of VNx becomes
even more favorable.
As regards the second question, we focused here our at-
tention on the C–H modes that appear at wavenumbers
higher than 1340 cm−1, and then far away from the Dia-
mond+V+N manifold, characterized by a superposition
of vibrational bands that form essentially a continuum.
The 17 bending and the 10 stretching modes character-
izing the systems here investigated span about 300 and
1000 cm−1, respectively and should in principle be de-
tectable individually, so as to allow to identify unam-
biguously all these defects.
However most of them do have a quite low intensity, so
that they are hardly visible in the very rich IR experimen-
tal spectrum, to which many other kinds of defects are
probably contributing. The only ones easily detectable in
experiments are the peaks at 1405 (bending modes) and
3107 cm−1 (stretching mode), that have the largest com-
puted intensities among bending and stretching (205 and
621 km·mol−1), and are now attributed unambiguously
to the VN3H defect.5,9 The second most intense stretch-
ing peak (VN2H2) has intensity of 346 km·mol−1 (just a
bit more than 50% of the one of VN3H). The third one
has intensity smaller than 200 km·mol−1; the remaining
7 peaks span from 20% of VN3H, to nearly null intensity.
Also in the bending region VN3H has the most intense
peak. The intensities of the VN2H2 and VNH2 bending
modes are not much lower than the one of VN3H, and
should in principle be visible. Looking at the forest of
peaks appearing in the experimental spectra in the 1340
1600 cm−1 region (see for example the panels in figure 3
of ref 4), we decided that there are not enough elements

for a one to one attribution of these peaks. It should be
noticed that other defects can have intensity larger than
the largest one of this set, and then generate large bands
that can hidden the small peaks of the present systems.
We can conclude as follows:

1. Many of the defects here investigated (actually, all
of them) can exist in defective diamond, but the
evidence of their existence cannot be obtained for
most of them from IR spectra.

2. The one to one correspondence between experimen-
tal and simulated spectra is difficult and prone to
many errors for limitations on both sides (experi-
ment and simulation). Fresher experiments might
help in the comparison.

3. Simulation allows however to investigate individu-
ally and at well defined concentration each defect,
and then should be used as a reference for a qual-
itative and semi-quantitative location of peak po-
sition and intensities for the various defects, also
in the analysis and interpretation of experimental
spectra.
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