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1. Review of the Ce(III) based MOFs

Table S1 – MOFs with Ce(III) cations, a selection of what is reported in ref.1 

Formula Linker molecule Reference
[Ce2(L)2(DMF)4] 4,4’,4’’-{[(2,4,6-trimethylbenzene-1,3,5-triyl)tris-

(methylene)]

tris(oxy)}tribenzoic acid

2

[Ce(HTCPB)]∙(EtOH)0.28∙(H2O)2.75 1,2,4,5-Tetrakis(4-carboxyphenyl)benzene 3

[Ce(BTC)(DMF)2] Trimesic acid 4

[Ce5(BDC)7.5(DMF)4] Terephthalic acid 5

[Ce2(ADC)3(DMF)4]∙DMF 9,10-Anthracenedicarboxylic acid 6

[Ce(ADC)1.5(DMA)3] 9,10-Anthracenedicarboxylic acid 6

[Ce(BTC)(H2O)]∙DMF Trimesic acid 7,8

[Ce2(H2O)(BPyDC)3(DMF)2]∙2(DMF) 2,2-Bipyridine-5,5’-dicarboxylic acid 9

[Ce4(H2O)5(BPyDC)6(DMF)]∙x(DMF) 2,2-Bipyridine-5,5’-dicarboxylic acid 9

[Ce(TTTPC)(NO2)2Cl]∙H2O10 1,1’,1'’-tris(2,4,6-trimethylbenzene-1,3,5- triyl)-

tris(methylene)-tris(pyridine-4-carboxylic acid)}

10

[Ce2(EBTC)1.5(CH3OH)4]∙6H2O 1,1’-ethynebenzene-3,3′,5,5′-tetracarboxylic acid 11

[Ce(HL)(DMA)2]∙DMA∙2H2O 5,5’-(2,3,5,6-tetramethyl-1,4-phenylene) 

bis(methylene) bis(azanediyl) diisophthalic acid

12

[Ce2(BPDA)3(H2O)4]∙H2O Benzophenone-2,4'-dicarboxylic acid 13

[Ce2(NDC)3(DMF)4]∙xH2O 1,4-Naphthalenedicarboxylic acid 14

[Ce(NDC)1.5(DMF)(H2O)0.5]∙0.5DMF 2,6-Naphthalenedicarboxylic acid 15

[Ce(PDC)1.5(DMF)]∙DMF 3,5-Pyridinedicarboxylic acid 16,17

[Ce2(PDC)3(H2O)2] 3,5-Pyridinedicarboxylic acid 18

[CeCl(BPDC)(DMF)] 4,4’-Biphenyldicarboxylic acid 19

[Ce(BTPCA)(H2O)]∙2DMF∙3H2O 1,1’,1’’-(benzene-1,3,5-triyl)tripiperidine-4-

carboxylic acid

20

[Ce2(DHBDC)3(DMF)4]∙DMF Benzene-2,5-dihydroxy-1,4-dicarboxylic acid 21

[Ce6(BDC)9(DMF)6(H2O)3]∙33DMF Terephthalic acid 22

[Ce2(ADB)3(DMSO)4]∙6DMSO∙8H2O 4,4’-Azodibenzoic acid 22

[Ce3(ADB)3(HADB)3]∙33DMSO∙

29H2O

4,4’-Azodibenzoic acid 22
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[Ce2(ADB)3(H2O)3] 4,4’-Azodibenzoic acid 22

[Ce2(SDBA)3(DMF)4] 4,4’-Sulfonyldibenzoic acid 23

[(CH3)2NH2]3[Ce3(SDBA)6]∙6DMF 4,4’-Sulfonyldibenzoic acid 23

[Ce(BTB)(H2O)] 1,3,5-Tris(4-carboxyphenyl)benzene 24

[Ce2(PDA)3(H2O)]∙2H2O 1,4 Phenylendiacetic acid 25
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2. Ce2(NDC)3 X-ray single-crystal diffraction 

Figure S1 – Representative diffraction frame from Ce2(NDC)3, with frame width 0.5°. The circle shows the data 
cut-off at 1.29 Å, as the diffraction at higher angles could not be integrated.

Figure S2 – Precession image of the diffraction from Ce2(NDC)3 showing the 0kl plane.
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Figure S3 – Precession image of the diffraction from Ce2(NDC)3 showing the h0l plane.

Figure S4 – Precession image of the diffraction from Ce2(NDC)3 showing the hk0 plane.
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3. Ce2(NDC)3 structure details

Figure S5 –Crystal structure of Ce2(NDC)3 viewed along the c-axis, showing all possible positions of the atoms.

Figure S6 – Schematic representations of the structure of the activated MOF, viewed along the c-axis. a) 

Hexagonal unit cell. b) Orthorhombic cell. c) Two overlapping twin domains of the orthorhombic 

structure, showing the apparent hexagonal symmetry.
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4. Powder diffraction pattern of Ce2(NDC)3 contacted with DMF after activation

In order to shed light on the reversibility of the solvation-desolvation process of pristine Ce2(NDC)3(DMF)2, 
Ce2(NDC)3 was put again in contact with DMF by immersion for 15 minutes at room temperature. The powder 
diffraction pattern of the material after such a treatment, shown in Figure S7, demonstrates the irreversibility of 
the process in the adopted conditions.
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Figure S7 – Powder diffraction data of pristine Ce2(NDC)3(DMF)2 (black curve), Ce2(NDC)3 (red curve) and 

Ce2(NDC)3 upon DMF contact (dark green curve).
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5. In-situ FTIR spectra of CO adsorbed on Ce2(NDC)3 at low temperature

2300 2250 2200 2150 2100 2050 2000

 Maximum coverage
 Expansions
 Outgassed

2131

A
bs

or
ba

nc
e 

(a
.u

.)

Wavenumber (cm-1)

2162

0.1 a.u.

Figure S8 – Background subtracted FTIR spectra of CO adsorption at about 100K for Ce2(NDC)3. Maximum and 

intermediate coverages are represented by the blue curve and the grey curves, respectively.

CO was dosed as a probe molecule during an in-situ FTIR spectroscopy26 experiment performed on a self-

supporting pellet of Ce2(NDC)3. The temperature was then decreased to about 100K using a home made cell cooled 

down with liquid nitrogen. Figure S8 reports the spectra taken during the desorption procedure.

Under the typical roto-vibrational spectrum of gaseous CO27 which is clearly visible in the blue curve, two main 

signals of adsorbed CO are evident at 2162 and 2131 cm-1, respectively. The latter (which is the first to be removed 

upon outgassing) is readily ascribable to physisorbed CO condensed in the pores while the other one can be 

assigned to CO interacting with acidic Ce3+ sites8,28.
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6. EXAFS fitting details

According to the XRD data, the sets of Ce-L distances (L being a light atom: O or C) of the nearest shells exhibit 

certain preferred values. Therefore, in order to decrease the amount of parameters for the EXAFS fitting and make 

the fit more robust, each of the four subsets of the scattering paths (Ce-O or Ce-C in both solvated and activated 

compounds) can be reasonably approximated by three groups with different Ce-L distance (Figure S9). The 

corresponding interatomic distances indicated in Figure S9 were used as initial values for three separate Ce-O and 

Ce-C shells during EXAFS fitting. Coordination numbers were set according to the XRD occupancies and kept 

fixed in the fitting procedures. Each of the three oxygen shells in the solvated material was parametrized with the 

same expansion/contraction parameter, scaled linearly with the corresponding Ce-O distance. Such approach was 

used also for the Ce-C and Ce-O shells in the hydrated and activated materials respectively. Conversely, each of 

the three Ce-C shells in the activated material were parametrized with a separate ΔR parameter. Four separate 

Debye-Waller (DW) parameters were used to parametrize the four above mentioned groups of shells, scaling 

within each group being as a square root of R. Finally, a separate ΔR and DW factor were assigned to Ce-Ce shell 

in the activated material. The amplitude reduction factor was fixed to S0
2 = 1, which has proven to be a reasonable 

approximation for Ce K-edge EXAFS in porous material.29
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Figure S9 - Distances between Ce and the nearest O (left) and C (right) atoms in the solvated (top) and activated 

(bottom) materials obtained by XRD. Four and one non-equivalent Ce were considered for solvated and activated 

materials, respectively. Distances employed as initial values for EXAFS fitting are in the Figure by the dashed 

lines with the corresponding labels.
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7. N2 and CO2 adsorption isotherms at low temperatures

In order to measure the surface area and the porosity of Ce2(NDC)3, N2 was dosed at -196°C. The results (see 

Figure S10) show a nearly negligible adsorption in the whole pressure range (0-1 p/p0 range) indicating nil surface 

area or porosity whatever the model used to reduce this data (e.g. Langmuir or BET models). CO2 was dosed at a 

temperature of -78°C as an alternative probe to N2 in order to address the purpose of measuring a specific surface 

area on Ce2(NDC)3 giving a Type I isotherm (see Figure S10).
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Figure S10 – Ce2(NDC)3 adsorption isotherms of N2 at -196°C and CO2 at -78°C. The two molecules are 

represented by squares and triangles, respectively. Solid black and open red symbols report the 

adsorption and desorption branches.
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8. IAST Selectivity 

The Ideal Adsorbed Solution Theory (IAST)30 is a method to evaluate and predict the selectivity of competitor 

gases in a multi-component adsorption process starting from single-component adsorption isotherms. The pyIAST 

code31 was used to calculate a CO2/N2 IAST selectivity for Ce2(NDC)3 at 0°C (see Figure S11). 
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Figure S11 – IAST CO2/N2 selectivity factors for a CO2 / N2 binary gas mixture at 1 bar of total pressure and a 

temperature of 0°C. 
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