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Revision of Eocene electric rays (Torpediniformes, Batomorphii) from the
Bolca Konservat-Lagerst€atte, Italy, reveals the first fossil embryo in situ in

marine batoids and provides new insights into the origin of trophic novelties in
coral reef fishes

Giuseppe Marram�a a*, Kerin M. Claesonb, Giorgio Carnevalec and J€urgen Kriwet a

aUniversity of Vienna, Department of Palaeontology, Althanstrasse 14, 1090, Vienna; bPhiladelphia College of Osteopathic Medicine,
Philadelphia, PA 19103, USA; cUniversit�a degli Studi di Torino, Dipartimento di Scienze della Terra, via Valperga Caluso 35, 10125,

Torino

(Received 7 May 2017; accepted 28 July 2017; published online 22 September 2017)

The Eocene electric ray yTitanonarke Carvalho, 2010 from the Bolca Konservat-Lagerst€atte, north-eastern Italy, is redescribed
in detail based upon new material from recent excavations. This taxon exhibits a combination of features (large voids between
the pectoral and the axial skeleton filled in life by electric organs, anteriorly directed fan-shaped antorbital cartilages, lack of
dermal denticles, long prepelvic processes, and rounded basibranchial copula with a small caudal tab) that clearly supports its
assignment to the order Torpediniformes. The analysis of new material also demonstrates that the previous apparent absence
of typical narcinoid characters used to diagnose yTitanonarke was the result of taphonomic biases. yTitanonarke shares at
least three synapomorphies (presence of a rostral fontanelle, low number of ribs, and rostral cartilage connected to the
antorbital cartilage through lateral appendices) with the extant genera Benthobatis, Diplobatis, Discopyge and Narcine, with
which it forms a clade (family Narcinidae) recognized herein as unquestionably monophyletic. Moreover, based upon a single
specimen of yTitanonarke that exhibits a unique combination of morphometric and meristic features, a new species of
Eocene numbfish, yT. megapterygia sp. nov., is recognized. The presence of several specimens representing different
ontogenetic stages of at least two species of numbfishes suggests a close association of this taxon with shallow-water habitats
corresponding to coral reefs as hypothesized for the Monte Postale palaeoenvironment. The occurrence of a fossilized marine
batoid embryo is reported here for the first time. Moreover, the analysis of the gut contents suggests that the dietary
adaptations of yTitanonarke can be related, at least in part, to an opportunistic strategy in the context of abundant larger
foraminifera in the Monte Postale palaeobiotope, suggesting that this kind of feeding mode, known to occur in present-day
reefs, already was realized 50 million years ago.

http://zoobank.org/urn:lsid:zoobank.org:pub:EDD6E170-CA64-4FFB-8DD1-AED2D61D5504
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Introduction

Electric rays of the order Torpediniformes de Buen, 1926

are a well-defined monophyletic group within Batoidea

that includes about 60 extant species in 11 genera (Com-

pagno & Heemstra 2007; Claeson 2014; Nelson et al.

2016). Torpediniforms are typically characterized by a

series of morphological traits that traditionally were used

to distinguish them from all other batoids, including a

rounded fleshy disc, a power-stroking tail without barbs,

massive electric organs between the pectoral and axial

skeleton, and the anteriorly directed fan- or antler-shaped

antorbital cartilages (Davy 1829; Compagno 1973, 1977;

Maisey 1984; Carvalho et al. 1999; McEachran &

Carvalho 2002; Last et al. 2016). A recent comparative

morphological analysis presented by Claeson (2014)

recovered four additional synapomophies: the absence of

dermal denticles or thorns, the suprascapular antimeres

fused with a visible suture, long prepelvic processes, and

a rounded basibranchial copula with a small caudal tab.

Several morphological and molecular studies agree with

the hypothesis that torpediniforms form the sister group of

all other batoids (e.g. McEachran et al. 1996; McEachran

& Aschliman 2004; Rocco et al. 2007; Aschliman et al.

2012a), while other molecular-based phylogenies recovered

electric rays as sister of Myliobatiformes Compagno, 1973

(Pavan-Kumar et al. 2013) or Platyrhinidae Jordan, 1923

(Aschliman et al. 2012b). The latter hypothesis appears to
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be more consistent with the first appearance data (Paleo-

cene) of torpediniforms in the fossil record with respect to

other batoid lineages (Underwood 2006; Claeson 2014).

Within Torpediniformes, two monophyletic groups are tra-

ditionally recognized: the Torpedinoidea Jonet, 1968, and

the Narcinoidea Compagno, 1973. Within Torpedinoidea, a

single family, Torpedinidae Bonaparte, 1838, with two

genera, Torpedo Houttuyn, 1764 and Hypnos Dumeril,

1852, is recognized. Narcinoidea includes the families Nar-

cinidae Gill, 1862 with four genera (Benthobatis Alcock,

1898, Diplobatis Bigelow & Schroeder, 1948, Discopyge

Heckel, 1846 and Narcine Henle, 1834) and Narkidae

Fowler, 1934 with five genera (Electrolux Compagno &

Heemstra, 2007, Typhlonarke Waite, 1909, Heteronarce

Regan, 1921, Narke Kaup, 1826 and Temera Gray, 1831)

(Carvalho 2010; Aschliman et al. 2012a; Nelson et al.

2016). The monophyletic status of the family Narcinidae

was recently questioned based on a comprehensive mor-

phological and phylogenetic analysis of all torpediniform

genera, since the characters traditionally used to support

the monophyly of narcinids were not recovered supportive

of this condition (see Claeson 2014).

Although ghost lineages predict that torpediniforms

should have been present in the Late Cretaceous (see

Aschliman et al. 2012b; Guinot & Cavin 2016), fossil

electric rays are known only from Cenozoic deposits.

Very little is known about the evolutionary history of this

group, because almost all fossil taxa (with the exception

of yTitanonarke) are known from isolated teeth, which are

phylogenetically not informative (Claeson 2014). The cel-

ebrated Eocene (late Ypresian, c. 50 Ma; Papazzoni et al.

2014) Bolca Konservat-Lagerst€atte yielded the only fossil

torpediniforms represented by complete articulated skele-

tons, which are of considerable relevance for identifying

plesiomorphic morphological traits and understanding the

early Palaeogene diversification of this group. The fossil-

iferous deposits from this locality have been known since

the sixteenth century for their abundance of exquisitely

preserved fishes, amongst which approximately 240 spe-

cies, predominantly belonging to various teleost lineages,

have been described to date (e.g. Carnevale & Pietsch

2009, 2010, 2011, 2012; Bannikov & Carnevale 2010;

Carnevale et al. 2014; Marram�a & Carnevale 2015a, b,

2016, 2017a, b; Pfaff et al. 2016; Davesne et al. 2017).

Although several studies during the last few decades have

contributed to our increased knowledge of the outstanding

teleost palaeobiodiversity of this oldest example of a mod-

ern tropical reef fish assemblage (Marram�a et al. 2016c;

Bellwood et al. 2017), the taxonomic diversity, interrela-

tionships and palaeoecology of the Bolca chondrichthyans

remain poorly resolved when compared to those of the

outstanding teleost assemblage from this celebrated

Eocene locality. In fact, with the exception of a few recent

revisions of selected selachians (e.g. Fanti et al. 2016;

Marram�a et al. 2017a), no other modern systematic

studies have been carried out on the Bolca cartilaginous

fishes (Marram�a et al. in press).
Torpediniforms currently are represented at Bolca by a

single species referred to yTitanonarke molini (Jaekel,

1894). The genus Titanonarke was erected by Carvalho

(2010). This taxon is known from fossiliferous sediments

of the Monte Postale site of the Bolca Konservat-Lager-

st€atte by several specimens representing different ontoge-

netic stages. Although yTitanonarke clearly exhibits the

typical characters of the Narcinoidea, the diagnosis and

the phylogenetic placement of this genus provided by Car-

valho (2010) appear to be problematic, since the analysis

of new material from recent excavations clearly shows

that the apparent absence of typical narcinoid characters

considered diagnostic of yTitanonarke is the result of

taphonomic biases.

The goal of this paper is to provide a detailed morpho-

logical redescription of yTitanonarke from the Eocene

Bolca Lagerst€atte, Italy, test the hypothesis that only one

species exists, and identify its relationships with the other

torpediniforms. Palaeobiological and palaeoenvironmen-

tal implications based on an analysis of the gut contents

provide new insights into the early Palaeogene rise of new

feeding strategies in fishes associated with reefs.

Geological setting

All specimens examined come from the fossiliferous

layers of the Monte Postale site, one of the two main fos-

siliferous quarries of the Bolca Konservat-Lagerst€atte,
which is located about 2 km north-east of the village of

Bolca (Verona Province, NE Italy) in the eastern part of

the Lessini Mountains, southern Alps (Fig. 1). The Monte

Postale site is about 300 m from the better known Pesciara

site, from which most of the fossil Bolca specimens were

recovered (Carnevale et al. 2014). Monte Postale is of

almost the same age and exhibits similar sedimentological

features, mostly comprising finely laminated micritic

limestones with fish and plant remains. Papazzoni et al.

(2017) recently investigated the stratigraphical relation-

ships between the two fossiliferous deposits, suggesting

that the uppermost productive sequence of Monte Postale

should correlate with those of the Pesciara site, although

the fossiliferous laminites of Pesciara appear to be slightly

younger than those of Monte Postale. The Monte Postale

succession includes the Cretaceous Scaglia Rossa Forma-

tion up to Ypresian fossiliferous limestone, containing

larger benthic foraminifera of the genus yAlveolina
d’Orbigny, 1826, and also marine and brackish molluscs

in the uppermost part (Papazzoni et al. 2014). Fabiani

(1914, 1915) was the first to conduct a detailed strati-

graphical study of the Monte Postale site and assigned the

entire succession to the Lutetian. Malaroda (1954) postu-

lated the same age, whereas Hottinger (1960) suggested

1190 G. Marram�a et al.



an Ypresian age based on the foraminifera content. Based

on large benthic foraminifera and calcareous nannoplank-

ton, the uppermost strata of the Monte Postale site was

assigned to Shallow Benthic Zone 11 by Papazzoni et al.

(2017) and, thus, corresponds to the late Cuisian (late

Ypresian, around 50 Ma). Although the entire area of

Bolca was historically regarded as belonging to a coral

reef system (e.g. Bellwood 1996), solid evidence of a cor-

algal rim, lagoonal deposits, and a fore-reef system was

only detected for the Monte Postale palaeobiotope (Ves-

cogni et al. 2016). This interpretation was also supported

by recent palaeoecological and taphonomic studies of the

Monte Postale fish assemblage based on the abundance of

marine and terrestrial plants, the large number of inverte-

brates (including abundant corals), and reef-associated

fishes, which accumulated in a coral reef context close to

an emerged coastal area (Marram�a et al. 2016c). Disartic-
ulation of fish skeletons, unimodal dispersion of the ele-

ments and bioturbation were the result of at least periodic

oxic bottom conditions (Marram�a et al. 2016c).

Material and methods

The present study is based on six well-preserved speci-

mens from the fossiliferous layers of the Monte Postale

site. The fossils are currently housed in the collections of

the Museo Civico di Storia Naturale di Verona (MCSNV),

Museo dei Fossili di Bolca (technically part of the

MCSNV), and Museo di Geologia e Paleontologia

dell’Universit�a degli Studi di Padova (MGP-PD). We

examined new material including specimens from most

recent controlled excavations carried out from 1999 to

2011 (MCSNV IG.135581; MCSNV IG.VR.67290;

MCSNV IG.VR.91359), in addition to the three speci-

mens examined by Carvalho (2010) (holotype MGP-PD

26275/6; MCSNV IG.135576; MCSNV IG.91128/9).

Some of the specimens were mechanically prepared to

reveal fine or hitherto obscured skeletal details. The holo-

type MGP-PD 26275/6 was examined with UV light to

distinguish preserved soft tissues from grout or pigments

used in historical reconstruction (see also Supplemental

material). Measurements were taken to the nearest

0.1 mm. Standard length (SL; from the anterior tip of the

rostral cartilage to the caudal fin origin) is used through-

out instead of total length (TL), because most of the speci-

mens lack the distal portion of the caudal fin.

A principal component analysis (PCA) was performed

on the entire data set of log-transformed measurements

(standardized for the head length) and meristic data to

provide direct visual images of the spatial separation of

specimens following Tak�acs (2012) and Marram�a et al.

(2017a, b). The component loading values of the PCs

were used to interpret the ‘meaning’ of the components

(Hammer et al. 2001). The PCA was performed using the

software package PAST (Hammer et al. 2001). Osteologi-

cal terminology follows McEachran & Aschliman (2004),

Aschliman et al. (2012a) and Claeson (2014). Morpho-

metric terminology is adopted and modified from Com-

pagno & Heemstra (2007). Extinct taxa are marked with a

dagger (y) preceding their name.

The phylogenetic analysis is based on the recent mor-

phological data set of Claeson (2014), which in turn is

based on the matrices of McEachran et al. (1996),

McEachran & Aschliman (2004) and Aschliman et al.

(2012a). The original matrix of Claeson (2014) was re-

checked and some states were corrected or recoded (see

Supplemental material). The data matrix contains all 65

Figure 1. A, location and geological map of the Bolca area. B, stratigraphical section of the uppermost part of the Monte Postale
sequence. Modified from Marram�a et al. (2016c).

Revision of Eocene electric rays 1191



characters of Claeson (2014), to which we added five new

dental characters (chars. 66, 67, 68, 69, 70) from Herman

et al. (1995, 1997, 2002) and Compagno & Heemstra

(2007). Based on the analysis of additional morphological

and meristic features of extant and fossil taxa, we also

included two new characters (71 and 72), describing two

of the main synapomorphies of Narcinidae. The matrix

includes all taxa considered by Claeson (2014), to which

we added yTitanonarke and yEotorpedo White, 1934, the

latter only known by isolated teeth (see also the section

‘Palaeobiogeographical remarks’). The character matrix

was compiled in Mesquite 3.03 (Maddison & Maddison

2008). The phylogenetic analysis was performed with

TNT 1.5 using the branch-and-bound method (Goloboff

et al. 2008). All characters are considered unordered and

given equal weight. Tree length, consistency (CI), homo-

plasy (HI) and retention (RI) indices subsequently were

calculated for the strict consensus tree and for each char-

acter individually (see Supplemental material). Two addi-

tional phylogenetic analyses using the same data matrix

were excuted with WinClada 1.00.08 (Nixon 2002) and

Mesquite 3.03 (Maddison & Maddison 2008) for cross-

checking results obtained from the TNT analysis.

Institutional abbreviations

AMNH: American Museum of Natural History, New

York, USA; ESB: Ecosystems Surveys Branch, Northeast

Fisheries Science Center, Woods Hole, Massachusetts,

USA; FMNH: Field Museum of Natural History, Chi-

cago, Illinois, USA; MCSNV: Museo Civico di Storia

Naturale di Verona, Italy;MCZ: Museum of Comparative

Zoology, Cambridge, Massachusetts, USA; MGP-PD:

Museo di Geologia e Paleontologia dell’Universit�a degli

Studi di Padova, Italy; MNHN: Mus�eum national

d’Histoire naturelle, Paris, France; NHMUK: Natural

History Museum, London, UK; SIO: Scripps Institution

of Oceanography, San Diego, California, USA; ZMH:

Museum f€ur Naturkunde, Hamburg, Germany; TNHC:

Texas Natural History Collection, University of Texas,

Austin, Texas, USA; ZMB: Museum f€ur Naturkunde,

Berlin, Germany. (See comparative material in Supple-

mental material.)

Systematic palaeontology

Class Chondrichthyes Huxley, 1880

Superorder Batomorphii Cappetta, 1980

Order Torpediniformes de Buen, 1926

Superfamily Narcinoidea Compagno, 1973

Family Narcinidae Gill, 1862

Diagnosis (emended). Medium to large-sized narcinoid

electric rays sharing three synapomorphies: presence of

rostral fontanelle, reduced number of ribs (up to 10 pairs),

and rostral cartilage connected to the antorbital cartilages

through lateral rostral appendices. Additionally, narcinids

possess the following combination of characters: palato-

quadrate labiolingually compressed and tapered towards

the symphysis; small subtriangular labial cartilages close

to symphysis; rostral cartilage expanded and trough-

shaped; large and rounded basibranchial copula with

small caudal tab; tooth cusps and roots narrow and high;

long precaudal tail; two dorsal fins.

Included genera. Benthobatis Alcock, 1898; Diplobatis

Bigelow & Schroeder, 1948; Discopyge Heckel, 1846;

Narcine Henle, 1834; yTitanonarke Carvalho, 2010.

Genus yTitanonarke Carvalho, 2010
Diagnosis (emended). Narcinid electric ray unique in

having the following two autapomorphic traits: large size

(up to about 1 m of TL) and large number of vertebrae

(133–155). Additionally, yTitanonarke has the following

combination of characters: broadly branched antorbital

cartilage, with a third smaller branch posteriorly directed

and located at midlength; unfused hypobranchials; iliac

process short and straight; prepelvic process wider

towards tip than along the shaft; mesopterygium shorter

than propterygium and metapterygium; tooth cusp length

less than half the length of the blade-like cutting edges;

tooth root high and narrow; precaudal tail reaching about

50% of TL; long claspers extending past posterior tips of

pelvic fin lobes.

Type species. yNarcine molini Jaekel, 1894.
Included species. yTitanonarke molini (Jaekel, 1894);

yTitanonarke megapterygia sp. nov.
Remarks. Jaekel (1894) was the first to document the

presence of electric rays from the Monte Postale site in

his comprehensive account of cartilaginous fishes from

the Bolca Lagerst€atte. In this work, he erected the species

yNarcine molini based on a nearly complete specimen in

part and counterpart housed in the collection of the Museo

di Geologia e Paleontologia dell’Universit�a di Padova

(MGP-PD 26275/6). The specimen previously was

assigned to yNarcine gigantea by Molin (1860). However,

the holotype of yN. gigantea, housed in the Museum

national d’Histoire naturelle, Paris (MNHN F.Bol567)

later was recognized as a thornback and assigned to Pla-

tyrhina by Jaekel (1894). Both Eastman (1904, 1905) and

Blot (1980) included yNarcine molini in their synoptic

lists of chondrichthyans of Bolca. Recently, Carvalho

(2010) undertook a re-examination of the holotype of

yNarcine molini and two additional specimens recovered

from the Monte Postale site in the second half of the

1192 G. Marram�a et al.



twentieth century (MCSNV IG.135576 and MCSNV

IG.91128/9), and erected the genus yTitanonarke contain-
ing yN. molini Jaekel, 1894. The diagnosis of this new

genus was based on the presence of some derived charac-

ters within narcinids, including the large size, the long

precaudal tail reaching about 50% of TL, the absence of

dorsal fins, and absence of posteriorly directed branches

of the antorbital cartilage. Carvalho (2010) also provided

an interpretative phylogenetic analysis in which

yTitanonarke was recovered as the basalmost genus

within the Narcinidae. Although yTitanonarke clearly

exhibits the diagnostic characters of this family, the diag-

nosis of this Eocene taxon provided by Carvalho (2010)

and its relationships to other torpediniforms appear to be

controversial. This is primarily due to the apparent

absence of some typical narcinoid characters (dorsal fins

and third branch of the antorbital cartilage), and to the

ambiguous choice of characters used for the phylogenetic

inference. Carvalho (2010) also hypothesized the presence

of a possible new genus of numbfish in the Monte Postale

site based on the observation of two juvenile specimens

(MCSNV IG.135581 and MCSNV IG.VR.91359) indicat-

ing characters which were hypothesized to be absent in

yT. molini (i.e. third small branch of the antorbital carti-

lage and a posteriorly directed scapular process). Our

detailed revision of the historical and new material

derived from recent controlled excavations reveals that

the specimens used by Carvalho (2010) were only par-

tially preserved and thus prevented the recognition of

those elements whose apparent absence was erroneously

regarded as diagnostic of yTitanonarke. Moreover, there

are no substantial morphological differences to support

the hypothesis that juvenile specimens should be recog-

nized as a new genus because osteological, morphometric

and meristic features identify these as belonging to yT.
molini (see below). We also recognize the specimen

MCSNV IG.135576 (but not MCSNV IG.135581 and

MCSNV IG.VR.91359), previously ascribed to yT. molini
by Carvalho (2010), as a new species of yTitanonarke.
Finally, an integrated comprehensive phylogenetic analy-

sis based on the data derived from the detailed compara-

tive anatomy of the electric rays of Claeson (2014) has

revealed new hypotheses about the relationships of Tita-

nonarke within the Torpediniformes.

yTitanonarke molini (Jaekel, 1894)

(Figs 2–16)

1860 yNarcine giganteaMolin: 585 [pro parte].

1894 yNarcine molini Jaekel: 111, pl. 3 [original occur-

rence of name, photograph and outline reconstruction].

1904 yNarcine molini Jaekel, 1894; Eastman: 27.

1905 yNarcine molini Jaekel, 1894; Eastman: 351.

1979 yNarcine molini Jaekel, 1894; Stanghellini: 38

[misspelt ‘moloni’].

1980 yNarcine molini Jaekel, 1894; Blot: 344.
1987 yNarcine molini Jaekel, 1894; Cappetta: 161,

fig. 138L.

1988 yNarcine molini Jaekel, 1894; Cappetta: 29.
1991 yNarcine molini Jaekel, 1894; Frickhinger: 211.
1993 yNarcine molini Jaekel, 1894; Cappetta et al.: 604.
1999 y‘Narcine’ molini Jaekel, 1894; Carvalho: 283,

figs 107–111.

2010 yTitanonarke molini (Jaekel, 1894); Carvalho: 185,

figs 2, 5A, 6, 7.

2012b yTitanonarke molini (Jaekel, 1894); Aschliman

et al.: 33.

2012 yNarcine molini Jaekel, 1894; Cappetta: 410,

fig. 401L.

2014 yTitanonarke molini (Jaekel, 1894); Carnevale et al.:
41.

2014 yTitanonarke molini (Jaekel, 1894); Claeson: 4.
2016c yTitanonarke molini (Jaekel, 1894); Marram�a et al.:

232.

Holotype. MGP-PD 26275/6, nearly complete articulated

skeleton in part and counterpart (Fig. 2), 816.8 mm SL.

Referred material. MCSNV IG.VR.67290, nearly com-

plete articulated skeleton in a single slab, 750.2 mm SL

(Fig. 3A); MCSNV IG.91128/9, partially complete articu-

lated specimen in part and counterpart, 850.4 mm SL

(Fig. 3B); MCSNV IG.VR.91359, nearly complete articu-

lated skeleton in a single slab, 99.0 mm SL (Fig. 4A);

MCSNV IG.135581, incomplete articulated specimen in a

single slab, lacking part of the cranial and caudal regions

(Fig. 4B).

Type locality and horizon. Monte Postale site, Bolca

Konservat-Lagerst€atte, Italy; early Eocene, late Ypresian,

middle Cuisian, SBZ 11, Alveolina dainelli Zone (see

Papazzoni et al. 2017).

Diagnosis. Species of yTitanonarke characterized by

the following combination of characters: subcircular

disc length c. 44% SL and disc width c. 50% SL; greatly

elongated precaudal tail of c. 60% SL; 153–155 verte-

brae (27–30 trunk; 100–115 precaudal, 23–25 caudal);

15–16 tooth rows in upper jaw and 12–13 tooth rows in

the lower jaw; c. 40 pectoral radials (12–16 proptery-

gial, 9–12 mesopterygial, and 10–11 metapterygial);

single-lobed pelvic fin with 21–24 basipterygial radials;

first dorsal fin with 7–9 radials, and second dorsal fin

with 6–7 radials; caudal fin with about 42 radials (20 dor-

sal and 22 ventral); width of pelvic fins about 50% of

disc width; anterior pelvic fin margin length c. 24% of

disc length.

Description. Specimens examined comprise different

ontogenetic stages and range from 99 to 850.4 mm SL,

with the largest specimen reaching 925 mm TL. Measure-

ments and counts for yTitanonarke molini are summarized
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in Tables 1 and 2. Overall, the body is large and dorso-

ventrally compressed (Figs 2, 3). The disc is subcircu-

lar, slightly ovoid in outline, generally wider than long,

and barely overlapping the pelvic fin origin. The largest

width of the disc is slightly posterior to its midlength

and its edges are continuously curved. The length and

width of the disc are about 44% and 50% SL, respec-

tively. The head is approximately 25% of SL and the

preoral length is about 9% SL. The precaudal tail is

elongated (about 60% SL). yTitanonarke molini has two

dorsal fins; the predorsal distance at the first dorsal fin

is about 62% SL, whereas the predorsal distance at the

second dorsal fin is about 78% SL; the interdorsal dis-

tance is about 7% SL. The body is totally naked, lacking

denticles and thorns. The skeleton is highly calcified and

most of the skeletal elements, including parts of the ros-

tral cartilage, jaws, hyomandibulae, antorbital carti-

lages, synarcual, and pectoral and pelvic girdles, show

the typical prismatic calcification of elasmobranch

fishes (Dean & Summers 2006).

Chondrocranium. The rostral cartilage is expanded,

dorsoventrally flattened and trough shaped (Figs 5, 6),

resembling the typical condition of narcinids (Miyake

et al. 1992). The rostrum is long, about one-half of the

cranial length, wide anteriorly and tapering proximally

towards the nasal capsules. The anterior margin of the ros-

tral cartilage is concave, indicating the presence of a ros-

tral fontanelle (D part of the precerebral fontanelle of

Miyake et al. 1992), that is present also in Benthobatis,

Diplobatis, Discopyge and Narcine (Claeson 2014) and

which also is supported by the phylogenetic analysis of

this study (see below). Small lateral projections (D rostral

appendices of Holmgren 1941; lateral rostral cartilage of

Carvalho 1999) off of the rostral fontanelle were indicated

in the holotype by Carvalho (2010). Due to the grout and/

or pigment used on the holotype MGP-PD 26275/6, UV

light was not useful to distinguish further details of pre-

served tissues (see Fig. 7A, B). Ultraviolet light did high-

light a possible lateral projection (Fig. 7B), but we cannot

discern whether it was branching and connected to the

Figure 2. yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A, B, MGP-PD 26275/6, holotype in part and coun-
terpart. Scale bars D 100 mm.
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Figure 3. yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A, MCSNV IG.VR.67290; B, MCSNV IG.91128/9.
Scale bars D 100 mm.

Figure 4. Juvenile individuals of yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A,MCSNV IG.VR.91359; B,
MCSNV IG.135581. Scale bars D 10 mm.
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antorbital cartilage as in Narcine brasiliensis (Olfers,

1831) (Fig. 7C). Evidence of a lateral projection off of the

rostral fontanelle is, however, clearly present in MCSNV

IG.VR.67290 (Fig. 5), but not in juvenile specimens of

yTitanonarke that we examined, which thus resemble

juveniles of Narcine brasiliensis (Miyake et al. 1992,

fig. 14A). The connection of the rostral cartilage to the

antorbital cartilage through the lateral projection was also

detected in Diplobatis (Fechhelm & McEachran 1984,

fig. 5), Benthobatis (Rincon et al. 2001, fig. 7) and all nar-

cinids in general (Fechhelm & McEachran 1984, fig. 16;

Carvalho 1999, 2010). This character, which is unique

among torpediniforms, corroborates the monophyly and

the systematic position of narcinids in this study. The

juvenile specimen MCSNV IG.VR.91359 shows the early

stage of the development of the rostral cartilage (Fig. 6),

with at least one cartilaginous strip (D sensuMiyake et al.

1992) and two lateral rostral bars. The rostral cartilage of

yTitanonarke lacks the basonasal fenestrae that character-
ize Diplobatis (Fechhelm & McEachran 1984). Although

probably present on the dorsal surface of the chondrocra-

nium, it is not possible to distinguish the presence of the

anterior and frontoparietal fontanelle in the available

material.

The antorbital cartilages in juveniles and adults are

robust, well developed, directed anteriorly and broadly

Figure 5. yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A, MCSNV IG.VR.67290, close-up of the head and
hyoid apparatus; B, reconstruction. Abbreviations: ao, antorbital cartilage; bb, basibranchials; bbc, basibranchial copula; cb, ceratobran-
chials; cc, chondrocranium; eb, epibranchials; hb, hypobranchials; hym, hyomandibula; la, labial cartilages; me, Meckel’s cartilage; nc,
nasal capsule; pq, palatoquadrate; ps, pseudohyoid; ra, rostral appendix; rf, rostral fontanelle; ro, rostral cartilage; sca, scapulocoracoid;
ss, suprascapula; syn, synarcual. Scale bars D 50 mm.

Figure 6. yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A, the juvenile individual MCSNV IG.VR.91359; B,
reconstruction. Abbreviations: ao, antorbital cartilage; cb, ceratobranchials; hym, hyomandibula; la, labial cartilages; me, Meckel’s car-
tilage; mes, mesopterygium; met, metapterygium; nc, nasal capsule; pel, prepelvic process; pub, puboischiadic bar; pq, palatoquadrate;
pro, propterygium; ps, pseudohyoid; rad, pectoral radials; ro, rostral cartilage; sca, scapulocoracoid; ss, suprascapula; syn, synarcual.
Scale bars D 50 mm.
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branching (Figs 5, 6). There are no distinct foramina on

the anterior cartilages. Antorbitals are subdivided at about

one-third of their length into two main branches; their

stout bases articulate with the lateral aspect of the nasal

capsules through an expanded posterior condyle. The

distal end of the largest branch is broadly separated from

the anterior extension of the propterygium. A third,

smaller, posteriorly directed branch is located at mid-

length of the antorbital cartilages (Figs 5, 6). The absence

of the posterior branch was considered diagnostic for

Figure 7. yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A, B, UV images of the holotype MGP-PD 26275/6
showing that it was covered with a pigment reflecting an orange light (see also Supplementary material). The arrows in A indicate a leaf
also covered with the pigment, a drop, and some rays that were not distally covered (they are blue/grey, as expected); the arrowhead in
A indicates part of the third branch of the antorbital cartilage not covered by pigment; the arrowhead in B indicates the rostral appendix;
C, Narcine brasiliensis (TNHC 18512); the arrows indicate the rostral appendices. Scale bars: A, B D 50 mm; C D 10 mm.

Figure 8. Visual image of the principal component analysis (PCA) performed on the entire set of log-transformed standardized morpho-
metric and meristic features, showing the separation of the specimens referred to yTitanonarke molini (right side of morphospace) from
those referred to yTitanonarke megapterygia sp. nov. (left side). The illustrations lying along the extreme values of PC1 represent the
hypothetical reconstruction of the two species based on body proportions.
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yTitanonarke to the exclusion of Narcine and Discopyge

by Carvalho (2010). However, the presence of this poste-

rior branch in MCSNV IG.VR.67290, MCSNV IG.

VR.91359, MCSNV IG.135581 and possibly, at least par-

tially, in the holotype (Figs 7A), suggests that it was not

discernible in the specimens described by Carvalho

(2010). Moreover, since osteological, morphometric and

meristic features are not useful to separate juvenile speci-

mens from the holotype, there is no reason to assign this

smaller specimens to a new genus, if only based on the

presence of this character. In fact, the PCA performed in

this study on the entire morphological data set of stan-

dardized and log-transformed measurements and counts

(Fig. 8) shows no remarkable separation of the juvenile

specimens MCSNV IG.VR.91359 and MCSNV

IG.135581 from the holotype and other referred material.

The nasal capsules are ovoid in shape, located at about

midlength of the chondrocranium and projected laterally.

The internasal plate between the two nasal capsules

appears flat and narrow. As all specimens are preserved in

Figure 9. A, synarcual and pectoral girdle of Narcine brasiliensis (AMNH 95343) in dorsal view; B, synarcual and pectoral girdle of
yTitanonarke molini (MCSNV IG.VR.91359) in ventral view. The arrowheads indicate the posteriorly directed lateral stays of the syn-
arcual. The arrows indicate the posteriorly directed scapular process of the scapulocoracoid. Abbreviations: cb, ceratocranchials; sca,
scapulocoracoid; ss, suprascapula; syn, synarcual. Scale bar D 5 mm.

Figure 10. Pectoral fin of yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A, MCSNV IG.VR.67290; B, recon-
struction; different colours are used to distinguish the propterygial (green), mesopterygial (yellow) and metapterygial (red) radials (col-
ours in the online version). Abbreviations: mes, mesopterygium; met, metapterygium; pro, propterygium; sca, scapulocoracoid. Scale
bars D 50 mm.
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dorsoventral view, it was not possible to detect the lateral

aspect of the nasal capsules. The otic capsules and the

posterior part of the chondrocranium are partially hidden

by the jaws and hyoid arches. However, they appear to be

approximately as wide as the widest part of the rostrum

and much narrower than the nasal capsules. A large basi-

cranial fenestra is recognizable in the juvenile MCSNV

IG.VR.91359 (Fig. 6), which resembles in position and

shape the condition shown in the early stages of chondrifi-

cation of the otic region in Narcine brasiliensis (Miyake

et al. 1992, fig. 14).

Jaws. Carvalho (2010) considered both palatoqua-

drate and Meckel’s cartilage of yT. molini broadly arched

and not very stout when compared to those of other mem-

bers of Narcinidae. Given that long, slender and curved

jaws are diagnostic for the torpedinoids Torpedo and Hyp-

nos whereas in narcinoid genera the jaws are short and

stout (Claeson 2014), the description of the jaws of

yTitanonarke is further clarified here. The palatoquadrate

of yTitanonarke is labiolingually compressed, narrower

than the Meckel’s cartilage, and tapers towards the sym-

physis (Fig. 5). Like the palatoquadrate of Narcine brasi-

liensis (see Dean & Motta 2004a), the palatoquadrate of

yT. molini possesses a strong condyle that articulates with

the Meckel’s cartilage at the mandibular articular fossa

sensu Dean & Motta (2004a). The Meckel’s cartilages are

stout, flat and broad. There are two pairs of small, slender

and subtriangular labial cartilages situated near the sym-

physis of the jaws, surrounding the tooth bands (Fig. 5).

Combined, upper and lower labial cartilages are less than

the length of the Meckel’s cartilage. The triangular ele-

ment displaced to the corner of the left jaw joint in

MCSNV IG.135576, and interpreted by Carvalho (2010,

fig. 5b) as a labial cartilage, instead appears to be a dorsal

flange of the sustentanculum of the Meckel’s cartilage.

Both jaws are not fused medially.

Hyoid and gill arches. The exquisite preservation of

MCSNV IG.VR.67290 allows a detailed description of

most of the hyoid arch (Fig. 5). The hyomandibulae are

narrow and elongate, slightly stout at the proximal base,

and tapering distally towards their articulation with the

Figure 11. Pelvic fins of yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. A, MCSNV IG.VR.67290; B, recon-
struction. Abbreviations: bas, basipterygia; ilp, iliac process; pel, pelvic processes; pub, puboischiadic bar; rad, pelvic radials. The
arrowhead indicates the iliac process. Scale bars D 50 mm.

Figure 12. yTitanonarke molini (Jaekel, 1894) from the Eocene
Monte Postale site. Close-up of the distal end of pelvic fins of
MCSNV IG.91128, which is supposed to be the unique male
individual based on the presence of claspers. Abbreviations: cla,
clasper; dfr, first dorsal-fin radials, pelvic radials. Scale bar D
50 mm.
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Meckel’s cartilage. The dorsal and ventral pseudohyoids

are long and slender, and located just posterior to the artic-

ulation of the hyomandibula with the otic region of the

chondrocranium. yTitanonarke lacks ceratohyals,

resembling the condition of Narcine and Discopyge

among narcinoids (Miyake & McEachran 1991).

There are five pairs of ceratobranchials. The anterior

four pairs are large, and have a central depression (or

fossa) with a small fenestra for the insertion of the depres-

sor muscles (see Carvalho & S�eret 2002). The fenestrae of
yTitanonarke appear larger in small individuals (Fig. 6),

as in Diplobatis (Miyake & McEachran 1991, fig. 6H;

Claeson 2014, supplemental pl. 12). The fifth ceratobran-

chials are slender and posteriorly oriented, and articulate

with the scapular process of the scapulocoracoid. The epi-

branchial elements are not clearly recognizable, being

partially covered by the ceratohyals. At least three small

basibranchials are recognizable. The basibranchial copula

is large and rounded, with a small caudal tip or tab in its

posterior margin. We counted five pairs of ovoid or bean-

like hypobranchials. Hypobranchials are segmented,

resembling the plesiomorphic condition of Benthobatis,

Discopyge and Heteronarce among narcinoids (Miyake &

McEachran 1991, fig. 6F, G; Claeson 2014, supplemental

pl. 12). Pharyngobranchials, extrabranchials and branchial

rays are not preserved in the available material.

Synarcual and vertebral column. The synarcual

cartilage is strongly calcified in all mature specimens,

though not in the embryo preserved inside the abdominal

cavity of the holotype (see the section ‘Embryo’). In

mature specimens the synarcual exhibits the typical pris-

matic tessellated cartilage found in elasmobranchs. The

posteroventralmost portion of tessellated cartilage flanks

several mineralized vertebral centra, which comprise

densely packed areolar cartilage. Anteriorly, the synarcual

Figure 13. yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site. Details of the precaudal tail of A, MCSNV IG.
VR.67290 and B, MGP-PD 26276. The arrows mark the position of the two dorsal fins in MCSNV IG.VR.67290 and the second dorsal
fin in MGP-PD 26276 already detected and figured by Jaekel (1894). C, Detail of the caudal fin of MCSNV IG.91129. Scale bars: A,
B D 50 mm; C D 10 mm.

Figure 14. yTitanonarke molini (Jaekel, 1894) from the Eocene
of Monte Postale site. A, upper and lower tooth bands in
MCSNV IG.VR.67290, with a close-up of some teeth in the area
indicated. B, reconstruction. Abbreviations: la, labial cartilage;
me, Meckel’s cartilage; pq, palatoquadrate. Scale bars 5 mm.
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cartilage contacts the occipital condyles of the chondro-

cranium via the occipital cotyles. The morphology of the

anterior portion of the synarcual is difficult to discern, it

being partially hidden by the hyoid arch (most of the

specimens are ventrally exposed). Therefore, the position

of the dorsal rim of the anterior neural canal opening (syn-

arcual mouth) with respect to the occipital cotyle and the

lips, as well as the shape of the ventral rim of the anterior

neural canal opening (synarcual lip), are difficult to

discern.

The synarcual possesses lateral stays, which are posteri-

orly displaced (Fig. 9) as in Benthobatis, Discopyge, Nar-

cine, Heteronarce and Narke (Claeson 2014). The distal

end of the lateral stays is apparently tab-like and their

anterior margin forms an obtuse angle with the anterolat-

eral margin of the synarcual. The long posterior flanges of

the synarcual surround the anteriormost 8–12 free verte-

bral centra, and their posterior margins end posteriorly to

the scapulocoracoid bar, resembling the condition of non-

narkid torpediniforms (Compagno 1999). It is not possible

to detect the number of fused vertebrae that constitute the

synarcual, or the foramina.

The vertebral column of yT. molini consists of about

153–155 vertebral centra; of these, 27–30 are trunk centra

(18–20% of total, from the first distinguishable centrum to

the anterior margin of the puboischiadic bar), 100–115 are

precaudals (65–75%, from the anterior margin of the

puboischiadic bars to the upper origin of the caudal fin),

and 23–25 are caudals (15–16%, from the upper caudal

fin origin to the end of the series). The number of verte-

brae is by far the largest compared to all living torpedini-

forms and can be considered an autapomorphic condition

of yTitanonarke (see Table 2).
The vertebral centra are strongly calcified, subrectangu-

lar in shape and anteroposteriorly short. Large basiventral

processes are visible along most of the vertebral centra,

Figure 15. A, B, yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site; A, detail of the abdominal region in MGP-PD
26275 showing the stomach content; B, reconstruction; note also the embryo lying next to the stomach. C, D, close-up of some of the
larger foraminifera of the genus yAlveolina in the stomach of MGP-PD 26275. E, dissected specimen of Torpedo nobiliana in ventral
view (ESB tn200707_159) showing the position of the stomach, used to identify the accumulation in MGP-PD 26275 as gut contents.
Abbreviations: int, intestine; liv, liver; met, metapterygium; pub, puboischiadic bar; sca, scapulocoracoid; st, stomach, syn synarcual.
Scale bars: A, B D 50 mm; C, D D 2 mm.
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from the posterior tip of the synarcual to the caudal fin

base. There are eight to 10 pairs of ribs articulating with

centra posterior to the puboischiadic bar (Fig. 11A). The

low number of rib pairs is similar to that of Benthobatis,

Discopyge, Diplobatis and Narcine and is considered a

derived trait of the narcinids among torpediniforms (see

the phylogenetic analysis in this study).

Paired fins and girdles. The scapulocoracoid is the

largest element of the pectoral girdle. It is robust and

strongly arched, and its anteriormost margin is situated

between the basibranchial copula and the posterior tips of

the synarcual flanges. The scapulocoracoid articulates

anteriorly with the fifth pair of ceratobranchials. The

suprascapulae are slender and fused medially, forming a

slightly bowed bar in MCSNV IG.VR.91359 (Fig. 6). In

MCSNV IG.VR67290 the suprascapula appears to be

inclined with respect to the vertebral column, confirming

the interpretation of a bowed shape (Fig. 5). The supra-

scapular antimere is longer than the scapular process of

the scapulocoracoid, which is posteriorly directed as in

Narcine (Fig. 9). The fusion of the suprascapular antimere

with a visible suture is considered a synapomorphy of

Torpediniformes by Claeson (2014). Although MCSNV

IG.VR.67290 and MCSNV IG.VR.91359 preserve this

skeletal element (Figs 5, 6, 9), it is not possible to describe

a visible suture because both specimens are exposed ven-

trally and this area is obscured by the vertebral column.

However, it is expected that yTitanonarke shares this

character with all other electric rays.

The juvenile MCSNV IG.VR.91359 shows a weak

taphonomic displacement of the suprascapulae with

respect to the vertebral column (Figs 6, 9), which supports

the hypothesis that the suprascapulae in torpediniforms

are completely separate from the vertebral column and

that the only connection between pectoral girdle and post-

cranium is through the fifth ceratobranchial (Aschliman

et al. 2012a; Claeson 2014). The same specimen shows

that the suprascapular projection of yTitanonarke was lat-
eral and that the suprascapula-scapulocoracoid articula-

tion was loose and unforked.

The propterygia are long and arched and extend well

beyond the anterior margin of the scapulocoracoid

(Fig. 10). They are composed of five or six propterygial

Figure 16. A, B, D, yTitanonarke molini (Jaekel, 1894) from the Eocene Monte Postale site; A, close-up of the abdominal region of
MGP-PD 26275 showing the embryo; the anterior region of the body lies on the lower portion of the photo; B, reconstruction; D, detail
of the vertebral column of the embryo indicated in B with a dotted rectangle. C, dissected specimen of Potamotrygon tigrina (IUWP
7361) showing the position of the left uterus, just next to the stomach. Abbreviations: int, intestine; liv, liver; lu, left uterus; na, neural
arches; ru, right uterus; st, stomach; vc, vertebral centra. Scale bars: A, B D 10 mm; D D 1 mm.
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segments. Two large voids, occupied in life by electric

organs, are delimited by the propterygia, antorbital carti-

lages, hyoid archs and scapulocoracoids. The mesoptery-

gium is flat, subtriangular in shape, and parallel and

adjacent to the propterygium. The metapterygium is long

and slender, is triangular in shape, and tapers posteriorly.

The mesopterygium is shorter than the pro- and meta-

pterygium in all specimens, although the apparent smaller

size of the metapterygium in MCSNV IG.VR.67290

appears to be preservational (the metapterygium is weakly

calcified in some narcinids; Carvalho & S�eret 2002) or an
artefact of the glue used to join pieces of the slab during

preparation. There are about 40 pectoral radials (12–16

propterygial, 9–12 mesopterygial and 10–12 metaptery-

gial), which bifurcate twice before reaching the edge of

the pectoral fin margin. Each radial is composed of four

segments before the first bifurcation, and another four ele-

ments before the second bifurcation (at least 9–10

Table 1. Morphometric data for all examined specimens of yTitanonarke Carvalho, 2010 from the Eocene Monte Postale site, Bolca
Lagerst€atte. Abbreviations (see the morphological scheme in the Supplemental material): AOW, antorbital cartilage width; CFL, caudal
fin length; CFD, caudal fin depth; CLO, clasper length; CPD, caudal peduncle depth; D1B, first dorsal fin base length; D2B, second dor-
sal fin base length; DCS, dorsal caudal space; DL, disc length; DW, disc width; HL, head length; IDS, interdorsal space; MOW, mouth
width; P2A, pelvic fin anterior margin length; P2B, pelvic fin base length; P2S, pelvic fin span; PCS, space from pelvic fin insertion to
the caudal fin origin; PD1, predorsal distance up to the first dorsal fin; PD2, predorsal distance up to the second dorsal fin; PDI, pelvic
fin insertion to first dorsal fin origin; PDO, pelvic fin origin to first dorsal fin origin; PGW, snout tip to the level of the greatest disc width;
PIW, body width at pectoral fin insertions; POR, preoral length; PP2, prepelvic length; SL, standard length; TAL, tail length; TBW, tail
base at pelvic fin origin; TL, total length.

yTitanonarke molini (Jaekel, 1894)
yTitanonarke

megapterygia sp. nov.

MGP-PD
26275/6

MCSNV
IG.VR.67290

MCSNV
IG.91128/9

MCSNV
IG.135581

MCSNV
IG.VR.91359

MCSNV
IG.135576

Measurements mm % SL mm % SL mm % SL mm % SL mm % SL mm % SL

AOW 206.6 25.3 217.4 29.0 196.2 23.1 26.1 – 28.1 28.4 174.2 27.8

CFL 80.9 9.9 – – 75.0 8.8 – – – – 97.4 15.6

CFD 28.4 3.5 – – 26.1 3.1 – – – – 36.0 5.8

CLO – – – – 70.5 8.3 – – – – – –

CPD 20.2 2.5 25.5 3.4 15.9 1.9 – – 2.3 2.3 13.7 2.2

D1B – – 64.6 8.6 56.6 6.7 – – – – – –

D2B 50.0 6.1 47.9 6.4 51.3 6.0 – – – – – –

DCS 140.2 17.2 109.8 14.6 119.3 14.0 – – – – – –

DL 353.1 43.2 341.2 45.5 371.6 43.7 33.8 – 42.8 43.2 334.5 53.4

DW 387.0 47.4 406.6 54.2 347.8 40.9 – – 56.3 56.9 349.8 55.9

HL 178.1 21.8 172.5 23.0 204.4 24.0 22.2 – 23.6 23.8 171.8 27.4

IDS – – 53.6 7.1 – – – – – – –

MOW 80.6 9.9 99.9 13.3 95.5 11.2 13.6 – 12.7 12.8 87.1 13.9

P2A 77.2 9.5 103.1 13.7 88.7 10.4 – – 8.1 8.2 141.6 22.6

P2B 134.6 16.5 108.3 14.4 81.3 9.6 – – 11.7 11.8 107.9 17.2

P2S 206.8 25.3 208.5 27.8 – – – – 23.7 23.9 211.9 33.8

PCS 356.0 43.6 358.5 47.8 – – – – 44.9 45.4 241.7 38.6

PD1 – – 468.1 62.4 – – – – – – – –

PD2 632.3 77.4 586.3 78.2 – – – – – – – –

PDI – – 83.1 11.1 – – – – – – – –

PDO – – 181.3 24.2 – – – – – – – –

PGW 198.4 24.3 187.2 25.0 195.2 23.0 – – 23.7 23.9 172.2 27.5

PIW 150.3 18.4 173.7 23.2 180.3 21.2 – – 22.1 22.3 173.0 27.6

POR 73.0 8.9 62.6 8.3 85.4 10.0 7.7 – 9.6 9.7 56.2 9.0

PP2 328.5 40.2 307.3 41.0 348.4 41.0 34.8 – 44.4 44.8 299.0 47.7

SL 816.8 100.0 750.2 100.0 850.4 100.0 – – 99.0 100.0 626.2 100.0

TAL 493.5 60.4 436.8 58.2 502.0 59.0 – – 55.4 56.0 318.3 50.8

TBW 94.8 11.6 109.7 14.6 132.7 15.6 – – 13.2 13.3 103.5 16.5

TL 897.7 109.9 – – 925.4 108.8 – – – – 722.6 115.4
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segments in total; Fig. 10). The lower number of segments

recognized by Carvalho (2010), and actually detected in

some specimens, is probably related to the loss of distal

elements due to taphonomic processes. The radials are

covered with a continuous layer of small (less than 1 mm)

tesserae, forming the so-called ‘crustal’ calcification that

characterizes the radials of basalmost batoids having an

axial-undulatory swimming style, including pristids and

‘rhinobatids’, other than torpedinids and narcinids (Schae-

fer & Summers 2005).

The pelvic fins (Fig. 11) are small and single-lobed, and

their anterior margin is straight and barely overlapped by

the posterior margin of the pectoral disc. The maximum

width of the pelvic fins is about 50% of the pectoral disc

width, whereas their anterior margin is about 24% of the

disc length. The puboischiadic bar is robust and wide,

with a slightly concave anterior margin. The presence of

the puboischiadic foramina is difficult to detect. The pre-

pelvic processes are long and straight, extending anteri-

orly almost to the level of the scapulocoracoid. They are

wider distally than along the shaft, resembling the condi-

tion of all narcinids (Rincon et al. 2001, fig. 8; Fechhelm

& McEachran 1984, figs 7, 16). The distal end of the pre-

pelvic process was described as spatulate by Carvalho

(2010). However, the margin of this structure, identified

with an arrowhead on the holotypic specimen MGP-PD

26275/6 by Carvalho (2010, fig. 7), is not part of the pre-

pelvic process. The iliac process, preserved only on the

left side of MCSNV IG.VR.67290, appears short, stout

and straight (Fig. 11) if compared to the long and curved

iliac process of Narcine and Discopyge (Menni et al.

2008; Claeson 2014). The basipterygia are slightly longer

than the puboischiadic bar, and have a slightly concave

inner margin. Each basipterygium supports about 21–24

pelvic fin radials, the first of which is enlarged, articulates

with the lateral node of the puboischiadic bar and supports

the anterior margin of the pelvic fin. Each pelvic fin radial

bifurcates distally once and is composed of three seg-

ments. A single individual (MCSNV IG.91128/9) seems

to show an elongate clasper, articulating with the distal tip

of the basipterygium (Fig. 12). In length, the clasper

appears to extend past the posterior tip of the pelvic fin

lobe. However, it was not possible to analyse this structure

in detail.

Median fins. There are two dorsal fins (Fig. 13A).

The first one originates at about 62% SL, is slightly larger

than the second one and is supported by seven to nine

radials. The second dorsal fin originates at about 78% SL

and is supported by six or seven radials. The interdorsal

distance measures about 7% SL. The obvious presence of

two dorsal fins in MCSNV IG.VR.67290 supports the

interpretation of Jaekel (1894) and Cappetta (2012)

regarding the presence of at least one dorsal fin in the

holotype MGP-PD 26275/6 (Fig. 13B). The inadequate

preservation of the dorsal fins in the historical material

prevented their recognition by Carvalho (2010), who

erroneously regarded their absence as diagnostic for

yTitanonarke. About 42 radials support the caudal fin, of

which about 20 are dorsal and 22 ventral (Fig. 13C).

Dentition. The teeth of yTitanonarke are arranged in

tooth bands medially across the jaw symphyses, forming a

tessellated pavement (Fig. 14). The lower tooth band is

wider than the upper one. It is not possible to detect the

tooth formula, but the teeth of yT. molini appear to be

arranged in at least 12–13 rows in the upper jaw and 15–

16 rows in the lower jaw, counted on symphyseal tooth

series. The dentition is gradient monognatic heterodont

with lateral and posterior tooth crowns becoming slightly

lower. However, both upper and lower jaws show very

Table 2. Summary of selected meristic features used to discriminate fossil and living genera of the family Narcinidae. Includes new data
from the examined material and data from Fechhelm & McEachran (1984), Rincon (1997), Carvalho et al. (1999, 2002a, b, 2003), Car-
valho (2001, 2008), Rincon et al. (2001), Carvalho & S�eret (2002), Carvalho & Randall (2003), Menni et al. (2008), Carvalho & White
(2016), Last et al. (2016), Froese & Pauly (2017).

Feature Benthobatis Diplobatis Discopyge Narcine yTitanonarke
Trunk vertebrae 13–20 23–25 20 15–31 27–30

Precaudal vertebrae 46–73 61–63 58–70 58–77 74–115

Caudal vertebrae 31–46 22–24 ? 18–32 23–32

Total vertebrae 96–118 97–112 85–91 100–127 133–155

Rib pairs 4 7–9 8 5–10 8–10

Total pectoral radials ? 31 ? 27–41 35–40

Pelvic fin radials 12–13 16–21 ? 14–21 19–21

First dorsal fin radials 5–6 6–7 ? 6–10 7–9

Second dorsal fin radials 6–7 7–8 ? 6–11 6–7

Total caudal fin radials 34–35 33–36 ? 39–63 41–42

Upper jaw tooth rows 9–20 14–22 10–20 11–27 12–13

Lower jaw tooth rows 9–22 14–22 10–20 8–30 15–17
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little heterodonty. Sexual heterodonty (studied via the

analysis of the specimens with and without claspers)

appears to be absent. It is not possible to detect any onto-

genetic heterodonty due to the poor-quality preservation

of this region in juveniles.

The tooth morphology is generally consistent with that

of Narcine (see Herman et al. 2002, pls 10, 11). A single

narrow, high and subtriangular cusp is present in each

tooth. There are no accessory lateral cusplets. The crown

base is broad and subcircular, and wider than the cusp

length. The width of the cusp is less than half the length

of the cutting edges. Cutting edges are blade-like. Lingual

and labial ornamentations are absent and the tooth crown

is completely smooth. Some teeth display a high and nar-

row root.

Gut contents. The holotype of yT. molini (MGP-PD

26275/6) shows abdominal contents consisting of a pellet-

like accumulation of hundreds of specimens of yAlveolina
(Fig. 15A–D), which is the most common foraminiferan

genus in the Monte Postale sediments (Papazzoni et al.

2017). The individual foraminifera are grouped together

and closely packed, forming an accumulation, which is

ovoid in outline and anteroposteriorly elongate, measuring

about 80.5 and 41.8 mm in length and width, respectively.

The exceptionally preserved gut contents show little evi-

dence of digestion, suggesting that consumption occurred

shortly before the numbfish’s death. The accumulation is

almost totally preserved in the abdominal cavity between

pectoral and pelvic girdles, on one side of the vertebral

axis, and just posteriorly to the flanges of the synarcual

cartilage. This position is exactly comparable to that occu-

pied by the gut-intestine tract in living electric rays

(Fig. 15E), and in narcinids in particular (see Marinsek

et al. 2017, fig. 1). Moreover, the general shape of the

accumulation resembles fossilized gastric contents

detected in other elasmobranchs (e.g. Hovestadt & Hoves-

tadt-Euler 2002; Amalfitano et al. 2017). Additionally,

there is no evidence of skeletal dispersal due to currents

or bioturbation. Thus, we conclude that the accumulation

is not the result of processes related to bottom tractive

currents or bioturbation that sometimes can result in the

accumulation of such elements (see Sch€afer 1972). Conse-
quently, this accumulation of foraminifera unquestionably

represents gut contents.

Embryo. MGP-UP 26275/6 also shows a unique partially

developed embryo whose length is estimated to range

between 50 and 60 mm (Fig. 16), about 6–7% of the adult

size. The embryo comprises an almost complete vertebral

column having about 150 vertebrae, whose number is per-

fectly comparable to that of an adult individual of yT.
molini. The vertebral column is partially disarticulated,

with some elements scattered from their original position.

Each vertebra consists of a vertebral centrum and associ-

ated neural arch. There is no trace of the synarcual

cartilage. This is consistent with the pattern of mineraliza-

tion present in extant developing batoid embryos (e.g.

Myliobatis, Pristis, Raja; KMC pers. obs.), where the are-

olar cartilage of the free vertebrae is well mineralized ear-

lier than the tessellated cartilage of the synarcual. The

vertebral column is the only fossilized structure in this

embryo. There are no cranial or girdle skeletal elements

preserved. This condition is consistent with the late phases

of skeletogenesis in elasmobranch fishes in which the

mineralization of the cartilages involves only teeth, der-

mal denticles, vertebral centra and neural arches in very

early stages (see e.g. Eames et al. 2007; Enault et al.

2016). However, teeth are not clearly recognizable in the

embryo, whereas dermal denticles are expected to be

absent, as in all torpediniforms.

The embryo is totally preserved in the abdominal cavity

between the pectoral and pelvic girdle, on the left side of

the vertebral axis, and just next to the stomach (see also

Fig. 15). This position is totally comparable to that occu-

pied by the left uterus in fossil (Carvalho et al. 2004, figs 2

and 13) and living batoids (Fig. 16C; but see also Spieler

et al. 2013, fig. 6), and in narcinids in particular (see Nair

& Soundararajan 1973, fig. 1; Devadoss 1998, fig. 5). The

embryo lies externally to the stomach (whose outline is

clearly delimited by its contents of larger foraminifera; see

Fig. 16A, B) therefore excluding the hypothesis of a possi-

ble ingested prey. The absence of traces of egg case sur-

rounding the embryo suggests that the reproductive mode

of yT. molini was viviparous (probably yolk-sac), a condi-

tion that resembles that of most living batoids (Hamlett &

Koob 1999; Kriwet et al. 2009), and narcinids in particular

(Hoar & Randall 1988; Bruton 1990; Rincon 1997;

McEachran & Carvalho 2002; Last et al. 2016), and is con-

sidered plesiomorphic in batoids (Cole 2010). Finally,

although the general morphology, size and position of the

embryo also resemble those already detected in fossil

sharks (e.g. Hovestadt & Hovestadt-Euler 2010; Hovestadt

et al. 2010) and extinct freshwater stingrays (Carvalho

et al. 2004), the specimen described herein unquestionably

represents to our knowledge the first occurrence of a fossil-

ized embryo in situ in marine batoid fishes.

Parasites. The examination of the historical material also

has shown that fossilized crustacean isopods are strictly

associated with the body of two individuals of both spe-

cies of yTitanonarke. Individual fishes appear to be

infested by two to four isopods each, the analysis of which

is beyond the scope of this paper and will be provided in a

separate study (Robin et al. in prep.).

yTitanonarke megapterygia sp. nov.

(Fig. 17)

2010 yTitanonarke molini (Jaekel, 1894); Carvalho: 188,

figs 3, 5b–c, 8 [pro parte].
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Derivation of name. After the Greek words m�ega, mean-

ing ‘large’, and pt�erygia, meaning ‘fins’, referring to the

proportionally larger pectoral and pelvic fins compared to

those of the type species.

Holotype. MCSNV IG.135576, nearly complete articu-

lated skeleton in a single slab (Fig. 17), 626.2 mm SL.

Type locality and horizon. Monte Postale site, Bolca

Konservat-Lagerst€atte, Italy; early Eocene, late Ypresian,

middle Cuisian, SBZ 11, Alveolina dainelli Zone (see

Papazzoni et al. 2017).

Diagnosis. yTitanonarke with large subcircular disc of

length c. 53% SL and width 56% SL; precaudal tail c.

51% SL; 136 total vertebrae (27 trunk; 74 precaudal, 32

caudal); total tooth row count c. 32 (15 rows in the upper

and 17 in the lower jaw); 35 total pectoral radials (12

propterygial, eight mesopterygial and 15 metapterygial);

greatly enlarged single-lobed pelvic fins containing c. 19

basipterygial radials; width of pelvic fins c. 61% of disc

width; anterior pelvic fin margin length c. 42% disc

length; caudal fin with 41 radials (20 dorsal and 21

ventral).

Remarks. Originally, MCSNV 135576 was considered a

holomorphic specimen of yT. molini by Carvalho (2010),

although that assignment to the type species was tentative.

The new species of yTitanonarke differs from the type

species yT. molini (Jaekel, 1894) in a combination of mor-

phometric and meristic characters. The differences mostly

include those associated with the number of precaudal

vertebrae (74 in yT. megapterygia sp. nov. vs. 100–115 in

yT. molini). Consequently, the comparably reduced verte-

bral number in yT. megapterygia sp. nov. (133 in yT. meg-
apterygia sp. nov. vs. 153–155 in yT. molini) results in

different body proportions (see also Table 1).

yTitanonarke megapterygia sp. nov. also differs from yT.
molini by having a greater head length (c. 27 vs. 23% SL),

disc length (53 vs. 44% SL), disc width (56 vs. 50%) and

shorter tail (51 vs. 58% SL). However, the main differ-

ence in body proportions is in the size of the pelvic fins,

which have a larger span (34 vs. 26% SL), anterior margin

(23 vs. 11% SL) and base length (17 vs. 13% SL) in yT.
megapterygia sp. nov. than in yT. molini. Moreover, the

caudal fin also is longer in yT. megapterygia sp. nov.

(16% SL) than in yT. molini (9% SL), with a higher num-

ber of caudal vertebral centra (32 vs. 23–25, respectively).

The PCA performed on the entire morphological data set

of standardized and log-transformed measurements and

counts (Fig. 8) shows a remarkable separation of speci-

men MCSNV IG.135576 from all others along PC1 (PCA

loading values indicate that this axis is mainly related to

the variation in tail length, pelvic fin span, and the number

Figure 17. yTitanonarke megapterygia sp. nov. from the Eocene Monte Postale site. A, MCSNV IG.135576; B, detail of the head and
hyoid apparatus. Abbreviations: ao, antorbital cartilage; cb, ceratobranchials; hym, hyomandibula; me, Meckel’s cartilage; nc, nasal cap-
sule; pq, palatoquadrate; sca, scapulocoracoid; syn, synarcual; rf, rostral fontanelle; ro, rostral cartilage. Scale bars D 50 mm.
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of precaudal vertebrae), thereby suggesting that morpho-

metric and meristic data are useful to separate yT. mega-
pterygia sp. nov. from yT. molini.

Phylogenetic analysis
The analysis of 71 morphological characters coded for 16

taxa produced a single most parsimonious tree (MPT)

with a length of 170 steps (Fig. 18). The phylogenetic

hypothesis of taxa is supported by the following indices:

CI D 0.62, RID 0.68; HID 0.38. The relationships among

torpediniforms are mostly consistent with those of Clae-

son (2014), although our analysis recovered the family

Narcinidae as monophyletic. The monophyly of torpedini-

forms as recognized by McEachran et al. (1996), McEach-

ran & Aschliman (2004), Aschliman et al. (2012a) and

Claeson (2014) is confirmed and supported herein by six

synapomorphies: presence of electric organs (char. 1[1]);

absence of dermal denticles or thorns (char. 2[1]); iliac

process straight (char. 32[1]); long prepelvic process

(char. 33[1]); suprascapular antimere fused with visible

suture (char. 35[1]); basibranchial copula rounded with a

small caudal point/tab (char. 53[1]). Two main clades can

be recognized within Torpediniformes: the Torpedinoidea

(solely including the family Torpedinidae) and the

Narcinoidea (including the sister taxa Narcinidae and

Narkidae).

The monophyly of Torpedinoidea is supported by the

five characters proposed by Claeson (2014): long, slender,

flexible jaw cartilages (char. 22[1]); suprascapular anti-

mere shorter than scapular process (char. 39[2]); antorbi-

tals articulate on anterior aspect of nasal capsules (char.

43[1]); frontoparietal fontanelle absent (char. 45[1]);

median rostral cartilage inconspicuous or absent (char. 49

[2]). An additional dental character, tooth root low and

broad (char. 70[2]), represents a further synapomorphy of

the group, and is based on previous descriptions of

yEotorpedo, Torpedo and Hypnos among torpediniforms

(Cappetta 1988, 2012; Noubhani & Cappetta 1997; Her-

man et al. 2002). The absence of labial cartilages does not

support the clade because it is considered plesiomorphic

for elasmobranchs (see also Claeson 2014). yEotorpedo in

particular was recovered as sister to Torpedo because they

share a single tooth cusp, contrary to Hypnos, the only tor-

pediniform characterized by multicuspidate teeth (char.

66[1]) (see also Herman et al. 2002).

The monophyly of all remaining torpediniforms (the

clade Narcinoidea) is supported by 12 characters: small

labial cartilages that combined are less than the length of

the Meckel’s cartilage (char. 21[1]); palatoquadrate

Figure 18. The single tree retrieved in TNT 1.5 based on 72 morphological characters and 16 taxa, showing the hypothetic relationships
of yTitanonarke and yEotorpedo within the Torpediniformes. Black squares indicate consistency index (CI) D 1.00; white squares
CI < 1.00.
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labiolingually compressed (narrower than Meckel’s carti-

lage) and tapering towards symphysis (char. 23[1]);

medial margin of pelvic fin lobes attached to precaudal

tail (char. 28[1]); antorbital cartilage bifurcating at least

once (char. 42[1]); nasal capsules project ventrally (char.

48[1]); dorsal marginal clasper cartilage possesses

distomedial extension/medial flange (char. 54[1]); pres-

ence of a ligamentous sling on Meckel’s cartilage (char.

55[1]); coracobranchialis consisting of a single compo-

nent (char. 56[1]); dorsal rim of anterior neural canal

opening (synarcual mouth posterior to occipital cotyle)

(char. 58[1]); lateral stay located in the posterior third of

the synarcual length (char. 62[2]); anterior margin on lat-

eral stay describing an obtuse angle to axis (char. 64[2]);

tooth cusp length less than half the length of the cutting

edge (char. 68[1]).

We recovered monophyletic Narkidae (Electrolux,

Typhlonarke, Heteronarce, Narke and Temera) sensu

Claeson (2014). Unlike Claeson (2014), we also recovered

a monophyletic family Narcinidae (including Benthobatis,

Diplobatis, Discopyge, Narcine and yTitanonarke) that is
sister to Narkidae. In this study, the monophyly of the

Narcinidae conversely is supported by three unambiguous

synapomorphies (CI D 1): presence of a rostral fontanelle

(char. 44[1]); low number (up to 10) of rib pairs (char. 71

[1]); and rostral cartilage connected to the antorbital carti-

lage through a lateral appendix (char. 72[1]).

In the analyses of McEachran et al. (1996), McEachran

& Aschliman (2004) and Aschliman et al. (2012a), the

monophyly of Narcinidae was not specifically addressed,

since they used Narcine as the only representative of the

family. The monophyly of the family Narcinidae was ten-

tatively recognized by Carvalho (2010) based on the pres-

ence of an expanded and trough-shaped rostral cartilage,

presence of rostral fontanelle, and antorbital cartilages

articulating with the lateral aspect of nasal capsulae. Com-

pagno (1973) and Fechhelm & McEachran (1984) also

considered the Narcinidae to be monophyletic based on a

set of synapomorphies including a broad, expanded and

trough-shaped rostral cartilage, ventrolaterally directed

nasal capsules, forked antler-shaped antorbital cartilages,

large precerebral fossa, transverse jaw with labial carti-

lages, anterior hypobranchials large and meeting midven-

trally, and large basibranchial copula. Most of these

characters in our analysis are considered plesiomorphies

shared with outgroups and/or with narkids (see also Clae-

son 2014). The precerebral fossa and the hyoid and gill

arches, however, require further investigation for all those

taxa, which was beyond the scope of the present study.

The phylogenetic placement of yTitanonarke within the

Narcinidae is evident in our analysis, although its relation-

ships with living numbfishes are not consistent with the

hypothesis of Carvalho (2010), who recovered

yTitanonarke as the most basal narcinid. The sister-group

relationship between yTitanonarke and the monophyletic

grouping formed by the most derived narcinids (Narcine

C Discopyge) is supported herein by a unique autapomor-

phy, antorbital cartilage broadly branched, with a third

small branch posteriorly directed (char. 42[2]), which Car-

valho (2010) hypothesized was absent in yTitanonarke.
The sister-group relationship between Narcine and Disco-

pyge detected herein is consistent with that proposed in

the analysis of Fechhelm & McEachran (1984), because

these two genera also share a long and slender (char. 31

[1]), and curved (char. 32[0]), iliac process of the pelvic

girdle, a morphological character not present in

yTitanonarke.
An analysis of the data matrix with WinClada 1.00.08

using the same settings resulted in exactly the same phylo-

genetic hypothesis as TNT. The single MPT has the same

length (170 steps) and indices (CI D 0.62; RI D 0.68).

The Mesquite analysis produced 87 MPTs; in the strict

consensus tree, however, all branches are collapsed,

resulting in an extended polytomy. The majority rule tree,

conversely, displays the same systematic arrangement of

taxa, but required more steps (180). The RI is identical

(0.68) and the results for the CI are slightly improved

(0.64). These results indicate that the characters employed

in our TNT analysis are quite robust and the resulting sys-

tematic arrangement is very stable.

Discussion

Comparison and relationships
The analysis of the skeletal morphology of yTitanonarke
has revealed the presence of several characters that

unquestionably support the inclusion of this genus within

the Torpediniformes, including large voids between the

axial and pectoral skeleton that suggest the accommoda-

tion of massive electric organs, skin without dermal den-

ticles, anteriorly directed antorbital cartilages, long

prepelvic processes, and rounded basibranchial copula

with a small caudal tab (see Davy 1829; Compagno 1973,

1977; Claeson 2014). The suprascapula with a visible

median suture, regarded as a further torpediniform synap-

omorphy (Claeson 2014), is not exposed in the examined

material. Additional features that align yTitanonarke with
torpediniforms, although considered plesiomorphic within

Batoidea (Compagno 1977; Maisey 1984; McEachran

et al. 1996; Carvalho 2010), include some aspects of the

branchial arch structure, the presence of a power-stocking

precaudal tail, a posteriorly arched scapulocoracoid, and

the propterygium being longer than the metapterygium.

The assignment of yTitanonarke to the superfamily

Narcinoidea is supported by a number of features (see

Herman et al. 2002; Claeson 2014), including the pres-

ence of labial cartilages, palatoquadrate labiolingually

compressed and tapered towards the symphysis, bifur-

cated antorbital cartilage, lateral stays located on posterior
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third of synarcual length, anterior margin of the lateral

stay approximately forming an obtuse angle with axis,

and tooth cusp length less than half the cutting edge

length. Furthermore, yTitanonarke is excluded from Tor-

pedinoidea (yEotorpedo, Hypnos and Torpedo) because of
the lack of several unambiguous characters diagnostic for

this superfamily, including long, slender and flexible jaw

cartilages, suprascapular antimere shorter than scapular

process, antorbital cartilages articulating on anterior

aspect of nasal capsules, inconspicuous or absent rostral

cartilage, and low and broad tooth root (see Herman et al.

2002; Claeson 2014).

yTitanonarke is a member of a monophyletic Narcini-

dae, which is supported by three unambiguous synapo-

morphies: the presence of a rostral fontanelle, the reduced

number of ribs, and rostral appendices connected to the

antorbital cartilage. Other plesiomorphic features charac-

terizing the Narcinidae (Carvalho et al. 1999; McEachran

& Carvalho 2002; Last et al. 2016) and observed in

yTitanonarke include a large subcircular disc; a tail longer
than the disc; two dorsal fins, with the first one originating

posterior to the anterior half of the body length; and sin-

gle-lobed pelvic fins. yTitanonarke also is characterized

by a mesopterygium that is shorter than the pro- and meta-

pterygia, a trough-shaped and expanded rostral cartilage,

and a rounded basibranchial copula with a small caudal

tip. yTitanonarke is excluded from Narkidae (Electrolux,

Heteronarce, Narke, Temera and Typhlonarke), which

shows instead a higher number of ribs, absence of rostral

fontanelle and appendix, rostral cartilage slender, incon-

spicuous or absent, mesopterygium longer than the meta-

pterygium, and a heart-shaped basibranchial copula

(Claeson 2014). Within the Narcinidae, yTitanonarke
shares with the most derived Narcine and Discopyge at

least one synapomorphy (broadly branched antorbital car-

tilage with a posteriorly directed third branch). Therefore,

we can exclude the hypothesis that yTitanonarke repre-

sents a basal narcinid (see Carvalho 2010).

yTitanonarke is by far the largest narcinid (up to about

1 m TL, compared to living narcinids that usually have an

average body size of less than 50 cm TL; Carvalho et al.

1999; Carvalho 2010; McEachran & Carvalho 2002; Last

et al. 2016). Moreover, yTitanonarke differs from other

narcinid genera in its unique combination of osteological

features. It can be separated from Benthobatis by the posi-

tion of the anteriormost free vertebral centrum, which is

posterior to the synarcual in this living genus, but sur-

rounded by posterior flanges of the synarcual in

yTitanonarke. Discopyge possesses a mesopterygium that

is longer than the pro- and metapterygia, a condition sig-

nificantly different from that observed in yTitanonake, in
which the mesopterygium is shorter than both pro- and

metapterygia. Specimens of yTitanonake can be separated

from Diplobatis and Narcine by the hypobranchial config-

uration (fused in Narcine and Diplobatis, unfused in

yTitanonarke), and the position of the lateral stay on the

synarcual (midway along its length in Diplobatis, poste-

rior in yTitanonarke). yTitanonarke can be further sepa-

rated from Narcine and Discopyge by the absence of a

long, slender and curved iliac process.

Moreover, yTitanonarke differs from other narcinid

genera in its unique combination of meristic features

(Table 2). It can be distinguished from all living numb-

fishes by the largest number of vertebrae (133–155 vs. 96–

127). In particular, yTitanonarke can be separated from

Benthobatis, Diplobatis and Discopyge because of its

higher number of trunk (27–30 vs. 13–25, respectively)

and precaudal (74–115 vs. 46–73, respectively) vertebral

centra. The number of rib pairs is useful to separate

yTitanonarke (8–10) from Benthobatis (four).

yTitanonarke differs from Diplobatis in having a higher

total number of pectoral radials (35–42 vs. 31), from Dip-

lobatis and Benthobatis in the higher number of caudal fin

radials (41–42 vs. 33–36), and from Benthobatis in having

a higher number of pelvic radials (19–24 vs. 12–13).

Palaeobiogeography of Torpediniformes
Except for yTitanonarke, the fossil record of torpedini-

forms (Fig. 19) is heavily biased towards isolated teeth.

The oldest electric ray appears to be yEotorpedo White,

1934, based on teeth from the upper Paleocene of Gada,

Nigeria, whose morphology resembles that of Torpedo.

The torpedinoid yEotorpedo (including the species yE.
jaekeli White, 1934, yE. hilgendorfi (Jaekel, 1904) and

yE. zennaroi Cappetta, 1988) appears to have been wide-

spread during the Paleocene, with several occurrences

from the Danian and Thanetian of North and western

Africa, Saudi Arabia and Texas (Jaekel 1904; White

1934; Dartevelle & Casier 1943; Arambourg 1952; Cap-

petta 1972, 1987, 1988, 2012; Madden et al. 1995; Noub-

hani & Cappetta 1997; Siguendibo Sambou et al. 2017).

During the Paleocene the extant genera Torpedo and Nar-

cine are scarcely represented, with only a few occurrences

from Belgium and Jordan (Smith 1999; Cappetta 2012).

Although torpedinoids are well represented in the

Eocene, with the most recent records of yEotorpedo (yE.
hilgendorfi, yE. nolfi), and some occurrences of Torpedo

from northern Africa, Belgium, France, Jordan, and South

Carolina, USA (Arambourg 1952; Herman 1974; Banks

1978; Cappetta 1988; Noubhani & Cappetta 1997; Cap-

petta et al. 2000; Adnet 2006; Cahuzac et al. 2007; Knight

et al. 2007; Underwood et al. 2011; Case et al. 2015), the

Eocene also marks the first major radiation of narcinoids.

In addition to yTitanonarke molini and yT. megapterygia
from the Ypresian of Italy, a broad distribution of Narcine

is documented by several Ypresian to Priabonian occur-

rences in France, Guinea-Bissau, Togo, Morocco and

Egypt (Cappetta 1987, 1988, 2012; Cappetta & Traverse

1988; Noubhani & Cappetta 1997; Adnet 2006; Adnet
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et al. 2010; Underwood et al. 2011). A single vertebra

from the Eocene of Belgium referred by Hasse (1879) to

Narcine requires further investigation before assignment

to this genus can be confirmed (Carvalho 2010).

The fossil record of the Torpediniformes is scarce from

the Oligocene to the Pliocene and is only represented by

Torpedo from the Chattian to the Zanclean of Portugal,

Switzerland, Germany, France and the Netherlands (Cap-

petta et al. 1967; Cappetta 1987, 2012; Cappetta & Nolf

1991; Bolliger et al. 1995; Antunes et al. 1999; Bracher

2005; Reinecke et al. 2005; Mollen 2010; Reinecke

2015). Teeth referred to Narcine from the Miocene of Por-

tugal (Jonet 1968) and India (Sahni & Mehrotra 1981)

cannot be referrred to any member of the Torpediniformes

according to Cappetta (2012). The scarcity of torpedini-

forms in the Oligocene and Neogene fossil record may be

related to sampling and/or taphonomic biases rather than

a genuine biological and/or ecological signal, because

extant electric rays have a worldwide distribution from

tropical to temperate seas (Carvalho et al. 1999; McEach-

ran & Carvalho 2002; Last et al. 2016).

Although torpediniforms are known in the fossil record

only in Cenozoic deposits, several lines of evidence indi-

cate that electric rays should have been present at least

since the Late Cretaceous (see Aschliman et al. 2012b;

Guinot & Cavin 2016). It has been suggested that the

appearance and rapid diversification of nectobenthic dur-

ophagous/opportunistic predators such as dasyatoids,

myliobatoids, rajoids and torpediniforms in the aftermath

of the K–Pg boundary was related to the ecological

replacement of extinct prey with similar adaptations,

including demersal durophagous benthic dwellers such as

yhypsobatids, yparapalaeobatids and yrhombodontids

(Kriwet & Benton 2004; Guinot & Cavin 2016). Electric

rays, particularly Torpedinidae, together with carcharhi-

nid and isurid selachians, played a fundamental role dur-

ing the recovery of the full diversity of elasmobranchs in

the aftermath of the end-Cretaceous extinction event (Kri-

wet & Benton 2004).

Palaeobiological remarks
The potential palaeobiological and palaeoecological role

of yTitanonarke has been poorly investigated up to now,

considering the presence of several individuals of differ-

ent ontogenetic stages in the Monte Postale palaeobiotope.

Extant numbfishes of the family Narcinidae are typically

inshore to deep-water torpediniforms, with a worldwide

distribution, inhabiting warm-temperate to tropical waters

of continental and insular shelves. They occur down to

about 1000 m depth, although they usually are found

within 250 m, mostly occurring off soft sandy beaches

and in muddy enclosed bays, often associated with coral

reefs (Carvalho et al. 1999; McEachran & Carvalho 2002;

Last et al. 2016). From this perspective, the presence of at

least two species of yTitanonarke, the relative abundance

of specimens and a gravid female suggest close affinities

of this taxon with shallow-water habitats associated with

coral reefs, as hypothesized for the Monte Postale palaeo-

biotope (Marram�a et al. 2016c; Vescogni et al. 2016).
The stomach contents of MGP-PD 26275/6 provide a

rare example of feeding relationships at a mid-high level

of the trophic network in a reef-associated fish community

in the context of the Early Eocene Climatic Optimum. The

stomach contents of the holotype of yT. molini indicate
that this numbfish fed on larger benthic foraminifera of

the genus yAlveolina, at least occasionally, representing
the first unambiguous and direct evidence of feeding

behaviour in extinct electric rays. Modern narcinoids prey

upon benthic invertebrates (mostly polychaetes and crus-

taceans, rarely molluscs) and small bony fishes using their

highly specialized protrusible feeding apparatus (Car-

valho et al. 1999; McEachran & Carvalho 2002; Last

et al. 2016; Froese & Pauly 2017). Narcinids, in particu-

lar, are gape-limited polychaete specialists that use their

highly calcified and protractile jaws as an excavation tool

(Bigelow & Schroeder 1953; Dean & Motta 2004a, b).

Gut content analyses of extant Narcine species have

shown that polychaete annelids are the dominant prey

item, whereas soft-bodied invertebrates and small bony

fishes make up only a minor percentage of the diet

(McKay 1966; Amaral & Migotto 1980; Rudloe 1989;

Goitein et al. 1998; Carvalho 1999; Bornatowski et al.

2006; Cerqueira Ferreira & Vooren 2012). The labial car-

tilages play a fundamental role in limiting the circular

gape of jaw protrusion during the suction phase, therefore

enhancing the buccal pressure to suck in polychaetes

(Dean & Motta 2004a, b). The specialized jaw apparatus

morphology of narcinids is unique among batoids and it is

probably related to a specialization that strongly con-

strains their ecological niche (Dean & Motta 2004a). The

morphology of the jaw apparatus of yTitanonarke is

Figure 19. Palaeobiogeographical distribution of the Torpediniformes during the Cenozoic: 1, Texas; 2, Belgium; 3, Morocco; 4,
Jordan; 5, Saudi Arabia; 6, Enclave of Cabinda; 7, Nigeria; 8, Niger; 9, Cameroun; 10, Senegal; 11, Tunisia; 12, South Carolina; 13,
France; 14, Guinea-Bissau; 15, Togo; 16, Egypt; 17, Italy; 18, Portugal; 19, Switzerland; 20, Germany; 21, Netherlands. Data from
Hasse (1879), Jaekel (1904), White (1934), Dartvelle & Casier (1943), Arambourg (1952), Cappetta et al. (1967, 2000), Cappetta (1972,
1987, 1988, 2012), Herman (1974), Banks (1978), Cappetta & Traverse (1988), Cappetta & Nolf (1991), Bolliger et al. (1995), Madden
et al. (1995), Noubhani & Cappetta (1997), Antunes et al. (1999), Smith (1999), Bracher (2005), Reinecke et al. (2005), Adnet (2006),
Knight et al. (2007), Adnet et al. (2010), Carvalho (2010), Mollen (2010), Underwood et al. (2011), Case et al. (2015), Reinecke (2015)
and Siguendibo Sambou et al. (2017). Maps are modified from Scotese (2002).
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similar to that of other narcinids, although it has a more

slender hyomandibula. However, to the best of our knowl-

edge, no evidence of feeding activity on benthic forami-

nifera has been reported in extant torpediniforms (data on

food items are also available in Froese & Pauly 2017) or

in other fossil or extant cartilaginous fishes. Among bony

fishes the only known genus specialized in feeding on

foraminifera is the living leopard wrasse Macropharyngo-

don (see Randall 1978) whose lineage and unique special-

ized feeding mode evolved apparently in the early

Miocene (Cowman et al. 2009). Although fossil poly-

chaetes have been reported in the Bolca Lagerst€atte (Ales-
sandrello 1990), and we do not exclude that this giant

electric ray also fed on them, the abundance of larger fora-

minifera as stomach contents seems to suggest a selective

predation of this kind of food rather than accidental inges-

tion that sometimes can occur in coral reef fishes (e.g.

Daniels & Lipps 1978; Lipps 1988; Debenay et al. 2011).

From this perspective, this peculiar and unique occurrence

of predator-prey relationship between yTitanonarke and

yAlveolina might represent a further feeding specializa-

tion among torpediniforms early in their evolutionary his-

tory, or at least it can be considered an opportunistic

strategy in a context of remarkable abundance of this tro-

phic resource in the Tethys realm during the Eocene (see

e.g. Renema et al. 2008; Scheibner & Speijer 2008;

Papazzoni et al. 2017).

The large size of yTitanonarke in relation to the small

size of its prey is very striking, especially if compared to

the generally smaller size of extant narcinids (see Car-

valho 1999; McEachran & Carvalho 2002; Last et al.

2016), which are able to ingest polychaetes that may be as

long as their total body length (Dean & Motta 2004a, b).

The relative size difference between yTitanonarke as

predator and its prey might support the hypothesis that

larger marine fish predators could gain a competitive

advantage by feeding on both small and large prey, with

the latter being unavailable to smaller predators (Scharf

et al. 2000). Moreover, it has been demonstrated that

marine predators tend to select small prey instead of larger

prey when possible (Gillen et al. 1981; Hoyle & Keast

1987; Hart & Hamrin 1990; Juanes 1994). Thus, the con-

sistent inclusion of small prey in the diet of large preda-

tors might represent an opportunistic strategy in terms of

benefit-cost ratio (Scharf et al. 2000), since the energetic

costs of an active predatory lifestyle are less sustainable

with an increase in size, and these predators show a clear

tendency to prefer less-active feeding strategies, such as

filtering or scavenging (Ferr�on et al. 2017). Variation in

size-based feeding strategies among predators can be

related to differences in foraging tactics, predator gape

allometry and morphological specializations, as well as

individual behaviour and morphology of prey (Scharf

et al. 2000). Marine fish predators seemingly become

more successful with size due to a variety of factors

including an increase in sustained and burst swimming

speed (Keast & Webb 1966; Webb 1976; Beamish 1978;

Blaxter 1986). The high number of precaudal vertebrae

and the consequent proportionally longer tail of

yTitanonarke with respect to extant narcinoids might sug-

gest an increased swimming performance, because in tor-

pediniforms, contrary to most batoids, the precaudal tail

and the caudal fin are the primary propellers (Roberts

1969; Rosenberger 2001; Claeson 2014).

It is well established that the early Palaeogene is

marked by high origination rates of bony and cartilagi-

nous fish lineages, related at least in part to opportunistic

ecological niche-filling scenarios in pelagic and benthic

realms (Walker & Brett 2002; Kriwet & Benton 2004;

Friedman 2009, 2010; Guinot & Cavin 2016; Marram�a
et al. 2016a, b; Bellwood et al. 2017). Moreover, the

appearance of modern coral reef ecosystems during the

early Palaeogene allowed the exploitation of new ecologi-

cal resources, as highlighted by the development and

expansion of piscine herbivory, high-precision benthic

feeding, nocturnal feeding and ambush predation (Bell-

wood 2003; Goatley et al. 2010; Schmitz & Wainwright

2011; Bellwood et al. 2014; Floeter et al. 2017; Marram�a
& Carnevale 2017b). A second wave of innovations in

feeding mode, including coral feeding, foraminifera feed-

ing, particulate feeding and fish cleaning, arose during the

Oligocene/Miocene transition, and were linked to the

expansion of scleractinian-dominated reefs (Cowman

et al. 2009; Bellwood et al. 2017; Floeter et al. 2017).

However, larger foraminifera of the genus yAlveolina
might have represented an abundant and unexploited food

source for fishes of the Bolca palaeobiotope well before

the Oligocene/Miocene boundary. From this perspective,

the Eocene yTitanonarke might be considered the first

documented evidence of a novel feeding strategy experi-

mented with by the Torpediniformes in the context of the

massive adaptive fish radiation in the aftermath of the

end-Cretaceous extinction.

Conclusions

The excellent preservation of the yTitanonarke specimens

from the Bolca Lagerst€atte allowed a detailed reinterpreta-
tion of the morphology of this Eocene numbfish. A new

species of yTitanonarke also has been recognized, based

on several morphological differences with respect to the

type species. A monophyletic Narcinidae has been

unquestionably recovered based on parsimony analyses,

with yTitanonarke occupying a more derived position

compared to previous hypotheses. The presence of a fos-

silized embryo in situ in a marine batoid fish is reported

here for the first time, providing evidence of viviparity in

narcinids already in the early Eocene. Moreover, the anal-

ysis of the gut contents and the large size of yTitanonarke
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indicate that the early Palaeogene radiation of torpedini-

forms was characterized by the exploration of novel feed-

ing strategies, remarkably different from those of extant

polychaete-specialized numbfishes. The emergence of a

novel feeding adaptation in the Eocene is particularly

intriguing if considered in the context of the coeval exten-

sive adaptive radiation in several bony and cartilaginous

fish lineages that took place to fill the ecological roles left

unoccupied by the biodiversity lost via the end-Creta-

ceous extinction (see Kriwet & Benton 2004; Friedman

2009, 2010; Guinot & Cavin 2016; Marram�a et al. 2016a,
b; Bellwood et al. 2017).
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