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Fast computation of triangular Shepard interpolants
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Abstract

In this paper we present an efficient algorithm for the computation of triangular Shepard interpolation
method. More precisely, it is well known that the triangular Shepard method reaches an approximation
order better than the Shepard one [1], but it needs to identify useful general triangulation of the node set.
Here we propose a searching technique used to detect and select the nearest neighbor points in the interpo-
lation scheme [2, 3]. It consists in determining the closest points belonging to the different neighborhoods
and subsequently applies to the triangulation-based approach. Numerical experiments and some geological
applications show efficiency and accuracy of the interpolation procedure.

Keywords: scattered data interpolation, triangular Shepard method, fast computation, approximation
algorithms
2010 MSC: 65D05, 65D15, 41A05

1. Introduction

The Shepard method [4] is a well known interpolation scheme to approximate a target function f : R2 →
R, when a finite set of its values Fn = {fj = f(xj), j = 1, . . . , n} is known on a set Xn = {x1, . . . , xn} of
data sites or nodes which do not obey any regularity between their relative locations. A set of such data
is called scattered. Such kind of situations occurs when dealing with real world problems, as for example
the reconstruction of geological surfaces and many other ones, see for example [5, 6, 7, 8] and the references
therein. The Shepard method consists in a linear combination of the functional values fj , with non negative
coefficients (or weight functions or basis functions) which are inverse distances to the scattered points and
form a partition of unity. It is very easy to implement and does not require the solution of any linear system,
as opposed to what happens with other well known scattered data interpolation schemes, such as radial basis
functions [9, 5, 6, 10]. As a consequence, it is very suited in the interpolation of large sets of scattered data
due to its computational efficiency. However, a drawback of the Shepard method is its low polynomial
precision (only constant) that badly affects the reconstructed surface. To overcome this drawback several
variants of the Shepard method have been introduced [11, 12, 13, 14, 15, 8, 16] by combining Shepard basis
functions with local polynomial interpolants with higher polynomial reproduction properties, even by using
supplementary derivative data, if given. The triangular Shepard method [17] combines triangle-based weight
functions with local linear interpolants and reaches linear precision without using derivative data. Similarly
to the Shepard basis functions, the triangle-based basis functions are the product of the inverse distances
from the vertices of triangles and form a partition of unity. However, for achieving a good accuracy of
approximation, it needs to identify useful general triangulation of the node set [1].

A crucial point in any local interpolation scheme is to have an efficient organization of the scattered
data. To this aim, in literature, techniques known as kd-trees, which are not implemented for a specific
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interpolation method, have already been designed [18, 5]. In this paper, we propose the use of a versatile
partitioning structure, called the block-based partitioning structure, and the related searching procedure,
given in [2], which are suitably adapted to triangular Shepard interpolation. Such routine enables to deal with
a very large number of data, with a low computational complexity. Our procedure consists in partitioning
the domain with several non overlapping small square blocks. By recursive calls to a sorting routine, the
scattered data points are thus distributed among the different blocks. After storing the data in such blocks,
an optimized searching technique is applied to select the nearest neighbor points, thus enabling us to find a
suitable triangulation.

The paper is organized as follows. In Section 2 we consider interpolation using the triangular Shepard
method and the selection of the compact triangulation. Section 3 is devoted to present the searching
technique used to detect and select the nearest neighbor points in our interpolation scheme. In Section 4
the interpolation algorithm and the analysis of the computational cost are presented. Section 5 shows some
numerical results obtained by using test functions. In Section 6 we provide a few numerical experiments
involving geological applications. Finally, Section 7 deals with conclusions and future work.

2. Interpolation on compact triangulations

2.1. Triangular Shepard method

A variant of the Shepard method, called the triangular Shepard method [17], was introduced by Little
in 1983 as a convex combination of the linear interpolants on a set of triangles. More in detail, let Xn =
{x1, . . . , xn} be a set of nodes or data points of R2 with associated the set Fn = {f1, . . . , fn} of function or
data values, and let Tm = {t1, . . . , tm} be a triangulation of the node set Xn. With the term triangulation

here we mean a set of triangles {tj}j=1,...,m with vertices {xj1 , xj2 , xj3} which are nodes of Xn such that
each point of Xn is the vertex of at least a triangle. Little did not give any indication on the choice of
the triangulation Tm. On the other hand, as later specified [1], the triangulation can satisfy particular
conditions, for instance it can form a Delaunay triangulation of Xn or, more in general, can constitute a so
called compact triangulation, that is the triangles may overlap or be disjoint. The last condition, being less
restrictive than the first one, implies that the triangulation Tm is composed by a significant smaller number
of triangles and allows the method to be meshless. The triangular Shepard method is defined by

Kµ[f ](x) =

m
∑

j=1

Bµ,j(x)Lj [f ](x), µ > 0, (1)

where
Lj [f ](x) = fj1λj,j1 + fj2λj,j2 + fj3λj,j3

is the linear interpolant on the vertices of tj , j = 1, . . . ,m, expressed in barycentric coordinate related to
the triangle tj and the weight functions Bµ,j(x) are defined by

Bµ,j(x) =

3
∏

ℓ=1

1

‖x− xjℓ‖µ

m
∑

k=1

3
∏

ℓ=1

1

‖x− xkℓ
‖µ

, j = 1, . . . ,m. (2)

The triangular Shepard operator (1) exceeds the Shepard method both in polynomial precision and esthetic
behavior. In fact, as the Shepard method it interpolates on all data (xj , fj) since

Bµ,j(xi) = 0, for each xi /∈ {xj1 , xj2 , xj3},

and
∑

j∈Ji

Bµ,j(xi) = 1,
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where Ji =
{

k ∈ {1, . . . ,m} : i ∈ {k1, k2, k3}
}

is the set of indices of all triangles which have xi as a vertex.
In addition, while the Shepard method reproduces only constant functions, the triangular Shepard method
reproduces polynomials up to the degree 1, since the polynomial operator Lj [·](x) satisfies this property and
the basis functions (2) are non negative and form a partition of unity

m
∑

j=1

Bµ,j(x) = 1.

The better polynomial precision of the triangular Shepard method reflects on a higher order of approxima-
tion. As shown in [1] the triangular Shepard method reaches quadratic approximation order (for µ > 4/3)
while the Shepard method achieves at most linear approximation order [19].

2.2. Selection of the compact triangulation

The theoretical study of the approximation order given in [1] shows that the accuracy of approximation
of the operator Kµ[f ](x) depends on the distribution of nodes and on the distribution and form of triangles.
More in detail, we denote by Ω a compact convex domain which contains Xn and by C1,1(Ω) the class of
differentiable functions f : Ω → R whose partial derivatives are Lipschitz-continuous of order 1, equipped
with the seminorm

‖f‖
1,1 = sup

{∣

∣

∂f
∂x1−α∂yα (u)− ∂f

∂x1−α∂yα (v)
∣

∣

‖u− v‖ : u, v ∈ Ω, u 6= v, α ∈ {0, 1}
}

.

Moreover, we denote by
Rr(y) = {x ∈ R

2 : ‖x− y‖∞ ≤ r}
the axis-aligned closed square with centre y and edge length 2r and by V (t) the set of vertices of a triangle
t ∈ Tm. A small value of

h′ = inf{r > 0 : ∀x ∈ Ω ∃t ∈ Tm : Rr(x) ∩ V (t) 6= ∅}
corresponds to a rather uniform triangles distribution. However, it does not exclude the presence of large
triangles, which cannot occur if the value

h′′ = inf{r > 0 : ∀t ∈ Tm ∃x ∈ Ω : t ⊂ Rr(x)},
is also small. In fact, each triangle is contained in a square with edge length 2h, where

h = max{h′, h′′}.
The bound for the approximation error

‖f(x)−Kµ[f ](x)‖ ≤ CM‖f‖
1,1h

2, x ∈ Ω,

involves other two constants, namely M and C. The constant M is the maximum number of triangles with
at least one vertex in some square with edge length 2h. If there are not clusters of triangles, M is rather
small. The constant C is related to the parameter µ and both to the number and the shape of triangles.
By denoting with hj and Aj the maximum edge length and twice the area of the triangle tj , respectively,
we get

C =
√
3
3mµ

max
j=1,...,m

{

h2

j

Aj

}

.

Useful compact triangulations of the node set Xn are identified by taking into account previously specified
remarks. Clearly, we can act on h′ and on M , eventually by discarding some nodes of the given node
set Xn, and we can avoid duplicate triangles making m about one-third the corresponding value in the
case of Delaunay triangulation. Moreover, the control of the shape of the triangles allows to reduce the
approximation error. In Figure 1 we display a set of uniformly random 80 Halton points [20] in the square
domain R = [0, 1] × [0, 1] and a compact triangulation with vertices the given points. In Figure 2 we show
the plot of a basis function for a non overlapping triangle (top) and for an overlapping triangle (bottom).
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Figure 1: Uniformly random 80 Halton points in R = [0, 1] × [0, 1] (left) and a compact triangulation with vertices the given
points (right).
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Figure 2: The basis function Bµ,j for a non overlapping triangle (top) and for an overlapping triangle (bottom).

3. Localizing, partitioning and searching techniques

This section is devoted to the presentation of the searching technique used to detect and select the
nearest neighbor points in our 2D interpolation scheme [2] (for the 3D scheme see also [21]). This procedure
has already been applied in [3] and further extended in [22]. Such a technique is based on the construction
of a block-based partitioning structure, which allows to efficiently find all the points belonging to a given
neighborhood. Although the searching procedure and the related structure can be applied to generic bivariate
domains, for our purpose we describe this localizing technique focusing on the unit square, i.e. on a domain
R = [0, 1]× [0, 1] ⊆ R

2.
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3.1. Localizing technique

First, we define a circular neighborhood of radius

δ =
2

d
,

with

d =

⌊√
n

2

⌋

, (3)

where each neighborhood is centred at a data point belonging to R. Note that the larger (smaller) the value
of d is, the finer (coarser) the structure becomes. The value (3) is set extending the definition given in [2].

3.2. Partitioning structure

In order to determine the closest points belonging to the different neighborhoods and consequently apply
our triangulation-based approach, we propose a new structure that partitions the domain in square blocks.
Such technique results in an effective searching procedure which is quite efficient from a computational
viewpoint. For this scope we partition the domain R with b2 square blocks, b being the number of blocks
along one side of the unit square defined as

b =

⌈

1

δ

⌉

.

It follows that the side of each square block turns out to be equal to the neighborhood radius. Hence, such
a choice (seemingly trivial) allows us to examine in the searching process only a small number of blocks,
significantly reducing the computational effort compared to standard or more advanced searching procedures
such kd-trees [18, 10]. In fact, our searching routine is performed in a constant time, independently from
the initial number of nodes considered. Moreover, in the partitioning technique we number the blocks of
square shape from 1 to b2, following the lexicographic order “bottom to top, left to right”. By repeatedly
using a quicksort routine, we can thus split by the block-based partitioning structure the set Xn in the b2

square blocks, as to easily be able to construct the subsets Xnk
, k = 1, . . . , b2, where Xnk

contains the
points belonging to nine blocks: the k-th block and its eight neighboring blocks, see Figure 3 (top). In such
framework, we are able to get an optimal procedure to find the interpolation nodes closest to each of points.

3.3. Searching procedure

After organizing the nodes in square blocks, in order to compute local fits, i.e. interpolants on each
neighborhood, we need to answer the following queries, known respectively as containing query and range

search problems:

• given a node belonging to R, return the k-th square block containing the node;

• given a set of nodes that belong toXn and a neighborhood, find all points located in that neighborhood.

In so doing, we remark that square blocks are generated by the intersection of two families of orthogonal
strips. The former numbered from 1 to b are parallel to the x2-axis, while the latter again numbered from 1
to b are parallel to the x1-axis. Note that from these two families of crossed strips we get the partitioning
structure described in the previous subsection.

Given a node in the neighborhood, the block-based containing query provides the index of the block
containing such point. Therefore, fixed a neighborhood node, if km is the index of the strip parallel to the
subspace of dimension one generated by xp, p = 1, 2 and p 6= m, containing the m-th coordinate of the
neighborhood node, then the index of the k-th block containing the point is given by

k = (k1 − 1) b+ k2.

As an example, the neighborhood node plotted in Figure 3 (bottom) belongs to the k-th block, with k =
5b+ 5; in fact, here k1 = 6, k2 = 5 and b = 10.
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Figure 3: Example of 2D block-based partitioning structure with nodes (blue): on top the partitioning structure with the k-th
block and its eight neighboring blocks (red); on bottom the k-th block (green, with k = 55) and a neighborhood associated
with a node denoted by ⋆ (orange) belonging to the k-th block.

After answering the first query, for each neighborhood given the searching routine allows to determine
all nodes belonging to the neighborhoods and, among them, we take a fixed number of points consisting of
the nw nearest neighbors. Specifically, supposing that the node neighborhood belongs to the k-th block, the
block-based searching procedure searches for all data lying in the k-th block and in its eight neighboring
blocks, see Figure 3 (bottom). Additionally, when a block lies on the boundary of the domain R, in the
searching process the partitioning structure based on square blocks enables to further reduce the number of
neighboring blocks to be examined.

4. Interpolation algorithm and computational complexity

In this section we describe in a pseudo-code the interpolation algorithm (see Table 1), also analyzing
the computational complexity of our partitioning and searching procedures. So we first consider complexity
required to build the partitioning structure, and then we focus on the searching procedure.

The localization phase presented in Subsection 3.1 is a sort of data pre-processing which is not involved
in complexity cost. So we address our attention on the partitioning structure used to organize the n nodes
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INPUTS: n, number of data; Xn = {xi, i = 1, . . . , n}, set of data points; Fn = {fi, i = 1, . . . , n}, set of
data values; ne, number of evaluation points; nw, localizing parameter.

OUTPUTS: Ane
= {Kµ[f ](zi), i = 1, . . . , ne}, set of approximated values.

Step 1: Generate a set Zne
= {z1, . . . , zne

} ⊆ R of evaluation points.

Step 2: For each point xi, i = 1, . . . , n, construct a neighborhood of radius

δ =
2

d
, with d =

⌊√
n

2

⌋

. (4)

Step 3: Compute the number b of blocks defined as

b =

⌈

1

δ

⌉

.

Step 4: Build the block-based data structure for the set Xn of data points.

Step 5: For each neighborhood or node (i.e., the neighborhood centre), solve the containing query and
the range search problems to find all data points Xnk

, k = 1, . . . , b2, belonging to the nine nearby blocks.

Step 6: For each node xi ∈ Xn, fix its nw nearest neighbors N (xi) ⊂ Xn. Among the

nw (nw − 1)

2

triangles with a vertex in xi and other two vertices in N (xi), choose the one which locally reduces the
bound for the error of the local linear interpolant

2‖x− xj1‖2 + 4hj

h2

j

Aj

‖x− xj1‖.

Step 7: Compute the local basis function Bµ,j(z), j = 1, . . . ,m, at each evaluation point z ∈ Zne
.

Step 8: Compute the linear interpolants Lj [f ](z), j = 1, . . . ,m, at each evaluation point z ∈ Zne
.

Step 9: Apply the triangular Shepard method (1) and evaluate the surface at the evaluation points
z ∈ Zne

.

Table 1: Algorithm performing the triangular Shepard method (1) using the block-based partitioning structure and the related
searching procedure.

in blocks. We remark that in the assessment of the total computational cost we should also consider the
cost associated with the storing of the evaluation points, even if they are not involved in the partitioning
and searching phases. For this reason, here we essentially refer to the interpolation nodes.

As described in Subsection 3.2, the partitioning structure makes use of a quicksort routine which requires
O(n log n) time complexity and O(log n) space, where n is the number of elements to be sorted. Specifically
the block data structure is based on recursive calls to the Matlab sortrows.m routine. Hence, in order to
analyze the complexity of our procedure, we denote by ñk the number of nodes belonging to the k-th strip.
So the computational cost is given by

O
(

n log n+
b

∑

k=1

ñk log ñk

)

. (5)
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Denoting by n/b the average number of points lying in the b strips, from (5) we can write

O
(

n log n+ n log
n

b

)

≈ O
(

n log n+ n log(nδ)

)

.

From definition of the neighborhood radius in (4), we get the estimate

O
(

3

2
n log n+ 2n

)

.

Additionally, in the block-based partitioning scheme a sorting routine on indices is used to order them. Such
procedure is applied with an optimized routine for integers requiring O(n) time complexity.

To analyze the complexity of the searching procedure, we denote by nk the number of points belonging
to the nine neighboring blocks. Then, since for each neighborhood a quicksort procedure is used to order
distances, the routine requires O(nk log nk) time complexity. Observing that the nodes in nine blocks are
about 9n/b2 and considering the definitions of b and δ, the complexity can be estimated by

O
(

9n

b2
log

9n

b2

)

≈ O(1).

The latter estimate follows from the fact that we built a partitioning structure strictly related to the size of
the neighborhood. For this reason, the number of points is about constant, independently from the initial
value n. Thus using a number of blocks depending both on the number and the size of such neighborhoods,
the searching procedure involves a constant number of points, i.e. those belonging to nine blocks.

5. Numerical experiments

In this section we report the performance of our interpolation algorithm which is measured through
numerical experiments. All these tests have been carried out on a laptop with an Intel(R) Core i7 5500U
CPU 2.40GHz processor and 8.00GB RAM.

In the following we focus on a wide series of experiments, which consist in solving very large interpolation
problems via the triangular Shepard interpolant (1). This analysis is thus carried out considering two
different distributions of scattered data points contained in the unit square R = [0, 1]2 ⊂ R

2, with the
number n of interpolation points varying from 10 000 to 80 000. Specifically, as interpolation nodes we take
some sets of uniformly random Halton points generated through the Matlab program haltonseq.m [5], and
pseudo-random points obtained by using the rand Matlab command, see Figure 4, left to right. Moreover,
the computation of interpolation errors is done on a grid of ne = 51 × 51 evaluation points and using as
localizing parameter nw = 10.

In the various tests we show the performance of our interpolation scheme taking the data values by two
bivariate test functions [23]. The former is the well known Franke’s function

f1(x1, x2) = 0.75 exp

[

− (9x1 − 2)2 + (9x2 − 2)2

4

]

+ 0.50 exp

[

− (9x1 − 7)
2
+ (9x2 − 3)

2

4

]

+ 0.75 exp

[

− (9x1 + 1)2

49
− (9x2 + 1)

4

]

− 0.20 exp
[

−(9x1 − 4)2 − (9x2 − 7)2
]

,

while the latter is given by

f2(x1, x2) = 2 cos(10x1) sin(10x2) + sin(10x1x2).

Notice that these functions are commonly used in approximation processes to test and validate new methods
and algorithms, then making them usable in the field of applications.

8



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x
2

Figure 4: Example of uniformly random Halton points (left) and pseudo-random Matlab points (right).

In order to investigate the accuracy of our method, we compute the Maximum Absolute Error (MAE)
and the Root Mean Square Error (RMSE), whose formulas are

MAE = max
1≤i≤ne

ei, RMSE =

√

√

√

√

1

ne

ne
∑

i=1

ei2,

where
ei = |f(zi)−K2[f ](zi)|, (6)

zi ∈ Zne
being an evaluation point in R.

In Tables 2–5 we show MAEs and RMSEs that decrease as the number n of nodes increases. However,
comparing the errors obtained with the two data distributions, we observe a better accuracy achieved when
we use Halton points. This is essentially due to greater uniformity of Halton nodes than pseudo-random
Matlab points, as Figure 4 highlights. Analyzing the error behavior with the test functions f1 and f2,
we stress similar results in terms of precision of the interpolation scheme, even if the oscillatory nature of
function f2 leads to a slightly lessen accuracy. As for, instead, efficiency of our algorithm we report the
CPU times computed in seconds, comparing the performance of our fast procedure based on the block-based
searching technique (tnew) with a standard implementation where one computes all the distances between
the scattered points (told). From this study we point out the great improvement in terms of computational
efficiency when the block-based partitioning and searching procedures are used. Moreover, we remark that
the computation of errors and times though the standard procedure is not allowed by Matlab for n > 20 000
points, because it is very expensive from a computational viewpoint and memory required is not enough. In
the tables we denote this drawback with the symbol −−. Conversely, the triangular Shepard interpolant (1)
can be applied successfully – without any particular issues and in an efficient way – when the block-based
technique is employed.

Finally, to give a better idea of the obtained results, we conclude this section showing for brevity in one
case only, i.e. for n = 40 000, and for both Halton and pseudo-randomMatlab data points the reconstructed
surfaces of f1 and f2 along with the related absolute errors ei in (6), with i = 1, . . . , ne, see Figures 5–8.

6. Applications

In this section we consider an application of our method to the surface approximation of realistic scattered
data in order to show efficacy and accuracy of the proposed technique. In particular, we apply it to the

9



n MAE RMSE told tnew

10 000 3.25E− 3 3.03E− 4 26.5909 5.9665

20 000 1.48E− 3 1.45E− 4 294.1082 12.1970

40 000 6.70E− 4 7.48E− 5 −− 26.4157

80 000 4.23E− 4 3.88E− 5 −− 62.3892

Table 2: MAE, RMSE and CPU times computed on Halton points for f1.

n MAE RMSE told tnew

10 000 3.84E− 2 4.38E− 3 24.6188 5.9216

20 000 1.59E− 2 2.05E− 3 326.0878 12.2961

40 000 7.47E− 3 1.12E− 3 −− 26.1343

80 000 5.18E− 3 5.30E− 4 −− 57.5480

Table 3: MAE, RMSE and CPU times computed on Halton points for f2.
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Figure 5: Approximation of Franke’s test function (left) and absolute errors (right) obtained by using n = 40 000 Halton points.

reconstruction of a geological surface situated in the Vallée d’Ossau, Pyrénées mountains (France) and to
rapidly varying data corresponding to the seafloor surface of one of the deepest parts of the Tonga Trench
(Pacific Ocean) [24].

6.1. Application to the reconstruction of a real surface

The studied area is located in the Western Pyrénées (30 km south of Pau, Barn, France) in the Vallée
d’Ossau which is an old glacial valley. The dataset is constituted of 4 697 functional evaluations, see Figure
9. In order to test the effectiveness of the triangular Shepard method, we extrapolate from the dataset a
subset of 97 data to use as evaluation points. We obtain the relative maximum absolute error

RMAE = max
1≤i≤97

ei
|f(zi)|

= 3.21E− 2
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n MAE RMSE told tnew

10 000 6.12E− 3 5.24E− 4 26.8241 6.1892

20 000 2.94E− 3 2.65E− 4 248.5067 12.5980

40 000 2.14E− 3 1.51E− 4 −− 26.9432

80 000 9.26E− 4 7.06E− 5 −− 62.5200

Table 4: MAE, RMSE and CPU times computed on pseudo-random Matlab points for f1.

n MAE RMSE told tnew

10 000 5.70E− 2 7.07E− 7 27.9135 7.0858

20 000 2.51E− 2 3.59E− 3 249.8624 12.5749

40 000 1.63E− 2 1.84E− 3 −− 26.9854

80 000 8.28E− 3 8.83E− 4 −− 61.6554

Table 5: MAE, RMSE and CPU times computed on pseudo-random Matlab points for f2.
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Figure 6: Approximation of test function f2 (left) and absolute errors (right) obtained by using n = 40 000 Halton points.

and the relative root mean square error

RRMSE =

√

√

√

√

1

97

97
∑

i=1

(

ei
f(zi)

)2

= 5.47E− 4,

which demonstrate a very good accuracy of approximation of the triangular Shepard method in reconstruct-
ing the real surface. The reconstructed surface coming from geological dataset of Pyrénées is shown in
Figure 10.

6.2. Application to the approximation of rapidly varying data

The Tonga Trench is located in the Pacific Ocean and is 10 882 m (35 702 ft) deep at its deepest point,
known as Horizon Deep. The trench and its arc form an active subduction zone between two plates of
the lithosphere, the Pacific Plate being subducted below the Tonga Plate at the northeastern corner of
the Australian Plate. The Tonga Trench spreads in the north-northeast of the Kermadec Islands which are
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Figure 7: Approximation of Franke’s test function (left) and absolute errors (right) obtained by using n = 40 000 pseudo-random
Matlab points.
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Figure 8: Approximation of test function f2 (left) and absolute errors (right) obtained by using n = 40 000 pseudo-random
Matlab points.
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Figure 9: Geological dataset situated in the Vallée d’Ossau, Pyrénées mountains (left) and the corresponding geological surface
(right). The 4 600 blue points have been used to reconstruct the surface, the 97 red points have been used as evaluation points
to test the effectiveness of the method.
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Figure 10: The reconstruction surface of the geological dataset shown in Figure 9 with the extrapolated 97 points (blue stars)
evaluated at a regular grid of 150× 150 points in the square [0, 1]× [0, 1].

situated in the northeast of New Zealand’s North Island. The trench turns west north of the Tonga Plate and
becomes a transform fault zone. The convergence is taking place at a rate estimated at approximately 15 cm
(6 in.) per year; however, recent Global Positioning Satellite measurements indicate in places a convergence
of 24 cm (10 in.) per year across the northern Tonga Trench, which is the fastest plate velocity recorded
on the planet. Such oceanic trenches are important sites for the formation of what will become continental
crust and for the recycling of material back into the mantle. Along the Tonga Trench, mantle-derived melts
are transferred to the island arc systems, and abyssal oceanic sediments and fragments of oceanic crust are
collected. The Kermadec Trench, to the south, is basically an extension of the Tonga Trench. This zone
presents large variations and is of great interest to study. In our example we focus on the deepest part of the
Tonga Trench. The considered dataset is constituted of 3 223 functional evaluations, see Figure 11 (left). In
order to test the effectiveness of the triangular Shepard method we randomly extrapolate, from the given
dataset, a subset of 67 data, displayed in red in Figure 11 (left), to use as evaluation points. We obtain the
relative maximum absolute error

RMAE = max
1≤i≤67

ei
|f(zi)|

= 8.38E− 2

and the relative root mean square error

RRMSE =

√

√

√

√

1

67

67
∑

i=1

(

ei
f(zi)

)2

= 1.95E− 3,

which demonstrate a very good accuracy of approximation of the triangular Shepard method in reconstruct-
ing the real surface. In order to test the reproduction quality of the triangular Shepard method we run the
algorithm on a regular grid of 100 × 100 evaluation points in [184.02, 186.02] × [−26,−22]. The obtained
compact triangulation is displayed in Figure 11 (right) and the resulting surface is displayed in Figure 12,
which points out that an excellent reconstruction result is achieved by the proposed algorithm.

7. Conclusions and future work

In this paper we presented a new interpolation algorithm for fast computing triangular Shepard inter-
polants. Since the triangle-based approach requires to identify useful triangulations associated with the
dataset, we proposed the use of a versatile block-based partitioning structure and related searching proce-
dure, which turn out to be particularly efficient from a computational viewpoint. In fact, as evident from
numerical experiments and applications considered in this work, our interpolation scheme enables to quickly
deal with a large number of points, while standard routines cannot solve successfully such approximation
problems.
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Figure 11: Geological dataset situated in Tonga Trench, Pacific Ocean (left) and the corresponding compact triangulation
(right).
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Figure 12: The reconstruction of the geological surface at the extrapolated 67 red points (right). The 3 156 blue points have
been used to reconstruct the surface, the 67 red points have been used as evaluation points to test the effectiveness of the
method. The reconstruction surface of the geological dataset with the extrapolated 67 points (blue stars) evaluated at a regular
grid of 100× 100 points in the square [184.02, 186.02]× [−26,−22] (left).

As future work we propose to extend the triangular Shepard method to the 3D case, possibly studying
new interpolation schemes to be applied on various domains such as sphere and other manifolds, see e.g.
[25].
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