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Abstract: The “hepatocyte growth factor” also known as “scatter factor”, is a multifunctional 

cytokine with the peculiar ability of simultaneously triggering epithelial cell proliferation, 

movement and survival. The combination of those proprieties results in the induction of an 

epithelial to mesenchymal transition in target cells, fundamental for embryogenesis but also 

exploited by tumor cells during metastatization. The hepatocyte growth factor receptor, 

MET, is a proto-oncogene and a prototypical transmembrane tyrosine kinase receptor. 

Inhere we discuss the MET molecular structure and the hepatocyte growth factor driven 

physiological signaling which coordinates epithelial proliferation, motility and morphogenesis. 

Keywords: signaling pathways; tyrosine kinase receptor; protein–protein interaction;  

SH2 domain; post translational modification; signal transduction 
 

1. Background Introduction 

The Hepatocyte Growth Factor (HGF) was originally identified as a soluble factor promoting 

hepatocyte growth and liver regeneration [1]. In a parallel way a Scatter Factor (SF) was identified as 

cytokine secreted by fibroblast promoting dissociation and motility of epithelial cells in culture [2].  
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Molecular cloning demonstrated that HGF and SF are the same growth factor produced by cells of 

mesenchymal origin and promoting migration and proliferation depending on the epithelial cell 

targeted [3]. The HGF receptor (MET) is a prototypal tyrosine kinase receptor which plays a key role 

in the interaction between mesenchyme and epithelia during embryogenesis and tissue homeostasis [4]. 

The observation that MET is a proto-oncogene and that its signaling is often subverted in cancer  

has promoted deep investigations on its molecular structure and signaling proprieties which are 

reviewed herein. 

2. HGF 

The HGF gene map to 7q21.11, in the same chromosomal region of its receptor MET.  

By alternative splicing the gene give rise to several transcripts beside the full length isoform (728 aa 

corresponding to 83 kDa, increased to 92 kDa after glycosylation) [5]. The full length pre-pro-HGF 

feature a strong sequence and structural homology to plasminogen [6–8], presenting a signal peptide 

for secretion (residues 1–31), an amino-terminal heparin binding domain (residues 37–123), 4 kringle 

domains (residues 128–206, 211–288, 305–383 and 391–469) and a serine protease-like domain 

(residues 495–721) [5,9,10]. A close homolog of HGF is macrophage stimulating protein (MSP) with a 

45% identity and a similar organization with 4 kringle domains [11]. 

Two other HGF splicing isoforms have been extensively characterized consisting of the amino-terminal 

domain linked in tandem with, respectively, the first one (NK1, 24 kDa) or the first two (NK2, 36 kDa) 

kringle domains [12]. All three isoforms bind to the receptor tyrosine kinase MET and evoke signaling 

but with different affinity and potency [13]. Indeed, NK1 stimulates cell proliferation, migration and 

tubular morphogenesis, though at reduced potency and with greater heparan sulfate (HS) dependence 

compared to full-length HGF, suggesting that the primary MET binding site is contained within this 

fragment [14]. Conversely, NK2 acts as a competitive inhibitor of full length HGF promoted mitogenicity, 

but retains motogenic activity in vitro and in vivo [15,16].  

All HGF isoforms are synthesized as pre-peptides that undergo proteolytic cleavage at residue 31 to 

remove the leader sequence. Full-length pro-HGF also undergoes extensive glycosylation (N-linked at 

residue 294, 402, 566 and 653, O-linked at residue 476), which is dispensable for biological activity 

but promotes secretion [17,18]. Full length HGF requires proteolytic cleavage at the beginning of the 

serine protease like domain (between R494 and V495) to become a biologically active heterodimer 

consisting of disulfide-linked α (residues 32–494, 69 kDa after glycosylation) and β (residues 495–728, 

32–34 kDa depending on the extension of glycosylation) chains [19–21]. Several serine proteases in 

serum are capable of HGF activation in vitro, including urokinase-type plasminogen activator and 

tissue-type plasminogen activator [22], HGF activator [23,24], matriptase [25], hepsin [26] and blood 

factors XIa and XIIa [24]. Extracellular processing may play a regulatory role on HGF biological 

activity as localized activation of pro-HGF has been evidenced in injured tissues [27]. 

The amino-terminal HS binding domain and secondary binding sites in the first kringle domain [28] 

play a major role in HGF biology representing a high capacity, medium affinity binding site in many 

cell types, comprising those unresponsive to HGF stimulation [29]. Those binding sites are constituted 

by heparan and dermatan sulfates found on extracellular matrix proteins such as decorin, syndecans 

and biglycan [30,31]. HGF also specifically binds to sulfoglycolipids which may also modulate its 
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activity [32]. The abundance of HGF binding sites in extracellular matrix and basal membranes allow 

the local accumulation of HGF and its release in a spatially and temporally restricted manner through 

matrix turnover [31]. Furthermore HGF binding to cell-surface HS increase local HGF concentrations 

and putatively may allow for HGF dimerization [33] or change in conformation [30], effectively 

promoting receptor clustering and kinase activation [34,35]. Furthermore HS-modified CD44v3 

interacts with MET and increase HGF-induced signal transduction [36]. Conversely, HS interactions 

with MET are substantially weaker than those with HGF, and their contribution to the stability a 

ternary HGF-HS-MET complex may not be critical for all HGF responses [37,38]. 

Lai and Goldschneider [39] reported a naturally occurring hybrid cytokine consisting of the HGF β 

chain and IL-17 acting as a pre-pro-B cell growth-stimulating factor. Although the molecular 

mechanisms by which such cytokine is produced are still uncharacterized it represents an efficient way 

to coordinate signals through both IL-7R and MET promoting B cell development.  

3. MET 

3.1. Gene and Transcript  

The MET gene is located on 7q31 and encodes a 1390 aa protein, with an apparent molecular 

weight of 190 kDa, which is the most abundant form in a variety of tissues and cell lines. The use of an 

alternative in-frame splice junction results in a longer transcript variant with 18 additional amino acids 

in the extracellular region (1408 aa, apparent molecular weight of 170 kDa) [40]. Alternative splicing 

originates also a variant transcript of MET lacking 47 amino acids in the juxtamembrane region of the 

cytoplasmic domain present in adult mouse tissues including kidney, liver, and brain at lower levels 

than the full-length transcript. The deleted region in the cytoplasmic domain contains the S985 

phosphorylated by protein kinase C down-regulating of MET kinase activity [41].  

Truncated forms, resulting from receptor shedding, were reported in blood and in tumor derived cell 

lines, those forms are putatively involved in carcinogenesis [42–45]. Conversely, in stress conditions,  

the MET receptor is cleaved by caspases at D1002 within its juxtamembrane region, generating a  

pro-apoptotic intracellular fragment of 40 kDa [46]. 

MET is predominantly expressed in epithelial derived cells such as the epithelial layer lining the 

gastrointestinal tract, liver kidney, thyroid and in keratinocytes [47,48]. Lower levels were detected in 

other cell types such as endothelial cells [49], hematopoietic progenitors [50], B cells [51] and the 

brain [48]. Conversely, HGF is produced by several mesenchymal cells but is also contained in platelet 

granules and released during aggregation promoting wound closure and epithelial cell proliferation [5]. 

Thus the HGF-MET pair are at the base of epithelial mesenchymal interaction during embryogenesis, 

wound closure and angiogenesis [52]. 

3.2. MET Structure  

During synthesis in the endoplasmic reticulum the leader sequence (aa 1–24) is removed and MET 

is extensively co-translationally glycosylated at residue 106 [53] (further putative N-linked glycosylation 

sites: 45, 149, 202, 399, 405, 607, 635, 785, 879 and 930) to give a 190 kDa single chain precursor 

with several disulfide bonds [8,54,55]. Glycosylation and folding are a requisite for the following 
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cleavage between residue 307 and 308 to give a mature heterodimer composed of an extracellular  

50 kDa α-chain and a transmembrane 140 kDa β-chain, linked together by disulfide bridges. Cleavage 

is carried out by furin proteases but is not required for receptor activation by HGF [56], indeed the longer 

transcript variant is exposed on cell surface and phosphorylated but is not processed in an α–β 

heterodimer [40]. The extracellular α-chain contains the ligand binding pocket while the intracellular 

portion of the β-chain contains the tyrosine kinase domain and a conserved two-tyrosine 

multifunctional docking site that interacts with multiple SRC homology 2 (SH2) containing intracellular 

signal transducers (Figure 1).  

Paralleling the similarity between HGF and MSP, the closest homolog of MET is the MSP tyrosine 

kinase receptor RON, with an overall identity of 33% of amino acids, mainly at the level of the 

tyrosine kinase domain with a 64% identity [57]. Conversely the extracellular portion presents a series 

of domains with homology to the semaphorin receptor family (semaphorin domain, SEMA), to plexins 

and integrins (Plexin SEMAphorins Integrines domain, PSI) and four immunoglobulin-like folds 

shared by plexins and transcription factors (IPT domain). MET structure and key post-translational 

modification are summarized in Figure 1. 

 

Figure 1. MET structure. (a) MET structural domains. MET domains as predicted using 

SMART. SEMA, Semaphorin domain (aa 52–496); PSI, Plexin semaphorin domain  

(aa 519–562); IPT, IG like plexins transcription factor (aa 562–655); IPT, IG like plexins 

transcription factor (aa 656–739); IPT, IG like plexins transcription factor (aa 741–836); 

IPT, IG like plexins transcription factor (aa 838–934); TM, transmembrane region  

(aa 933–955); TyrKc, tyrosine kinase (aa 1078–1337); Further features specified: LS, Leader 

sequence (aa 1–24); CS, Cleavage site (aa 307–308); PY, tyrosine phosphorylation sites 

(red bars); PS/PT, serine/threonine phosphorylation sites (yellow bars); (b) Model of 

extracellular portions of MET from the SWISS-MODEL repository aa 42 to 741, Model_id 

ee0753c4f68e188bddb0c66890beee23_UP000052_4; (c) Model of intracellular portions  

of MET from the SWISS-MODEL repository, aa 1024 to 1352, Model_id 

ee0753c4f68e188bddb0c66890beee23_UP000052_3. 
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3.3. MET Activation and Signaling 

The tyrosine kinase activity of MET transduces the mitogenic and motogenic signals elicited by 

HGF [58,59]. Notably, beside HGF, the Listeria monocytogenes surface protein InlB is a MET agonist 

that mimics HGF signaling, inducing bacterial entry through exploitation of a host RTK signaling 

pathway [60]. While a crystal structure of mature α/β HGF bond to MET is still missing, several 

studies employed HGF fragments and mutational analysis to identify the contact interface. A direct 

interaction between HGF β-chain and MET SEMA domain emerges from crystallographic studies  

but is insufficient to promote receptor activation [7,8]. Conversely, the N terminal HGF region 

corresponding to NK1 induces signaling by high affinity binding to MET SEMA domain [35,38,61], 

although other authors reported an interaction of this region with MET IPT domains 3 and 4 [62]. 

Ligand binding give rise to a change of MET conformation allowing: 

(1) dimerization, which is not only promoted by tendency of self-association of the HGF ligand [33,35] 

but also of MET SEMA domains [63]; 

(2) auto-phosphorylation on the activation loop (Y1230DKEY1234Y1235) on Y1234 and Y1235 which is 

essential for biological activity and phosphorylation of substrates [64–66]; 

(3) auto-phosphorylation of the C terminal Y1349 and Y1356 tyrosine residues. Those tyrosines 

represent a docking site for downstream effectors [67,68], while in the resting state the  

non-phosphorylated tail acts as an intramolecular inhibitor of the kinase activity [69].  

The key event inducing signaling is the auto-phosphorylation of the multifunctional docking site 

made of the tandem arranged Y1349 and Y1356 in the degenerate sequence YVH/NV (Table 1).  

Those two residues mediate intermediate- to high-affinity interactions with multiple SH2 containing 

signal transducers. Indeed the mutation of the two tyrosines results in loss of biological  

function [67,68]. In particular a pivotal role is played by Y1356, as MET containing an Y1356F 

substitution is unable to transduce motogenic signals. Y1356VNV represents a consensus binding  

site for multiple effectors such as the adaptor GRB2, the p85 subunit of phosphatidyl inositol  

3-kinase (PI3K), phospholipase Cγ (PLCγ), and the tyrosine-protein phosphatase SHP-2 [68,70–72].  

Together with Y1349 this tyrosine is also required for association and phosphorylation of the adaptor 

SHC [73]. In vivo, mutation of both residues in the mouse genome caused embryonic lethality, with 

placenta, liver, and limb muscle defects, mimicking the phenotype of MET null mutants [74]. 

A fundamental amplification role in the MET signalosome assembly is played by the Y1356 

mediated recruitment of the GRB2-associated binding protein (GAB1). Indeed selective disruption of 

the GRB2 consensus in MET impairs GRB2 and GAB1 association resulting in decreased  

mitogen-activated protein kinase (MAPK) activation. This reduced level of signaling is sufficient for 

motility but not for branching morphogenesis and cell transformation [70,75]. In vivo, disrupting the 

consensus for GRB2 binding allows mice development to proceed to term without affecting placenta 

and liver, but caused a striking reduction in limb muscle coupled to a generalized deficit of secondary 

fibers [74]. Conversely, a point mutation which duplicates the GRB2 binding site, super-activates the 

Ras GTPase pathway and prevents the binding of the other intracellular transducers. This increased the 

transforming ability of the oncogene but abolished its metastatic potential [76].  
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Table 1. MET phosphorylation sites. 

SS MS aa Homo sapiens aa Mus musculus aa Rattus norvegicus 

0 6 S966-p KQIkDLGsELVRyDA S964 RKHKDLGSELVRYDA S967 RKHKDLGSELVRYDA 

0 5 Y971-p LGsELVRyDARVHtP Y969 LGSELVRYDARVHtP Y972 LGSELVRYDARVHTP 

0 6 T977-p RyDARVHtPHLDRLV T975-p RYDARVHtPHLDRLV T978 RYDARVHTPHLDRLV 

6 0 S985-p PHLDRLVsARsVsPt S983-p PHLDRLVsARSVsPT S986-p PHLDRLVsARSVSPT 

0 19 S988-p DRLVsARsVsPttEM S986 DRLVsARSVsPTTEM S989 DRLVsARSVSPTTEM 

0 32 S990-p LVsARsVsPttEMVs S988-p LVsARSVsPTTEMVs S991 LVsARSVSPTTEMVS 

0 11 T992-p sARsVsPttEMVsNE T990 sARSVsPTTEMVsNE T993 sARSVSPTTEMVSNE 

0 7 T993-p ARsVsPttEMVsNEs T991 ARSVsPTTEMVsNEs T994 ARSVSPTTEMVSNES 

0 20 S997-p sPttEMVsNEsVDyR S995-p sPTTEMVsNEsVDyR S998 SPTTEMVSNESVDYR 

1 43 S1000-p tEMVsNEsVDyRAtF S998-p TEMVsNEsVDyRATF S1001 TEMVSNESVDYRATF 

11 361 Y1003-p VsNEsVDyRAtFPED Y1001-p VsNEsVDyRATFPED Y1004 VSNESVDYRATFPED 

0 9 T1006-p EsVDyRAtFPEDQFP T1004 EsVDyRATFPEDQFP T1007 ESVDYRATFPEDQFP 

0 15 Y1026-p GsCRQVQyPLTDMSP Y1024 GACRQVQYPLTDLSP Y1027 GACRQVQYLLTDLSP 

0 31 Y1093-p RGHFGCVyHGtLLDN Y1091 RGHFGCVYHGTLLDN Y1094 RGHFGCVYHGTLLDS 

4 112 Y1230-p FGLARDMyDkEyysV Y1228-p FGLArDMyDKEyysV Y1231 FGLARDMYDKEyySV 

39 * 735 Y1234-p RDMyDkEyysVHNkt Y1232-p rDMyDKEyysVHNKt Y1235-p RDMYDKEyySVHNKT 

38 * 443 Y1235-p DMyDkEyysVHNktG Y1233-p DMyDKEyysVHNKtG Y1236-p DMYDKEyySVHNKTG 

1 177 S1236-p MyDkEyysVHNktGA S1234-p MyDKEyysVHNKtGA S1237 MYDKEyySVHNKTGA 

0 5 T1241-p yysVHNktGAKLPVK T1239-p yysVHNKtGAKLPVK T1242 yySVHNKTGAKLPVK 

6 5 Y1313-p EyCPDPLyEVMLkCW Y1311-p EYCPDALyEVMLKCW Y1314 EYCPDALYEVMLKCW 

0 6 T1343-p RISAIFstFIGEHyV T1341 RISSIFSTFIGEHyV T1344 RISSIFSTFIGEHYV 

24 * 122 Y1349-p stFIGEHyVHVNAty Y1347-p STFIGEHyVHVNATy Y1350 STFIGEHYVHVNATY 

0 40 T1355-p HyVHVNAtyVNVKCV T1353 HyVHVNATyVNVKCV T1356 HYVHVNATYVNVKCV 

22 * 120 Y1356-p yVHVNAtyVNVKCVA Y1354-p yVHVNATyVNVKCVA Y1357 YVHVNATYVNVKCVA 

7 116 Y1365-p NVKCVAPyPsLLssE Y1363-p NVKCVAPyPSLLPSQ Y1366 NVKCVAPYPSLLPSQ 

0 8 S1367-p KCVAPyPsLLssEDN S1365 KCVAPyPSLLPSQDN S1368 KCVAPYPSLLPSQDN 

Data are from PhosphoSitePlus (www.phosphosite.org) only sites with 5 or more references are reported.  

SS, site-specific studies; MS, mass spectrometry in discovery mode; * autocatalysis. 

The best-characterized MET signal transducers and their role in signaling are summarized below: 

GRB2, an adaptor which binds Y1356 inserted in a YVNV motif [72]. Through its SRC homology 

region 3 (SH3), GRB2 recruits to the receptor the Ras activator SOS, promoting the MAPK signaling 

cascade. The GRB2 SH3 also binds a GAB1 sequence rich in prolines, promoting the association to 

the receptor of GAB1, which is in turn heavily phosphorylated [77].  

GAB1, a member of IRS family of adaptors, sharing an amino-terminal pleckstrin homology (PH) 

domain that controls subcellular localization to areas of cell–cell contacts. It is recruited to MET 

through GRB2, but also contains a MET binding domain [78]. GAB1 presents multiple tyrosine 

residues that act to further recruit SH2 or phospho-tyrosine binding (PTB) domain-containing 

substrates [79]. Indeed GAB1 substantially contributes to the recruitment to MET of: 

• PI3K, which binds GAB1 Y447, Y472 and Y589 [80];  

• PLCγ, which binds GAB1 Y307, Y373, Y407 [81]; 

• NCK, an adaptor molecule, which binds GAB1 Y407;  
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• CRK-I and CRK-II, a family of adaptors [82]. CRK recruits via its first SH3 domain several 

downstream signal transducers such as C3G, an activator of the small GTPase Rap1 [83] 

resulting essential for HGF induced motility [84];  

• SHP-2, which binds GAB1 Y637. SHP-2 acts as a tyrosine phosphatase but also as an adaptor to 

sustain MAPK signaling [85] and decrease Rho promoted stress fibers [86], resulting essential 

for motility and morphogenesis [82]. 

NCK, an adaptor protein, which contains three SH3 domains followed by one SH2 domain. HGF 

promotes Nck activation and its co-precipitation with PLCγ [87,88]. NCK also regulates actin 

polymerization and remodeling by recruiting N-WASP and the WAVE complex [89], promoting 

dorsal ruffles formation [90]. 

SHC, an SH2 containing adaptor that, after stimulation of the HGF receptor, is phosphorylated on Y317, 

generating a further high affinity binding site for GRB2 and triggering the Ras pathway [73].  

PI3K, the class I phosphatidyl inositol 3-kinase associates via the p85 subunit to GAB1 but also 

bind directly to the receptor. Upon receptor recruitment to the receptor PI3K is tyrosine phosphorylated 

and activated [91–93]. PI3K activity is critical for MET-mediated chemotaxis and tubulogenesis and 

less for mitogenesis [94,95]. PI3K also coordinates survival and metabolism via phosphatidylinositol 

3,4,5-trisphosphate dependent recruitment and activation of PH containing proteins such as the kinases 

PDK and AKT. 

PLCγ, a phosphoinositide-specific phospholipase, which associates to the receptor and is tyrosine 

phosphorylated and activated. PLCγ promotes an early peak of inositol 1,4,5-trisphosphate (IP3)  

and 1,2-diacylglycerol (DG) release [92], while at later times the DG is sustained by  

phosphatidylcholine-specific PLC activity [96]. PLCγ activity leads to IP3 mediated release of Ca2+ 

from intracellular stores within seconds and induces Ca2+ oscillation peaking at 2 to 5 hours [97].  

The parallel accumulation of Ca2+ and DG sustains classical protein kinase C (PKC) [98], which are 

not required for MAPK activation but collaborates with p38 and p42/p44 MAPKs in HGF-induced 

proliferation [99]. 

HGF also activated phospholipase D (PLD) in a PKC dependent way. PLD hydrolyzes 

phosphatidylcholine to choline and phosphatidic acid (PA), which is further metabolized to DG by PA 

phosphohydrolase (PAP). The PLD-PAP pathways quantitatively contributes to DG accumulation and 

to the expressions of JUN and FOS transcription factors [100]. 

SRC, the proto-oncogene tyrosine-protein kinase SRC is the prototype of a family of closely related 

tyrosine kinases among which SRC [101] and FYN [92] bind to MET and are activated upon HGF 

stimulation. SRC contributes to GAB1 phosphorylation, and is essential for HGF induced motility and 

transformation but dispensable for proliferation [102]. SRC activation by MET promotes tyrosine 

phosphorylation of several downstream proteins not directly associated to the receptor such as: 

• FAK, the focal adhesion kinase, which lies at the crossroad between integrin and growth factor 

signaling. The FAK Y194 is also directly phosphorylated by MET contributing to activation [103]. 

Once activated FAK induces downstream GRB2 binding and MAPK signaling, critically 

controlling the cytoskeleton [104];  

• αDGK (Diacylglycerol kinase alpha), which phosphorylates DG to PA. αDGK is phosphorylated 

by SRC on Y335 and its activity is crucial for HGF-induced cell motility by promoting PA 
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production at ruffling sites. This drives local recruitment of PA binding proteins involved in 

migration such as the Rho GDP-dissociation inhibitor (RhoGDI) and atypical PKC [105–108] as 

well as integrin recycling such as the Rab11 interactor RCP [109]. 

STAT3, a transcription factor, which upon HGF treatment is recruited to MET, tyrosine 

phosphorylated and translocates in the nucleus within in hours. STAT3 directly couples MET signaling 

to the transcription program required for tubule formation in vitro, without affecting either  

HGF-induced scattering or growth [110,111].  

SHIP-1/2, the SH2 domain-containing inositol 5-phosphatases 1 and 2. SHIP-1/2 binds at Y1356 and 

positively affects lamellipodia extension and tubulogenesis [112,113]. 

Phospholipase A2 (PLA2), is not complexed to the receptor but tyrosine phosphorylated by MET 

and serine phosphorylated by MAPK. PLA2 triggers arachidonic acid release by membrane 

phospholipids and is functionally coupled with the HGF triggered activation of the COX-2 

transcription through the MAPK signaling pathway [114]. The production of arachidonic acid derived 

mediators by COX-2 amplifies MET signaling and putatively coordinates epithelial sheet responses in a 

paracrine fashion [115].  

Consistently with the pathways described, a global analysis of MET signaling in small cell lung 

cancer using phospho-arrays identified as positively regulated HGF targets: 

• MET (Y1003/Y1230/Y1234/Y1235); 

• phosphoproteins that regulate transcriptional control: STAT3 (S727) and CREB (S133); 

• cell cycle G1/S checkpoint: RB (S612), RB1 (S780); 

• cell survival and apoptosis: AKT1 (S473/T308), JNK (T183/Y185); 

• cell proliferation and differentiation: MEK1/2 (S221/S225), ERK1/2 (T185/Y187), ERK1/2 

(T202/Y204); 

• stress and inflammatory response to cytokines and growth factors: MEK3/6 (S189/S207),  

p38α (T180/Y182); JNK (T183/Y185); 

• Cytoskeletal functions: FAK (Y576/S722/S910), adducin-α (S724) and adducin-γ (S662). 

In the same study a modest inhibition of HGF-induced phosphorylation in the following 

phosphoproteins was detected: PKCα (S657), PKCα/β (T368/641), and PKCδ (T505); the anti-proliferative 

and pro-apoptotic PKR (T451) and the cell cycle checkpoint regulator CDK1 (T14/Y15) [116]. 

3.4. Biological Effects of MET Triggering 

The interest on HGF–MET signaling has been boosted by its intriguing ability to conjugate in 

epithelial cells the typical growth factor capability of promoting proliferation and survival with a very 

strong motogenic activity. The coupling of these two activities in a single “invasive growth program” 

points to a key role in both embryonic development and tumor metastatization [21]. Indeed a global 

analysis of HGF/MET dependent transcriptome indicates that targets of the MET pathway included 

genes involved in the regulation of cell motility, cytoskeletal organization, angiogenesis and oxidative 

stress responses [117]. 

Those activities are very reminiscent of epithelial to mesenchymal transition (EMT), a complex 

program that during embryogenesis enables epithelial cells to acquire mesenchymal migratory 
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phenotype, populate and establish tissues in distant body regions. EMT is also exploited by tumor cell 

for metastatic dissemination and chemoresistance [118]. Indeed HGF induces EMT master genes such 

as Snail and Slug via the early growth response protein 1 (Egr1) [119,120]. Furthermore, migration 

and repopulation of distant sites are reminiscent of a stem phenotype, indeed HGF triggering of MET 

induces a stem-like phenotype in human prostate cancer cells with a stem-like signature of gene 

expression and markers of stemness [121]. In untransformed stem cells, HGF and MET are involved in 

the exit from quiescence and pre-activation [122].  

The HGF peculiar capabilities have been characterized in typical in vitro assays, widely used to 

study HGF and MET activity and signaling, which are described below together with the main 

signaling pathways involved (Figure 2). 

 

Figure 2. HGF biological assays. (a) Scatter assay. Mouse embryonic liver derived cells 

(MLP-29, [123]) cultured on plastic in presence or absence of HGF (5 U/mL, 24 h);  

(b) Branching morphogenesis assay. MLP-29 cells cultured in collagen gels in presence or 

absence of HGF (20 U/mL, 7 days). 

3.4.1. Scattering 

Serum-starved untransformed epithelial cells (typically MDCK, Madin-Darby canine kidney 

epithelial cells [2]) in 2D cultures grow as monolayers with junctional complexes reminiscent of 

epithelial sheets. HGF stimulation induces a rapid loss of actin stress fibers, which are replaced by 

smaller peripheral actin filaments, and extensive membrane ruffling. After 4 h of HGF treatment 

become apparent a loss of junctional complexes (comprising E-cadherin, desmoplakins and the tight 
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junction protein ZO-1) and an increased tyrosine phosphorylation of β-catenin [124]. At the same time 

the cells loose the cuboidal epithelial shape and the apico-basal polarity to spread and elongate in a 

fibroblast-like morphology with leading edge-trailing edge polarity, morphologically reproducing 

EMT [71,125].  

HGF-induced cell–cell dissociation and the following dispersion are dependent on Ras and on  

the downstream activation of both MAPK and PI3K [71,126–129]. Prolonged activation of  

Ras-MAPK signaling downstream of HGF is known to promote cell migration, paxillin 

phosphorylation [127,130–132] and expression of matrix metalloproteinase (MMP) 9 via the 

transcription factors Elk-1 and FOS [133]. Concomitantly the PI3K-AKT-S6K pathway stimulates the 

expression and proteolytic activity of MMP-9 and matrix invasion [134]. HGF also causes tyrosine 

phosphorylation and redistribution of β-catenin in the hepatocytes and this effect is attributable to 

subcellular association of MET and β-catenin. HGF treatment of mouse mammary cells also leads to a 

transient decrease in GSK3 kinase activity and a parallel increase in the nuclear accumulation of  

β-catenin and activation of a LEF responsive reporter gene. Part of the EMT program evoked by HGF 

might be attributable to nuclear β-catenin and the resulting target gene expression [135,136].  

In HGF treated epithelial MDCK colonies, MET is transcytosed from the basolateral membrane on 

Rab4 endosomes, to the apical surface where MET, as well as the MET substrate and scaffold protein, 

GAB1, localizes and signals at the dorsal ruffles [137]. As dorsal ruffles collapse, MET is internalized 

into EEA1- and Rab5-positive endosomes and is targeted for degradation through delivery to an  

Hrs-positive sorting compartment (see below).  

The considerable HGF-induced reorganization of the actin cytoskeleton involved in scattering is 

mediated by the Rho family GTPases downstream to both Ras and PI3K [128]. Indeed HGF  

promotes activation of Rac1, RhoA and Cdc42 concomitant with the formation of filopodia and 

lamellipodia [138,139]. Cdc42 and Rac1 activities are required for HGF-induced cell–cell dissociation 

in MDCK cells but also for inducing ruffling and spreading by promoting activation of the  

Cdc42/Rac-regulated p21-activated kinase PAK [126,139]. The activation of Rac and Cdc42 is long 

lasting (till 24 h), consistent with a persistent polarized and migratory phenotype [140]. According 

with a starter role of Rho in ruffling [141,142] and with the observed prolonged decrease in stress 

fibers and increased spreading, a transient RhoA activation is observed in the first minutes of 

stimulation [143,144]. Indeed, inhibition of RhoA blocks HGF-induced cell scattering [128,142] and 

inhibition of the Rho-dependent kinase (ROCK) results in a reduction in HGF-induced membrane 

protrusion, reduction of dissociation and impaired motility with cell assuming a typical shape with 

elongated tails due to an impairment of tail retraction [138,139,145]. 

In connection with the actin cytoskeleton, there is a remodeling of adhesion sites, with a reduction 

in large paxillin-associated substratum adhesions particularly in areas of active membrane protrusion, 

where they are replaced by small peripheral focal contacts, which continuously disassemble or mature 

to focal adhesions during cell locomotion. Within minutes after exposure of HGF, FAK and paxillin 

become transiently phosphorylated in coincidence with the conversion to a motile phenotype [146,147]. 

HGF can also induce serine/threonine phosphorylation of paxillin most probably mediated directly by 

ERK, resulting in the recruitment and activation of FAK and subsequent enhancement of cell 

spreading and adhesion [130]. Rho and ROCK activity are required for the formation of mature focal 

adhesions by promoting cytoskeletal tension and stress fibers in response to HGF [139]. At the same 
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time HGF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their 

specific ligands in a PI3K dependent way [148,149]. 

3.4.2. Branching Morphogenesis 

When plated in 3D collagen rich reconstituted extracellular matrix, untransformed epithelial cells 

(also in this case mainly MDCK) forms hollow cysts with typical apico-basal polarity. In polarized 

epithelial cells MET asymmetrically distributes at the basolateral membranes reflecting association 

with cell to cell and cell to matrix contacts [150,151]. At the membrane MET partially colocalize with 

caveolin in detergent resistant membranes and exploit caveolin for signal amplification [152]. 

Upon HGF treatment, cysts undergo growth and extend in the matrix forming tubular structures 

with interconnected lumens, in a process reminiscent of the epithelial organogenic program. Early in 

tubule development, MDCK cells exhibit many features characteristic of EMT forming long, invasive 

cytoplasmic extensions. Extension formation requires PI3K activity, whereas ROCK controls their 

number and length [153].  

Extensions next proliferate and arrange in rows from one to three cells long, showing elongated 

cells which invade the matrix. While cells in the monolayer divide with their spindle axis parallel to 

the monolayer, HGF dislodge the spindle axis so that one of the daughter cells can apparently leave the 

monolayer to initiate a chain [153]. Those cells loose apico-basal polarity and gain leading edge-trailing 

edge polarity but maintain some intercellular adhesion representing a partial and transient EMT. 

Indeed cells in chains redifferentiate [154], loose their mesenchymal qualities and form multilayered 

cords by expanding regions of cell-cell contact and reestablishing a cuboidal shape. Nascent lumens 

and incomplete apical and basolateral domains appear. Eventually, cords mature into tubules through 

formation of a single continuous lumen and coordinated apico-basal polarization of individual cells.  

Activation of ERK is necessary and sufficient for the initial step, during which cells depolarize  

and migrate, while becomes dispensable for the latter stage, during which cells repolarize and 

differentiate [155]. Conversely MMPs are essential for the late re-differentiation stage of  

tubulogenesis [155]. MMPs represent a class of HGF effectors positively regulated by HGF and 

involved in tubulogenesis and scattering. Indeed in glioblastoma cells and endothelial cells prolonged 

induction of ERK signaling by HGF promotes expression and secretion of MMP-2 and upregulation of 

MT1-MMP, a cell-surface activator of proMMP-2 [156,157]. Similarly in keratinocytes HGF induced 

scattering but not proliferation requires MMP-9 induction due to sustained activation of ERK  

kinases [158].  

An emerging player in tubulogenesis is ARF6 which is necessary and sufficient to initiate tubule 

extension by both regulating the subcellular distribution of Rac1 to tubule extensions but also by 

inducing ERK mediated expression of the receptor for urokinase type plasminogen activator [159].  

3.4.3. Balance between Proliferation and Apoptosis 

The invasive growth program induced by HGF critically requires two other key features to succeed: 

increased resistance to apoptosis and enhanced proliferation.  

The increased resistance to apoptosis is a typical feature of EMT and allows the invading epithelial 

cells to survive without the physiological survival signals provided by cell–cell and cell–matrix 
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contacts, avoiding death for anoikia. HGF triggering of MET protects cells from apoptosis by using 

mainly the PI3K/Akt and, to a lesser extent, the MAPK pathways [160,161]. The PI3K-AKT pathway 

triggers Bad phosphorylation, thereby inactivating this pro-apoptotic protein, while simultaneously 

inducing expression of anti-apoptotic proteins such as Bcl-xL and Mcl-1 [162,163]. Furthermore 

PI3K/Akt, via the mTOR kinase, promote the translation and nuclear import of Mdm2, which inhibits 

TP53 activity both in vitro and in vivo [164]. MET induced resistance to apoptosis also allows tumor 

cells to resist to conditions that they face during tumor progression, i.e., nutrient deprivation or 

substrate detachment as well as chemotherapeutic treatment. HGF-driven survival of carcinoma 

requires the engagement of the PI3K/Akt/mTOR/S6K and ERK/MAPK transduction pathways, 

cooperatively preventing stress induced p38 activity [165]. 

Proliferation is also a typical response of many cell types to HGF triggering with an early peak of 

JUN and FOS transcription and activation (0.5–3 h) followed by Myc expression (6–8 h) and increased 

expression of cyclins A, B, D, and E (12 h) [166,167]. Thus, HGF promotes both increased 

transcription of AP-1 (FOS/JUN complex) and Myc early response genes [87] but also FOS mRNA 

translation via the PI3K/mTOR/4E-BP1 [168]. Nuclear factor kappa-B (NF-κB) is a multivalent 

transcription factor, which potentially controls the apoptosis/proliferation balance depending on the 

cellular context. HGF promotes NF-κB activation via both the PI3K/AKT and the Ras/MAPK 

pathway, mediating a survival signal [169] but also proliferation and morphogenesis [170].  

Surprisingly HGF is a potent mitogen for a variety of cell types, but it is also known as an  

anti-mitogenic factor for several types of tumor cell lines. In HepG2 the high intensity ERK signal 

causes cell cycle arrest at G1 increasing the Cdk inhibitor p16-INK4a [171] and p21 [172],  

which mediates growth inhibition in the presence of HGF.  

3.5. Negative Regulation of MET Signaling 

As tyrosine phosphorylation is the key event in MET signaling, several researchers have worked to 

identify the tyrosine phosphatases (PTP) terminating receptor activation. PTP is a large family of more 

than 100 genes in humans comprising both soluble enzymes reversibly associating to protein  

targets and trans-membrane enzymes regulated by both extracellular and intracellular cues.  

MET phosphorylated in the activation loop is a substrate for cytosolic phosphatases such as PTP-1B 

and T-cell phosphatase [173]. Also PTP-S binds specifically to the juxtamembrane region of the 

activated receptor [174]. MET is similarly targeted by receptor-type protein tyrosine phosphatases such as: 

(1) RPTP-β, which dephosphorylates MET Y1356 and impairs MET tumorigenic activity [175,176];  

(2) LAR, which counteracts MET auto-phosphorylation, as well as downstream MAPK and PI3K activation 

mediating contact inhibition [177,178]; (3) CD148, which dephosphorylates the tyrosines recruiting 

downstream effectors as well as the associated signal transducers GAB1 and p120 catenin [179]. 

An independent way of regulating MET activity resides in the juxtamembrane region which 

contains a cluster of serine/threonine phosphorylation sites (Figure 1 and Table 1). The best 

characterized of these sites is S985 which is phosphorylated by PKC-δ and -ε and dephosphorylated  

by protein phosphatase 2A [180]. S985 phosphorylation event inhibits the ligand-induced tyrosine  

auto-phosphorylation of the receptor and the receptor tyrosine kinase activity on exogenous  
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substrates [181]. The relevance of such region is underscored by the existence of a splicing isoform of 

MET without such region and endowed with enhanced transforming ability [41,182]. 

MET and its associated proteins undergo ligand induced internalization that allows efficient 

signaling from endosomes but also couple with degradation of both receptor and ligand [183].  

Indeed, upon ligand binding, the MET-HGF complex is rapidly internalized and MET become 

polyubiquitinated by Cbl. Cbl is an E3 ubiquitin ligase that associate in the juxtamembrane region of 

MET upon Y1003 phosphorylation and is phosphorylated upon HGF stimulation. A complex comprising 

Cbl, the adaptor CIN85 and endophilin promotes the import of MET in multivescicolar bodies trough 

clatrin coated pits. In this process Cbl is not a mere negative regulator of MET as it also acts as a 

scaffold for effectors recruitment in endosomes [184]. From the multivescicular body the receptor/ligand 

complex eventually recycles to the cell surface or is degraded in the lysosomes [185,186]. To the control 

of ubiquitinated-MET recycling cooperates Hrs, an early endosomal protein that is rapidly  

tyrosine-phosphorylated in cells stimulated with growth factors. Hrs couples with Stam to constitute 

the ESCRT complex that controls the initial selection of ubiquitinated proteins into clathrin-coated 

microdomains of early endosomes. Hrs also promotes receptor traffic toward multivesicular 

bodies/lysosomes by interacting with sorting nexin1 [187,188]. Conversely, proteasome activity is 

required for MET internalization and only indirectly for its degradation [189]. 

4. Signaling Integration by Met Multi-Receptor Complexes 

MET has shown the remarkable property to associate with other signaling molecules to form 

complexes with several other receptors, effectively working as platforms for signal integration  

and amplification. 

MET selectively associates with α6β4 integrin at the plasma membrane contributing to promote 

invasive growth, independently from laminin binding. CD151, a transmembrane protein of the 

tetraspanin family is a critical components of the complexes between MET and β4 integrin [190]. 

Following MET activation, α6β4 is tyrosine phosphorylated and combines with SHC, PI3K and SRC, 

generating an additional signaling platform that potentiates HGF-triggered activation of Ras- and 

PI3K-dependent pathways [191], promoting invasion [192] and anchorage independent growth [193]. 

This association between MET and integrins seems not to be an isolated instance as fibronectin 

binding to α5β1 integrin leads to a direct association of α5-integrin with MET, activating it in a HGF 

independent manner and promoting activation of SRC and FAK [194].  

Semaphorins are cell surface and soluble signals that control directed migration and axonal 

guidance by binding to plexins receptors. The SEMA domain in the extracellular part of MET has 

strong homology to both plexins and semaphorins [195], suggesting a possible interaction between the 

two receptor families. Indeed Plexin B1 and MET associate in a complex and activation of Plexin B1 

by SEMA 4D stimulates the tyrosine kinase activity of METMET, resulting in tyrosine phosphorylation 

of both receptors and downstream signaling [196–198]. Similarly to Plexins also Neuropilins acts as 

receptors for semaphorins and Neuropilin-1 associates with MET promoting its HGF induced 

activation and cell invasiveness [199]. Furthermore both Neuropilin-1 and Neuropilin-2 bind HGF, 

potentially acting as MET co-receptors [200]. 
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A CD44 isoform containing variant exon v6 sequences (CD44v6) is strictly required for MET 

activation by HGF/SF, independently from HS modification of CD44. Autophosphorylation of MET 

requires the formation of a complex formed by HGF, MET and CD44v6. In this complex CD44v6 

cytoplasmic tail presents binding motif for ezrin, radixin and moesin (ERM) proteins [201], which are 

phosphorylated by MET [202]. In this complex association of ERM proteins with CD44v6 and their 

link to the actin cytoskeleton is absolutely required to mediate the HGF-dependent activation of Ras, 

indicating a scaffolding function of cytoskeleton in HGF signaling [203]. CD44v6 mediated ERM 

binding to MET also participates to HGF induced receptor internalization [204]. Of note, CD44v6 is a 

marker of cancer stem cells, functionally cooperating with MET to promote PI3K dependent metastatic 

growth [205]. 

Those studies are just examples of how MET cooperates with a variety of other receptor for 

signaling integration. Of particular relevance for metabolism is the cooperation with insulin signaling. 

Indeed, in hepatic cells, MET form a complex with insulin receptor which respond to HGF triggering 

with trans-phosphorylation of the insulin receptor, recruitment of IRS1/2, stimulation of hepatic 

glucose uptake and suppression of hepatic glucose output [206]. MET also promotes PI3K dependent 

glucose uptake and glucose utilization from adipocytes [207], skeletal muscle cells [208] and 

participates to glucose homeostasis in vivo [206]. This is not an isolated example as MET can also be 

trans-activated and co-immunoprecipitated by other growth factor receptors such as RON [209,210], 

EGFR [211], HER2, HER3, and RET [212]. Hetrodimerization between growth factor receptors offers 

a platform to support signal integration, however in few cases the molecular bases of clustering and 

their relevance for signaling were not fully understood. 

5. Conclusions 

Thirty years of studies have explored in depth the signaling pathways promoted by the two simple 

tyrosines in MET cytoplasmic tail. However, the multiple intersections of those pathways as well as 

the interactions of MET with other transmembrane transducers point to the necessity of switching the 

approach from a signaling pathway oriented view to a network approach. In such framework a 

quantitative evaluation of signaling coupled to mathematical modeling could contribute to clarify how 

the cells integrates MET signaling in its biological context.  

Indeed the fascinating question that drove the HGF-MET research still persists: How does a single 

factor—single receptor couple exerts a pleiotropy of biological effects in a context dependent manner? 
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Abbreviations  

Short name (used in the manuscript) Full name (Uniprot) 

HGF Hepatocyte growth factor 
MET Hepatocyte growth factor receptor 
MSP Hepatocyte growth factor-like protein 
RON Macrophage-stimulating protein receptor 
CD44v3 CD44 antigen including variant exon 3 
CD44v6 CD44 antigen including variant exon 6 
InlB Internalin B 
GRB2 growth factor receptor-bound protein 2 
PLCγ 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma 
PI3K Phosphatidylinositol 4,5-bisphosphate 3-kinase 
SHP-2 tyrosine-protein phosphatase non-receptor type 11 
SHC SHC-transforming protein  
GAB1 GRB2-associated binding protein 
MAPK mitogen-activated protein kinase 
SOS Son of sevenless homolog 
NCK cytoplasmic protein NCK 
CRK-I and CRK-II adapter molecule crk 
C3G Rap guanine nucleotide exchange factor 1 
N-WASP Neural Wiskott-Aldrich syndrome protein 
PKD Serine/threonine-protein kinase D 
AKT RAC-alpha serine/threonine-protein kinase 
PKC Protein kinase C 
PLD Phospholipase D 
PAP Phosphatidic acid phosphohydrolase 
JUN Transcription factor AP-1 
FOS Proto-oncogene c-Fos 
SRC proto-oncogene tyrosine-protein kinase SRC 
FYN Tyrosine-protein kinase Fyn 
FAK Focal adhesion kinase 
αDGK Diacylglycerol kinase alpha 
RhoGDI Rho GDP-dissociation inhibitor 
RCP Rab11 family-interacting protein 1 
STAT3 Signal transducer and activator of transcription 3 
SHIP-1 SH2 domain-containing inositol 5-phosphatases 1  
SHIP-2 SH2 domain-containing inositol 5-phosphatases 2 
PLA2 Phospholipase A2 
COX-2 Prostaglandin G/H synthase 2 
CREB Cyclic AMP-responsive element-binding protein 
RB Retinoblastoma-associated protein 
JNK Mitogen-activated protein kinase 8 
MEK-1 Dual specificity mitogen-activated protein kinase kinase 1 
MEK-2 Dual specificity mitogen-activated protein kinase kinase 2 
ERK1 Mitogen-activated protein kinase 3 
ERK2 Mitogen-activated protein kinase 1 
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MEK3 Dual specificity mitogen-activated protein kinase kinase 3 
MEK6 Dual specificity mitogen-activated protein kinase kinase 6 
PKR Protein kinase R 
p38α Mitogen-activated protein kinase 14 
CDK1 Cyclin-dependent kinase 1 
Snail Zinc finger protein SNAI1 
Slug Zinc finger protein SNAI2 
Egr1 early growth response protein 1 
Elk-1 ETS domain-containing protein Elk-1 
S6K Ribosomal protein S6 kinase beta 
GSK3 Glycogen synthase kinase-3 
Lef Lymphoid enhancer-binding factor 
PAK Serine/threonine-protein kinase PAK 1 
ROCK Rho-associated protein kinase 
MT1-MMP Matrix metalloproteinase-14 
BAD Bcl2-associated agonist of cell death 
Bcl-xL Bcl-2-like protein 1 (long isoform) 
Mcl-1 Induced myeloid leukemia cell differentiation protein Mcl-1 
mTOR Serine/threonine-protein kinase mTOR 
Mdm2 E3 ubiquitin-protein ligase Mdm2 
TP53 Cellular tumor antigen p53 
MYC Myc proto-oncogene protein 
4E-BP1 Eukaryotic translation initiation factor 4E-binding protein 1 
p16-INK4a Cyclin-dependent kinase inhibitor 2A 
p21 Cyclin-dependent kinase inhibitor 1 
PTP-1B Tyrosine-protein phosphatase non-receptor type 1 
RPTP-β Receptor-type tyrosine-protein phosphatase B 
LAR Receptor-type tyrosine-protein phosphatase F 
CD148 Receptor-type tyrosine-protein phosphatase eta 
Cbl E3 ubiquitin-protein ligase CBL 
CIN85 SH3 domain-containing kinase-binding protein 1 
Hrs Hepatocyte growth factor-regulated tyrosine kinase substrate 
Stam Signal transducing adapter molecule 
IRS1 Insulin receptor substrate 1 
IRS2 Insulin receptor substrate 2 
EGFR Epidermal growth factor receptor 
HER2 Receptor tyrosine-protein kinase erbB-2 
HER3 Receptor tyrosine-protein kinase erbB-3 
RET Proto-oncogene tyrosine-protein kinase receptor Ret 
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