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Abstract

This paper investigates the contribution of external-to-the-firm knowledge to the
inventive process inside companies by exploiting a survey of industrial inventors
combined with patent data. In the empirical analysis, inventors’ knowledge sourcing
strategies are employed as explanatory factors for their inventive performance. The
results suggest that both the separate and joint use of external scientific and market
knowledge are positively and significantly associated with inventors’ quantity and
quality of inventions. In addition, higher levels of education act as a moderating
factor of the joint use of scientific and market knowledge. Tracing a positive link
between external knowledge and individual inventive process is relevant for research
as well as policy, considering that knowledge exchange across a wide range of organ-
isations is at the core of the innovation policy agendas in most countries.
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1 Introduction

External knowledge acquisition is necessary for firms’ innovation activities, especially in

the current context of market globalisation and rapid technological change (Dahlander and

Gann, 2010). Both the early literature on technological change (see e.g. Allen and Cohen,

1969; Allen, 1977), and more recent studies on firms’ knowledge sourcing strategies (see

e.g. Arora and Gambardella, 1990, 1994; Cassiman and Veugelers, 2006, 2007; Frenz and

Ietto-Gillies, 2009) assert that firms cannot rely only on their internal resources but have

to tap into knowledge outside their boundaries in order to successfully produce innovation.

On the same vein, it is suggested by Chesbrough (2003) that innovative firms shifted to

an “open innovation” model, according to which they exploit a wide range of external

actors and knowledge sources to help them reach and sustain innovation. The empirical

innovation literature on the relation between firms’ knowledge sourcing strategies and

the creation of innovation is vast (see e.g. Arora and Gambardella, 1990, 1994; Cassiman

and Veugelers, 2006, 2007; Frenz and Ietto-Gillies, 2009). Recently, scholars have started

looking at the role of external knowledge for inventors as the individuals who are primarily

responsible of the innovative process. By exploiting information available from patent

documents and surveys of inventors, several studies uncover some of the factors that

influence inventors’ patenting activity, including individual characteristics (e.g. education,

age, mobility) and knowledge flows (see e.g. Giuri et al., 2007; Hoisl, 2007; Mariani and

Romanelli, 2007; Schneider, 2009; Mohammadi and Franzoni, 2014). Nonetheless, the

relevance of different sources of external knowledge and how these combine has been

rarely addressed at the micro level of the individual inventor.

This paper focuses on the individuals that are primarily responsible for the inventive

activity inside the firm, i.e. patent inventors, on the basis of the consideration that

innovation is not simply the product of firms and organisations, but it also requires

individual creativity. Besides, patents are commonly recognised as creative output (Huber,

1998), hence representing the ideal innovative outcome to look at.

Inventors’ role inside firms has been historically that of coming up with new knowledge,

thus focusing most of their effort on purely scientific and creative activities, often in
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isolation (Huber, 1998; Wuchty et al., 2007). However, the process of knowledge creation

has dramatically changed in the last century: nowadays, research is increasingly done in

teams across almost every field of science, therefore allowing for specialisation and hence,

better performance (Wuchty et al., 2007). Recently, the inventor-patent literature has

also pointed out to a more integrated role of inventors, whereby although they tend to

specialise in a given activity, they are also responsible and often highly concerned with

the decisions surrounding the R&D process (Weck and Blomqvist, 2008; Schneider, 2009;

Pasquini et al., 2012; Mohammadi and Franzoni, 2014).

Inventors nowadays are engaged into establishing collaboration inside and outside the

company, acting often as “inventors-managers” in the inventive process. In particular,

they are engaged into both the scientific side and the market side of knowledge creation

and commercialisation processes. Carrying out both these activities independently may

create tensions in the inventive process (Pasquini et al., 2012; Fleming, 2002). However,

the integration of them has been proven to be positively linked to patent success, as we

will explore later in this work.

In line with recent trends, in this work we investigate the contribution of external-to-the-

firm scientific and market knowledge to inventors’ patenting performance. In particular,

we argue that inventors who combine knowledge from scientific and industrial organi-

sations exploit different characteristics of both types of knowledge that fulfill different

needs of the R&D process throughout different stages of the inventive flow. In addition,

we test two sub-hypotheses to investigate moderating effects of the relationship between

knowledge complementarity and inventors’ outcomes. To test our hypotheses, we exploit

information from an original survey of industry inventors that investigates their use of

knowledge from a wide set of external actors, including universities, research centers, sup-

pliers, customers and competitor firms, which we combine with patent data collected from

the European Patent Office.

Inventors’ patenting performance may take various forms. We investigate whether the

joint use of knowledge sourced from science-related channels (university and research

centres) and from market-related actors (suppliers, customers, competitors) positively in-
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fluences inventors’ quantity and quality of patents produced. In fact, while the number of

patents that inventors produce simply indicates the quantity of inventions, inventors also

acquire visibility depending on the technological and economic relevance of their patents

(Mariani and Romanelli, 2007). Therefore, it is fundamental to consider indicators of both

quantity and value of patents, in order to fully grasp inventors’ patenting performance.

In the empirical analysis, three measures of inventors’ performance will be estimated as a

function of scientific and market knowledge sourcing strategies, controlling for individual-

level characteristics as well as patent- and firm- level determinants. The outcome measures

are the amount of patents produced by inventors in 2000-06, the count of forward citations

received by inventors’ patents within 5 years from patents’ priority date, and the count of

claims included in each inventor’s patents produced in 2000-06. Count data models are

employed. Together with the baseline regressions, two robustness checks are performed

to check the reliability of the results.

The novelty of the present study lies in the focus on the individual innovator as unit

of analysis, instead of the firm, which is the typical unit of analysis for these types of

studies. In addition, the paper exploits an original data source that combines a survey

of inventors carried out in three European regions with patent data from the European

Patent Office (EPO). Whereas previous literature has mainly relied on proxies for the

knowledge linkages of inventors to knowledge sources, the survey data here presented is

likely to provide a better indicator since inventors were explicitly asked questions on the

use of knowledge sources in the inventive process.

The remainder of the paper is organised as follows: section 2 provides the theoretical

framework and hypotheses development; in sections 3 and 4 we present the variables and

methods used in the econometric analysis; the results from the baseline regressions, as

well as from two robustness checks, are presented in section 5; the last section concludes

the paper by summing up and discussing our findings.
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2 Theoretical framework and hypotheses

2.1 The role of scientific and market knowledge for innovative
activities

The long-standing debate on the nature of technological change, being it mainly market-

pull or technology-push, has evolved around the distinction between scientific knowledge

and market knowledge. The seminal works of e.g. Griliches (1987), Jaffe (1989), Adams

(1990), have uncovered the role of external knowledge from academia for innovation ac-

tivities of firms and economic development. Jaffe (1989) in particular, was among the

first scholars to show that there is a significant effect of university research on firms’

patenting activity. Since then, the literature on firm-university links has flourished (see

e.g. Mansfield, 1995; Mansfield and Lee, 1996; Cohen et al., 2002), showing that firms

extensively exploit scientific knowledge from academia in order to produce innovations

and stay competitive on the market.1

However, firms also seek and exploit technical knowledge from external agents that are

close to the market in order to find new ideas and address technical issues that arise

during the innovation process. This helps businesses to reduce the uncertainties associated

with the innovation process (Hagedoorn, 1993). The literature often refers to technical

knowledge provided by close-to-the-market actors, such as customers, competitors and

suppliers, as market or industrial knowledge, so to stress its source (see e.g. Von Hippel,

1988), as opposed to scientific knowledge that comes from research organisations.

Because of their intrinsic characteristics, scientific and market knowledge may affect the

research process in different ways. Investigating theoretically the advantages and disad-

vantages of academic and private research, Aghion et al. (2005) posit that the former is

most useful in the early stages of the research process, whereas industrial research is more

valuable at later stages. The reasons lie behind the different systems of incentives within

academia and within firms. Because of its commitment to leaving creative controls in

the hands of scientists, academia can be indispensable for early stage research aimed at
1More recent empirical works on this topic include Arvanitis et al. (2008); Becker (2003); Fritsch and

Franke (2004); Lööf and Broström (2008); Belderbos et al. (2004); Medda et al. (2006); D’Este et al.
(2012); Scandura (2016).
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fostering new research lines; instead, the private sector’s focus on higher payoff activities

makes it more useful for later-stage research, aimed at producing profitable innovations

and introducing them to the market.

Besides theoretical predictions, the empirical literature extensively shows that firms use

knowledge from different channels, often combining internal and external knowledge acqui-

sition strategies (see e.g. Arora and Gambardella, 1990, 1994; Cockburn and Henderson,

1998; Laursen and Salter, 2006). In this respect, the seminal work of Cohen and Levinthal

(1990) on the concept of absorptive capacity, defined as the capacity of a firm to recog-

nize, assimilate and exploit external knowledge, particularly stresses the co-existence of

different types of knowledge inputs and their contribution to firms’ innovative activities.

Cassiman and Veugelers (2006) show that internal R&D and external knowledge acquisi-

tion are complementary innovation activities, but they also find evidence of substitution

effect between embodied and disembodied technology acquisition strategies (Cassiman

and Veugelers, 2007). Criscuolo et al. (2005) and Crespi et al. (2008) make use of firm-

level data and estimate a knowledge production function to study the contribution of

different knowledge flows to firm-level productivity: while the former study shows that

globally engaged firms innovate more thanks to the intra-firm worldwide pool of informa-

tion as well as from suppliers, customers and universities, the latter particularly stresses

the importance of clients, among knowledge flows.

However, negative effects from interacting with external agents have also been traced. For

instance, by linking UK firms’ search strategy to their innovative performance, Laursen

and Salter (2006) show that searching “widely” and “deeply” takes a curvilinear relation-

ship with performance: this implies that open search strategies have positive effects on

performance up to a certain level after which the costs associated with them may offset

the benefits, hence bearing a negative effect on innovative performance.
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2.2 The role of scientific and market knowledge for inventors

Most empirical works on the the role of external knowledge for innovation take the firm

and its innovative activities as the unit of analysis. Nonetheless, the attention has re-

cently shifted to a finer level of analysis, such as the team of inventors and the individual

inventor inside the firm (see e.g. Giuri et al., 2007; Hoisl, 2007; Mariani and Romanelli,

2007; Pasquini et al., 2012; Weck and Blomqvist, 2008; Schneider, 2009; Walsh et al.,

2016). The interest in the inventor is grounded on the fact that innovation is not simply

the product of firms and organisations. New ideas are inherent to individuals, and inno-

vation ultimately requires individual creativity to happen (Ahuja et al., 2008). Besides,

patents are commonly recognised as creative output (Huber, 1998). It derives that patent

inventors are of particular interest to shed new lights on firm innovation.

In their study of the relationship between individuals’ motives and innovative perfor-

mances, Sauermann and Cohen (2010) highlight that the analyses of innovation can be

improved upon by paying attention to the individuals who are engaged in innovative ac-

tivities within firms, and particularly to their motivations. The reason for this is twofold.

On the one hand, R&D employees are able to exercise high degree of autonomy due to the

typical uncertainty of technical change (Sauermann and Stephan, 2010; Vallas and Klein-

man, 2007) and they often have greater expertise (and experience) than management.

On the other hand, inventive effort is hard to observe by managers, who have limited op-

portunity to use standard economic incentives based on observable outputs, this in turn

reinforcing the degree of authority of the individual employee (Ouchi, 1979; Prendergast,

1999). As a consequence, it is reasonable to expect that firms’ innovation highly depend

on individuals’ innovative effort, which remains very often an unexplored “black box”.

As a matter of fact, the empirical evidence about academic inventors is vast, partly because

of a large amount of information publicly available, while evidence on private inventors is

rather limited. The literature confirms that patent productivity among private inventors

is skewed, similarly to that of academic inventors: few inventors produce a high number

of innovations whereas the vast majority display a low invention rate. However, because

of lack of information at the individual level, it is hard to identify the reasons behind this
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behaviour (Mariani and Romanelli, 2007; Menon, 2011). Furthermore, it has been shown

that both inventors’ factors, including gender, age and education, and characteristics of

the employers affect the inventor’s performance (Giuri et al., 2007).

It also turns out that industrial inventors’ motivations are similar to those of academic

inventors, especially gaining prestige and reputation, caring for employer’s performance

and achieving personal satisfaction (Giuri et al., 2007). In fact, it is arguable that be-

ing both academic and industrial inventors creative individuals, they also have common

characteristics, motivations and goals (Giuri et al., 2007). Analysing the motivations of a

sample of over 1,700 U.S. PhD scientists and engineers, Sauermann and Cohen (2010) find

that motivations regarding intellectual challenge, independence and money are positively

related to the number of patent applications, whereas motives regarding job security and

responsibility tend to have a negative relationship.

On the relationship between inventors’ knowledge sources and their performance, several

empirical works exist on academic inventors that suggest the existence of a strong link

between past scientific activity and future patent production. This literature has exten-

sively documented that inventions are often realised and patented after a prolific period of

scholarly publications (Calderini et al., 2007), and that the most productive scientists are

more likely to patent their inventions than their less-productive peers (Breschi et al., 2007;

Stephan et al., 2007; Fabrizio and Di Minin, 2008). As pointed out by Mohammadi and

Franzoni (2014), these findings suggest that commercial activities, particularly inventions,

are a byproduct of a prolific research activity conducted for scientific purposes. This is in

line with the argument that scientific research and, more generally, scientific knowledge

is an important antecedent of inventive output, as it was also confirmed by studies at

the firm-level (see e.g. Gittelman and Kogut, 2003; Fleming and Sorenson, 2004; Zucker

et al., 2002).

However, previous studies also show that, if compared to technical knowledge from in-

dustrial channels, especially customers, scientific sources of knowledge are often the least

important for inventors (Eurostat, 2007; Giuri et al., 2007; Weck and Blomqvist, 2008).

This is not surprising, since the distance between purely scientific knowledge and market
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knowledge is quite large. Notwithstanding, scientific literature often scores higher than

other sources of scientific knowledge, suggesting that the latter is not unimportant per se,

but interacting with universities or public research laboratories may require high effort

and investment in establishing relationships (Giuri et al., 2007). A recent study of US

triadic patents reveals that heterogeneity of collaboration patterns in inventing, including

university-industry collaboration, drive higher invention quality, but vertical collabora-

tion is more critical to commercialization than is university-industry collaboration (Walsh

et al., 2016).

Only recently the interdependence between various source of external knowledge for the

inventive process has been investigated. On the one hand, it has been shown that scientific

and market sources of knowledge display a subadditive relationship for the monetary value

of the inventions (Schneider, 2009). On the other hand, it has been uncovered a positive

and significant contribution of external-to-the-firm knowledge to the probability that a

patent is commercialised (Pasquini et al., 2012). A qualitative case study on the inter-

organisational relationships developed by inventors within a company shows that patent

competitiveness benefits more from buyer-seller relationships than from R&D consortia

(Weck and Blomqvist, 2008). More recently, Mohammadi and Franzoni (2014) show

that inventions based on prior scientific knowledge receive more citations than those that

are not, hence highlighting positive returns to this type of knowledge; prior technical

knowledge also correlates positively to highly cited patents, but only up to a certain level,

after which the relationship becomes negative.

2.3 Hypotheses development

To put it in Fleming and Sorenson (2004) words, “Before considering how science alters the

process of invention, one must first ask what inventors actually do”. Similarly, we should

know what inventors do and how knowledge acquired through external interactions can

be characterised, before arguing about how external knowledge may alter the inventive

process inside companies.

Inventions have been described by a popular view in the history of technology as a process
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of recombination of technological components, where the latter refer to any fundamental

bits of knowledge that may be used to develop inventions (Fleming and Sorenson, 2004).

According to this view, inventions originate either from the combination of components in

a novel manner, or from the reconfiguration of existing combinations (Schumpeter, 1939;

Nelson and Winter, 1982; Henderson and Clark, 1990; Weitzman, 1996).

In particular, in the view of Fleming and Sorenson (2004), the search for new components

occurs “locally”, in cognitive areas that are close to the prior experience of the inven-

tor. Notably, in the process of so-called local search, scientific knowledge (or scientific

research) helps inventors in directing their efforts towards more effective combinations

not fully exploited yet. Scientific knowledge can be described as basic science providing

the theoretical understanding of technological components that is necessary to generate

and test theories. For this reason, science may positively influence the search process by

eliminating fruitless avenues and avoiding wasted efforts (Nelson, 1982), hence leading

inventors to the proper combination of components (Fleming and Sorenson, 2004). In

addition, since universities are repositories of scientific knowledge having a wide range of

applications that potentially can produce better technology, it is highly likely that firms

interacting with universities will advance their scientific understanding and generate rad-

ical invention (Goto, 2000; Maine and Garnsey, 2006; Perkmann et al., 2013; Walsh et al.,

2016)

The purpose of scientific knowledge so conceived is to foster technological progress, but

it is usually disconnected from the market (Fleming and Sorenson, 2004). On the con-

trary, market knowledge is more applicative, since its aim and usefulness lie in solving

well-defined users’ problems (Aghion et al., 2005; Lüthje et al., 2005). Although it is often

referred to as technical knowledge, market knowledge is frequently acquired through repet-

itive collaborations with market actors, including suppliers, competitors and customers

(Pasquini et al., 2012). For its characteristics, the exploitation of market knowledge is

unlikely to lead to technological breakthrough (Cohen et al., 2002; Von Hippel, 2005),

however it is the major source of innovative ideas (Pasquini et al., 2012) and it is often

ranked the most important source of external knowledge by inventors (Eurostat, 2007;
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Giuri et al., 2007; Weck and Blomqvist, 2008).

Given their different and, to some extent, opposite characteristics, scientific and market

knowledge may yield different effects on the inventive process. Inventors who merely use

scientific knowledge may have radical ideas but create innovations that are far from the

market or hard to commercialise, whereas inventors who exploit market knowledge do not

focus on breakthrough innovation but instead create close-to-the-market and more prof-

itable innovations. In reality, inventors often combine several sources of knowledge (Weck

and Blomqvist, 2008; Schneider, 2009; Pasquini et al., 2012; Mohammadi and Franzoni,

2014), which suggests that there could be a complementarity relationship between the

two that have consequences on inventors’ performance.

Therefore, we hypothesise that the joint use of scientific and market knowledge has pos-

itive effects on inventive activity. This is because for an invention to be successful, the

interaction between “the application of science” and “technological diversity”, the inte-

gration of “experimental and theoretical research”, or, in other words, the combination

of technological potential and marketability, are not only beneficial but in many cases

fundamental (Vincenti, 1990; Fleming, 2002).

We argue that the joint use of knowledge sourced from science-related channels and from

market-related actors positively relates to inventors’ performance in terms of patent quan-

tity and quality. Our argument is that inventors who combine scientific and market

knowledge exploit characteristics of both kinds of knowledge that fulfill different needs

of the inventive process: they would be merging the technological and innovative poten-

tial that derives from scientific knowledge with the market potential arising from market

knowledge. Moreover, inventors are likely to benefit from scientific and market knowl-

edge throughout different stages of the inventive process. Academic research is likely to

be more useful in earlier stages of the process due to its commitment to leave creative

controls in the hands of scientists. Instead, research carried out by market actors, aimed

at producing profitable innovations, is likely to be more useful for later-stage research

(Aghion et al., 2005). Hence, we put forward the following hypothesis:

Hp 1: The joint use of external scientific and market knowledge is positively associated
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with industry inventors’ performance.

Furthermore, we test two additional sub-hypotheses, with the aim to study factors that

moderate the effect of knowledge complementarities on inventors’ outcomes. Since this

study focuses on individual inventors working inside companies, we investigate whether

the working environment and individual characteristics influence the above described re-

lationship.

In the first place, we focus on the job position inside firms, testing whether working in

a well-defined R&D department or division moderates the effect of knowledge recombi-

nation on inventors’ performance. Although new ideas are inherent to individuals, the

organisation of the R&D structure and processes inside companies certainly influences the

activity of inventors (Ahuja et al., 2008). In addition, depending on the characteristics of

the knowledge available to inventors, the effectiveness of learning for innovation in a R&D

or non-R&D division can vary (Lee and Walsh, 2016). Lee and Walsh (2016) show that

invention productivity is higher for non-R&D inventors if knowledge is highly “visible”,

whereas the productivity of R&D inventors increases as knowledge “generality” goes up.

Inventors employed on specific R&D tasks might be subject to centrally defined R&D

targets, thus enjoying lower levels of autonomy (Cardinal, 2001; Conti et al., 2013), which

implies higher costs of sourcing external knowledge. In addition, inventors working in

R&D divisions may access highly specialised knowledge available internally, hence being

less in need of external knowledge recombination. For this reason, we contend that in-

ventors working in R&D divisions and jointly sourcing knowledge from various external

channels display a lower performance than inventors who do not work on specific R&D

jobs. This is because of the (higher) costs related to accessing external knowledge as

compared to using internal knowledge. Therefore, we postulate the following hypothesis:

Hp 2a: The joint use of external scientific and market knowledge is less beneficial for

industry inventors’ working in R&D-specific firms’ divisions.

Secondly, we investigate the effect of education on the relationship between knowledge

complementarities and inventors’ performance. To do so, we test whether holding a

PhD moderates the effect of knowledge recombination on patenting activity. On the one
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hand, having a PhD per se is expected to be positively related to inventors’ performance,

particularly to the value of a patent (see e.g. Gambardella et al., 2008). This is because

inventors with better ability and scientific knowledge are expected to be more productive,

but also because education represents a signal that inventors and employers use to find

the right “match” between the research potential of the former and the characteristics of

the latter (Giuri et al., 2007).

On the other hand, better educated inventors are endowed with a highly specialised knowl-

edge set that allows them to need less external knowledge. As a consequence, the cost

of sourcing various types of external knowledge jointly may be higher than the potential

benefit accruing from that. Therefore, we postulate that having a PhD moderates the

positive effect of external knowledge recombination on inventors’ patenting activity. We

put forward the following hypothesis:

Hp 2b: The joint use of external scientific and market knowledge is less beneficial for

industry inventors who hold a PhD.

In order to test our hypotheses, we study the role of inventors’ knowledge set for their

patent production and quality. Although we consider quantity and quality of patents

together, it is worth to underline that there is a trade-off between them, as pointed out

by Conti et al. (2013) among others. In particular, while increasing the invention rate is

typically based on the exploitation and refinement of clearly established research paths

(see e.g. Sørensen and Stuart, 2000), raising the likelihood that new inventions result in

breakthroughs is tightly linked to the exploration of so-called “outside-the-box” thinking

(see e.g. Azoulay et al., 2011).

As a consequence, the quantity-quality trade-off translates onto resources allocation inside

companies: on the one hand, allocating resources to inventors who are prolific thanks to

the exploitation of well-established approaches will most likely increase the inventive rate

of the company; on the other hand, such allocation is also likely to reduce the likelihood

of new inventions being breakthrough, because the latter results from inventors who think

“outside the box”. For this reason, we expect that the relationship between inventors’ per-

formance and external knowledge may differ depending on whether we consider quantity

13



or quality of patents.

In addition, a trade-off exists in terms of appropriability between knowledge from universi-

ties and research centres and knowledge from industry. Because of their differences, these

two types of knowledge have different degrees of appropriability: scientific knowledge may

be characterised by low level of appropriability due to its high degree of tacitness, while

industrial knowledge may have higher appropriability because of its higher level of codi-

fication. The combination of the two can raise appropriability thanks to the combination

of pieces of knowledge coming from different domains (Saviotti, 1998).

3 Data and variables

3.1 The Survey of inventors and the EPO data

The data consists of a survey of inventors combined with patent records of the European

Patent Office (EPO) provided by the Bocconi University CRIOS Research Centre. The

survey is part of a European Union Seventh Framework Program funded project, carried

out between 2011 and 2012 in the following European regions: Catalonia (Spain), East

and West Midlands (United Kingdom) and Piedmont (Italy). The aim of the survey is

to explore the inventive process of industrial inventors in order to provide new insights

about the demand of knowledge expressed by the actors directly involved in the innovative

process. In addition, the survey aims at obtaining individual-level information that are

not usually available in patent documents, such as age, gender, education and occupation.

The selection of regions was based on comparability. On the one hand, the aim was to

choose non-core regional innovation systems, particularly non-capital regions that, be-

cause of the presence of national research institutions and/or other core research organ-

isations, would display peculiar characteristics in terms of knowledge linkages and often

higher innovative performances. Indeed, according to the 2012 and 2009 European Com-

mission Regional Innovation Scoreboards, none of the regions in our sample was part of the

group showing the highest innovation performance (i.e. “high innovators” or “innovation

leaders”) in the years pre-2006.2 On the other hand, regions displaying similar innovation
2https://publications.europa.eu/s/d7pp

https://publications.europa.eu/s/d7pq
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performances were to be chosen; in fact, as of 2006, the three regions were categorised

in the same group in terms of innovation performance, namely “average to medium-high

innovators” or “innovation followers” on the basis of several indicators. The latter include

regional enabling factors (education level and public R&D expenditure), firm activities

(business investments in R&D, knowledge linkages in entrepreneurship, intellectual as-

sets), and outputs (product/process/organisational business innovation, innovative sales,

R&D employment). Innovation followers are characterised by a balanced performance

structure in terms of all indicators.3

The survey targeted the population of inventors resident in Catalonia, the Midlands and

Piedmont, named on at least one EPO patent application between 2000 and 2006.4 In-

formation on inventors’ names and residential address was extracted from the Patstat-

CRIOS EPO dataset in early 2011 and is up to date to the end of 2011. The EPO Patstat

(PATent STATistical) database is a patent statistics raw database, held by the EPO and

developed in cooperation with the World Intellectual Property Organisation (WIPO), the

OECD and Eurostat. A clean version of the raw data was provided by CRIOS-Bocconi.5

After cleaning the address list6, and excluding inventors working at universities and pub-

lic research centers, the Pick-Me questionnaire was distributed during winter and spring

2012 to 1607 inventors in Catalonia, 882 inventors in the Midlands and 1293 inventors

in Piedmont; it resulted in 873 valid responses, 223 of which are from Catalan inventors

(14% response rate), 117 are from Midlands’ inventors (13% response rate) and 533 are

from Piedmontese inventors (41% response rate).
3Ibid.
4The reason for a relatively recent and short time frame is that if we sampled very “old” patents,

it would have been difficult to track down the inventors and moreover, they may not remember enough
about the invention process. On the contrary, very “recent” patents might not provide enough information
about their value or use.

5See http://ricercaweb.unibocconi.it/criospatstatdb/ for further information.
6The cleaning process follows various steps and differs across regions, although only to a small extent.

Differences depend on how the survey has been distributed in each region. In Catalonia, the questionnaire
has been sent in hard copy to 1607 inventors; the original raw number of inventors was 4186, the cleaning
procedure consisted in excluding duplicate observations in terms of name and address. Inventors from
Piedmont received the survey via email in electronic format. Email addresses of 1293 inventors have been
retrieved out of 3690 inventors’ records. Similarly to Catalonia, inventors from the Midlands received
a hard copy of the questionnaire. The raw sample of 6458 inventors has been validated by verifying
home addresses on public telephone and address directories so to avoid sending questionnaires to wrong
addresses and/or sending duplicate copies. The clean sample includes 882 inventors with verified address.

15



Sample representativeness analysis was carried out at inventor level on patent variables,

in each region. We compared patent count, forward citations received within 5 years

from priority date, claim count, backward citations count, share of co-invented patents

and share of foreign owned patents across the raw sample of inventors per region, the

sub-sample of contacted inventors and the sub-sample of respondents. The results are

reported in Tables 11, 12, 13 in Appendix A. In the case of the Midlands, the sub-sample

of contacted inventors is not statistically different from the whole raw sample of inven-

tors. Similarly, there are no significant differences between the sub-sample of respondents

and the sub-sample of contacted inventors. In the case of Piedmont, the sub-sample of

contacted inventors is significantly different from the raw sample of inventors, in terms

of all variables, however differences are rather small in most cases; instead, no significant

differences emerge from the comparison of contacted inventors with respondents, except

for the share of foreign patents, which is higher among respondents. As far as Catalan

inventors are concerned, due to lack of information it was only possible to compare the

raw sample of inventors with the sub-sample of respondents. With the exception of patent

and claim count, no significant differences emerge from the comparison. Overall and with

only few exceptions, respondents represent quite well the samples of inventors contacted

to fill in the survey or the entire sample of inventors in the regions.

The survey includes a question on the use of various sources of knowledge, split into inter-

nal sources (colleagues inside the firm and other business units/departments) and exter-

nal sources, i.e. customers, competitors, suppliers, private research centres/consultancy,

universities and public research centres. The question asks to the inventor to rank the

relevance of each source from 0 (not used) to 4 (very important). The survey data have

been combined with the Patstat-Kites database via inventor’s identifier.7 It has been pos-

sible to retrieve all patent information for each inventor, including the number of patent

applications, the status of each application (granted or not), patent technological classes

(reclassified into 7 macro-classes), number of forward and backward citations per patent,
7Inventor’s identifier (codinv2 ) uniquely identifies inventors in the survey data but not in the patent

database, where more than one entry exists for multi-patent inventors. Data has been collapsed at
inventor’s level as in the survey data.
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number of claims per patent and assignee of the patents (i.e. the owner). The final dataset

is a cross-section of 873 inventors with information collected from the survey and from

patent data.

3.2 Dependent variables

3.2.1 Quantity of inventions

In the patent literature, patent count is usually employed and widely accepted as a mea-

sure of inventor’s production of patents (see e.g. Hoisl, 2007; Mariani and Romanelli,

2007). However, patent count suffers from the limitation that it does not capture non-

patented inventions, thus not informing about different propensities to patent across in-

dividuals. By accounting only for inventions that successfully reach the market, this

measure does not consider the relevance of other inventions, including those whose patent

applications are still under evaluation by the EPO or have been rejected, and those whose

inventors will never apply for a patent. In addition, very often patented inventions are not

commercialised, hence their value remain partly unknown.8 Nonetheless, non-patented

and non-commercialised inventions do represent the outcome of innovative activity. Since

the EPO keeps track of all patent applications, it is possible to partly mitigate this bias

by taking into account both granted patent and patent applications, hence accounting for

all the patenting activity of inventors. Therefore, we include in the patent count (Npat)

both patent applications and granted patents between 2000 and 2006.9

Due to the limited time span, only a truncated measure of inventors’ patent count can be

observed, hence not considering the past patenting activity (if any). As a consequence, we
8The limitations to the use of patents are more generally related to the reasons for patenting. As a

matter of fact, patents may be used by companies for various strategic motives: they are an instrument for
delimiting the present and future technological space against competitors or for restricting competitors’
technological opportunities; patents are also used as assets in collaborations, to generate licensing revenues
or to get better access to the capital market; finally, they can also be used by companies’ management as
a performance indicator and even linked to reward schemes for employees (Blind et al., 2009). Besides, it
must be noted that a company having a patentable innovation in hand has three options, where applying
for a patent is only one: it can patent, maintain trade secrecy, or defensively publish. In particular,
defensive publishing prevents anyone (including the publishing firm) from patenting, and hence guarantees
the company the right to use its innovation (Johnson, 2014).

9As a robustness check we will also employ the mean number of patents invented during the years of
activity in the time span under consideration.
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would be treating inventors who started patenting before 2000 the same as inventors who

start later or after 2000. This bias, known as truncation bias, can hardly be eliminated.

However, as previously noted, a limited time span has been chosen in order to track

more easily the inventors to be surveyed and ask them about a well-defined and limited

inventive period. Although the truncation bias cannot be corrected, we include various

control variables in the attempt to partly mitigate it. These are the age of inventors (and

its square), a dummy indicating whether inventors retired during the time span under

consideration and a set of year dummies indicating the year in which each inventor enters

the sample.

3.2.2 Quality of inventions

The most used measures of patent quality are derived from the number of forward citations

received by a patent (Trajtenberg, 1990; Harhoff et al., 1999; Hall et al., 2005). The idea

behind the use of forward citations is that they represent the technological relevance of

a patent in terms of potential development of related technologies, thus mirroring the

technological and economic value of the patent (Nagaoka et al., 2010). Indeed, previous

empirical evidence extensively shows that forward citations are highly correlated with the

value of inventions (see e.g. Hall et al., 2001, 2005; Harhoff et al., 1999; Lanjouw and

Schankerman, 2004; Trajtenberg, 1990): such relationship relies on the assumption that

highly cited patents represent important inventions that will constitute relevant prior art

for future patents.

However, forward citations may be noisy measures of knowledge flows for various reasons

(Jaffe et al., 1998; Agrawal and Henderson, 2002; Roach and Cohen, 2013). In particular,

their use is questionable because their purpose, unlike citations in academic publications,

is not to identify the antecedent knowledge upon which a given invention or discovery

is built, but rather to delimit the scope of the patented invention (Jaffe et al., 1993).10

Despite their limitations, forward citations have been found to reflect meaningful aspects
10Other reasons include the fact that not all innovations are patented (Scherer, 1983; Griliches, 1990;

Cohen et al., 2000), not all knowledge flows are cited or even citable (Griliches, 1990; Pavitt, 1991), what
is cited is influenced not only by the inventor, but also by firms’ citing strategies (Lampe, 2012), by
patent attorneys, and by patent examiners (Alcacer and Gittelman, 2006; Alcacer et al., 2009).
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of knowledge flows, particularly from public research (Roach and Cohen, 2013).

As for the construction of the variable, simply counting forward citations generates some

inconsistency when dealing with recent patents. This is due to the time lag between

priority, application and publication of both cited and citing patents. This would limit

substantially the reliability of the indicator for patents filed in more recent years (Hall

et al., 2005), for which we may underestimate the actual number of forward citations. In

the attempt to mitigate this bias, we build a dependent variable that accounts for the

amount of citations received (by patents filed between 2000 and 2006) within five years

from priority date (ForwCit), following usual practice in the patent literature (see e.g.

Mariani and Romanelli, 2007).11

Moreover, we rely on one more measure of patent quality, based on the count of claims

in each patent application. Claims define the technology and subject matter that are

protected by the patent, thus determining the breadth of the rights conferred by a patent

(OECD, 2009). In addition, the structure of patent fees is generally based on the number

of claims contained in the document, hence a large number of claims might also imply

higher fees (Squicciarini et al., 2013). Therefore, the number of claims in a patent docu-

ment mirrors, on the one hand, the technological breadth of a patent, and on the other

hand, its expected market value: the higher the number of claims, the higher the expected

value of the patent (Tong and Frame, 1994; Lanjouw and Schankerman, 2001, 2004).12

Our claim-based indicator (Claims) is calculated by adding up the number of claims in

each inventor’s patent.13

TABLE 1 ABOUT HERE

FIGURE 1 ABOUT HERE
11As a robustness check we will also employ the mean number of forward citations received within five

years from priority date.
12To some extent, this indicator is also subject to truncation, similarly to forward citations, given

that claims are reviewed during the examination process, e.g. claims may be dropped or redefined by
examiners. Hence, latest patent cohorts, where a relatively higher number of patents may still be under
examination, may have higher mean values of the indicator. However, as our data includes patents filed
up to 2006 with information updated to the end of 2011, and given the average time lag between priority,
application and publication (typically 18 months between application and publication for the EPO) we
could assume that the truncation problem may be small or negligible in our sample, even for patents filed
in 2006.

13As a robustness check we will also employ the mean number of claims across patents invented during
during the time span under consideration.
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Table 1 summarises the descriptive statistics of the dependent variables in the whole

sample as well as across region. The mean number of patent applications (both granted

and not) per inventor in the whole sample is 1.82. In line with previous evidence (Giuri

et al., 2007; Menon, 2011), the variable is highly skewed: the maximum number of patent

applications per inventor is 27 and 67% of inventors applied for a patent only once between

2000 and 2006, while only 6% of the sample did it more than five times (see Figure 1).

The mean number of patent applications per inventor in Catalonia and the Midlands is

1.57, whereas it is above the average (1.98) in Piedmont. In all regions the distribution is

skewed, with the vast majority of inventors (between 63 and 75% across regions) having

produced only one invention.

As far as quality is concerned, inventors’ patents have been cited on average 4.11 times

within 5 years from priority date. Similarly to the patent count, this measure is left-

skewed: in fact, around 40% of inventors received no forward citations at all. Among

inventors who received at least one citation, the mean citation count is 7.3. The most

highly cited inventors are found in Catalonia and Piedmont, whereas inventors in the

Midlands cumulated on average only 2.5 forward citations. Finally, the mean count of

claims per inventor is 28.3 in the full sample, ranging between 26 and 29 across region.

50% of inventors’ patents have 16 claims or less, while only 4% of inventors have more

than 100 claims in all their patents. This measure is particularly skewed among inventors

from Piedmont, where its maximum is 568.

3.3 Explanatory variables

3.3.1 Knowledge sources

In order to build the main explanatory variables we exploit one question of the survey

that asks inventors to rank the importance of eight sources of knowledge, from 0 (not

applicable because not used) to 4 (very important). The question states “Please indicate

whether interactions with any of the following actors have been important to get relevant

information and knowledge for the work related to your patenting activity during the pe-

riod 2000-2006 ”. This question does not refer to one specific invention, but rather to
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the inventive activity during a well-defined time frame. The actors listed in the ques-

tion include internal ones (colleagues and other business units inside the company) and

external-to-the-firm people/organisations. The focus of this paper is on the role of external

organisations, which are, as in the question: suppliers, clients and customers, competitors,

consultancy/private R&D laboratories, universities and public research centres.

In order to construct knowledge strategies we perform factor analysis aimed at identifying

underlying driving factors among knowledge sources. On the basis of the identified factors,

we build knowledge variables that depend on the typology of knowledge involved in the

interaction. The factor analysis reveals three major factors with eigenvalues above 1 that

(jointly) explain 67% of the variation in the original eight knowledge sources. The factor

loadings from the factor analysis are reported in Appendix B (Tables 14 and 15). The first

factor includes colleagues and other business units inside the company, hence internal-to-

the-firm sources of knowledge; the second factor explains variation for knowledge provided

by suppliers, customers, competitors, thus external-to-the-firm “market” or“industrial”

sources; finally, universities, public research centers and private R&D laboratories are

pooled under the third factor, which indicates external-to-the-firm “scientific” sources of

knowledge.14 Market and scientific knowledge sources are the relevant measures for our

analysis, whereas internal knowledge will be used in the regression analysis as a controlling

factor for firm-level resources available to inventors.

Following the factor analysis, we build eight yes/no dummies indicating the use of each

knowledge source from the respondents’ answers. We use those dummies to create “sci-

entific” and “market” knowledge variables as well as internal knowledge. For each of the

eight dummies (colleagues, other business units, suppliers, customers, competitors, uni-

versities, public research centers, private R&D laboratories) we assign value 1 to indicate

that inventors used a given source, if they answered 2 to 4, and we assign 0 (not used)

if they ticked 0 or 1. We choose to apply this aggregation due to the fact that almost
14The distinction between internal and external knowledge sources and, in the latter case, between

market (or industrial) and scientific sources, is empirically employed and verified in the innovation liter-
ature in various contexts. See for instance Arora and Gambardella (1990) and Cassiman and Veugelers
(2006) for firms and Schneider (2009) and Mohammadi and Franzoni (2014) for patents and inventors.
See also Walsh at al (2016) and Arora et al (2016) for recent developments on the role of outside sources,
notably vertical relations with customers, suppliers and technology specialists.
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all inventors declared having used some knowledge sources, hence there are relatively few

zeros.15

Finally, we create three dummies indicating whether inventors used at least one internal

source (intern knowl), at least one market source (MKTKnow) and at least one scientific

source (SCIKnow). Scientific and market knowledge are our main knowledge variables

of interest, which we use to work out inventors’ knowledge sourcing strategies.

TABLE 2 ABOUT HERE

Table 2 shows the descriptive statistics of each knowledge source, as well as their ag-

gregation into scientific and market sources. The share of inventors who used at least

one source of market knowledge is 71% and those who used at least one scientific source

are 50% of the sample. Knowledge from customers, competitors and suppliers are the

most highly exploited (50%). The correlation between market sources of knowledge and

MKTKnow is always positive and significant, and above 0.5. Similarly, the correlation

between scientific knowledge sources and SCIKnow is strongly positive and significant.

Finally, the correlation between scientific knowledge and market knowledge is 0.2 and it

is significant at the 10% level, suggesting that there is a positive link between the two.

3.3.2 Inventors’ knowledge sourcing strategies

After aggregating knowledge sources into scientific and market knowledge, we work out

inventors’ knowledge sourcing strategies as exclusive dummies, as follows:

1. sci only : taking value 1 for inventors using only scientific knowledge (SCIKnow=1

and MKTKnow=0);

2. mkt only : taking value 1 for inventors using only market knowledge (SCIKnow=0

and MKTKnow=1);

3. sci&mkt : taking value 1 for inventors using both scientific and market knowledge

(SCIKnow=1 and MKTKnow=1);
15As a robustness check we work out those dummies assigning value 1 if respondents gave a rating

higher than the average rating in the sample, and 0 otherwise.
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4. none: taking value 1 for inventors using none of them (SCIKnow=0 and MKT-

Know=0).

By using this approach we intend to compare the performance of inventors who used both

scientific and market knowledge, with that of inventors who used only scientific or market

knowledge or none of them. Table 3 shows the frequencies of the exclusive dummies and

the values of the dependent variables for each sub-group of inventors.

TABLE 3 ABOUT HERE

The most widespread strategy is that of using both scientific and market knowledge

sources (39% of inventors), followed by the use of only market sources (31%). Fewer

inventors used only scientific sources and none of the knowledge sources (10% and 19%

respectively). The breakdown of the dependent variables by knowledge sourcing strategy

shows that inventors using only market knowledge and those using only scientific knowl-

edge have the highest performance in terms of number of patent applications (Npat),

having produced on average 1.94 patents between 2000 and 2006. The performance of

inventors using both scientific and market knowledge is slightly lower (1.89 patents), yet

very similar. Inventors who declared not having used any external-to-the-firm knowledge

source display the lowest number of patents produced (1.5).

As for the forward citation count, the most cited inventors are those using both scientific

and market knowledge (5 citations received), followed by those using only scientific and

only market knowledge. Patents with the largest number of claims are found among in-

ventors using both sources of knowledge (34 claims), followed by those using only scientific

sources (31 claims). The correlations are positive and significant at 5% level between the

joint use of scientific and market knowledge and forward citations as well as claims. There

is a negative and significant correlation between the use of none of the knowledge sources

and all of the dependent variables.

3.4 Control variables

All control variables are created at inventor level. We include in the regression analysis

individual characteristics collected from the survey data, patent-related characteristics
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extracted from the patent data, and information on inventors’ employers provided in the

survey responses.

As for individual characteristics, we control for inventor’s gender, age at time of survey

and its square, assuming that age may display a quadratic relationship with inventor’s

performance, and education level, by using four dummies indicating the highest education

level attained by the inventors (Secondary school degree, Bachelor degree, Master degree,

Doctoral studies). Furthermore, from the survey it was possible to extract information

on inventors’ mobility between jobs, which we measure with a dummy equaling one if

inventors changed job at least once in 2000-06. We also control for whether inventors

retired during the period under analysis. In order to better isolate the relationship between

the use of external knowledge and inventors’ performance, we also control for the use of

internal knowledge, either from colleagues inside the firm or from other business units.

Internal knowledge is usually the first and most important source of knowledge exploited

for innovation activities (Giuri et al., 2007), thus it is necessary to include it in our model

to avoid omitting a relevant variable. This variable helps controlling for the internal

resources available to inventors for their research activity. Internal knowledge together

with individual skills (most likely those acquired via education) form inventors’ ability to

filter external knowledge, thus allowing them to recognise and exploit the most relevant

bits of knowledge.16 Finally, we introduce three dummies for inventors’ region of residence

and seven year dummies indicating when each inventor start patenting in the period 2000-

2006.

As for patent-related characteristics, we control for the share of co-invented patents per in-

ventor and for the share of foreign-owned patents, calculated as the share of patents whose

assignee is not located in the inventors’ country of residence. Both variables measure the

inventors “openness” toward external knowledge (Hoisl, 2007). In order to account for vari-

ation across technological classes, we control for seven patent technological macro classes,

following the reclassification of the International Patent Classification system developed
16In other words, they allow inventors to reap the benefits of different types of knowledge characterised

by different degrees of appropriability. More generally, the inclusion of control variables both at individual
and firm level intend to capture heterogeneity of appropriability of scientific and market knowledge across
inventors and firms.

24



by the French Observatoire des Sciences et des Techniques (OST). These are Electrical

Engineering and Electronics (ost1), Instruments (ost2), Chemicals and Materials (ost3),

Pharmaceuticals and Biotechnology (ost4), Industrial Processes (ost5), Mechanical En-

gineering, Machines and Transport (ost6), and Civil Engineering and Consumer goods

(ost7).17

Together with individual actions, organisation-level factors influence individual outcomes

inside companies. For this reason, we include a number of control variables to cap-

ture firms’ characteristics that are related to the organisational design of R&D activities.

Firstly, we control for the international exposure of the most recent employer in the time

frame under study (2000-06), with a dummy that equals one if it is a multinational com-

pany.18 This variable accounts for firms’ “openness”, assuming that more internationalised

firms also tend to have more open search strategies, hence co-operating with external ac-

tors and widening the pool of knowledge where inventors can tap into.

We also include firm dummies to control for the fact that some firms employ more than

one inventor in our sample. A set of 71 firm dummies has been hence created, includ-

ing only those that employ more than one inventor. By controlling for this, we aim at

isolating unobservable drivers of inventors’ performance that are explained by employers’

characteristics, including firms’ attitude towards collaboration with external organisa-

tions. Finally, we control for inventors’ job position inside the company with a dummy

equaling one if they work in a well-defined R&D department. This variable, as well as

firm dummies, are informative of the extent to which the organisational design of R&D

processes inside companies influence the performance of inventors (Ahuja et al., 2008).

TABLE 4 ABOUT HERE

Descriptive statistics of the control variables are presented in Table 4.19 10% of inventors

in our sample are women, however they are almost 15% in Catalonia and only 5% in

the Midlands. The average age of inventors is 44 years old, 39% of them have a Bache-

lor Degree, while 17% of them hold a Master degree and 16% pursued doctoral studies.
17We assign each inventor to the most widespread technological class across all her patent applications.

For 1% of the sample it is not possible to identify only one class, therefore we chose it randomly.
18This variable has been created by checking companies’ webpages and/or companies accounts.
19See Tables 5 and 6 for the full correlation matrix.

25



Around 2/3 of inventors changed job at least once during the period 2000-2006 and 4%

of the whole sample retired during the same period. As for their patenting behaviour,

the vast majority of inventors declared having used at least one source of internal-to-the

firm knowledge for their patenting activity. On average, 67% of inventors’ patents comes

out of collaboration with other inventors through co-patenting, and 16% of the patents is

owned by an organisation located abroad with respect to the inventor’s country of resi-

dence. Most of the inventors in the sample started patenting between year 2000 and 2002

within the time span under consideration. Furthermore, the majority of inventors apply

for patents classified in the technological classes of mechanical engineering (27%) and

electrical engineering (24%), whereas pharmaceutical has the lowest frequency of patents

applied for (4%). Finally, almost half of the inventors are employed by a multinational

firm and around 40% of inventors work in a well-defined R&D department inside the

company.

TABLE 5 ABOUT HERE

TABLE 6 ABOUT HERE

4 Empirical strategy

The estimation strategy follows the so-called productivity (or direct) approach (Cassiman

and Veugelers, 2006), in which three measures of inventors’ performance are estimated

as a function of inventors’ knowledge sourcing strategies, as well as a number of control

variables to account for individual characteristics, patent characteristics and firm-related

factors.

The model takes the following specification:

Yi = α + β1scionlyi + β2mktonlyi + β3sci&mkti + γXi + εi (1)

Where the dependent variables (Yi) are Npat, ForwCit, and Claims, the knowledge

sourcing strategy none - taking value 1 for inventors who do not use any external source

of knowledge - is excluded from the regression to avoid collinearity, and Xi is the vector
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of control variables.

The variable of interest to test our first and main hypothesis (Hp 1 ) is sci&mkt. To

test hypotheses 2a and 2b, we introduce two interaction terms, respectively. Firstly, we

add to Equation 1 the term sci&mkt*R&Djob, to check whether the job position inside

companies has any moderating effect on the role of sci&mkt for inventors’ performance.

Secondly, we add the term sci&mkt*PhD to test the moderating effect of holding a PhD.

Since all the outcomes of interest are measured with count data variables, the models

will be estimated with count data regressions. In particular, due to over-dispersion of

all the dependent variables (variances higher than means) we estimate negative binomial

regressions (Cameron and Trivedi, 2005). We employ robust standard errors clustered at

the firm-level.

Hp 1 is confirmed if the estimated coefficient of the joint use of scientific knowledge and

market knowledge (sci&mkt) is positive and significant, indicating that the joint exploita-

tion of different typologies of knowledge from external-to-the-organisation knowledge is

positively linked to patenting performance inside firms. Hp 2a and Hp 2b will be con-

firmed if the coefficients of the interaction terms are negative and significant, indicating

a moderating effect of the interacted variables on sci&mkt.20

5 Results

5.1 Baseline regressions

Table 7 shows the baseline regressions on the three dependent variables Npat, ForwCit,

and Claims. For each of them we report two specifications: in the first one we include

knowledge variables, individual and patent factors, whereas in the second one we add

organisation level factors.
20The econometric analysis aims at identifying relationships between knowledge sourcing variables and

inventors’ performance. However, clear links of causality may be difficult to ascertain in some cases. For
instance, reverse causality could arise as better inventors are likely to interact with external organisation
because they are better known, rather than because they aim at becoming so. Moreover, some of the
control variables may raise endogeneity concerns, particularly those related to both inventors’ patenting
performance and their knowledge sourcing strategies (e.g. job mobility, job position inside firms). Since
it is very difficult to find plausible instruments to tackle these issues, the baseline results will be followed
by two robustness checks, aiming at confirming the main findings.
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The amount of patents produced by inventors is positively influenced by the use of market

knowledge and the joint use of market and scientific knowledge in the first model. Once

we control for organisational-level factor, the use of scientific knowledge turns to be a

more important determinant (although less significant) than other knowledge sourcing

strategies. The difference in the logs of expected patent counts is 0.319 unit higher for

inventors using only scientific knowledge compared to others, while holding the other

variables constant. This means that they are expected to have a rate 1.37 higher for

Npat.21 It is 1.34 for mkt only and 1.29 for sci&mkt.

A similar pattern is found in the ForwCit estimates, where in the full model sci only

has a higher coefficient than other knowledge sourcing strategies. The difference in the

number of citations is expected to be 1.7 for inventors using only scientific knowledge and

1.5 for those jointly using the two of them.22 In the last two estimates, Claims appear

to be positively influenced more by sci&mkt than by other knowledge strategies. The

difference in claim count amounts to 1.3 in this case, 1.2 for sci only and 1.2 for mkt

only.

Our first hypothesis (Hp 1 ) is confirmed since the data shows that the joint use of external

knowledge positively and significantly influences inventors’ performance. In addition, the

other knowledge sourcing strategies are important, particularly in the case of sci only for

quantity of patents and citations received. As noted in the literature section, scientific

knowledge is a relevant determinant because it helps eliminating fruitless research routes,

thus allowing inventors to focus on the most useful and promising ones (Fleming and

Sorenson, 2004). Instead, knowledge from market actors is useful to solve well-defined

users’ problems, hence it is likely to speed up and improve the research process so to

end up with more inventions, and of higher quality (Aghion et al., 2005; Lüthje et al.,
21The rate change is obtained computing the incidence rate ratios after the regressions.
22Due to the excess of zeros in ForwCit (44% of the inventors with zero citations to their patents), we

also estimate a zero-inflated negative binomial model, where the probability of forward citations depends
from the covariate R&Djob, this being the most highly correlated with the probability of receiving
citations at all. The results are reported in Appendix C, table 16 column 1. They show very similar
results to the baseline regressions, but the Vuong test comparing negative binomial and zero-inflated
negative binomial models does not support the latter over the former. In column 2 the results of a
zero-inflated negative binomial model where more covariates are added to the logit part are reported: the
Vuong test supports the use of the zero-inflated model, and the results are very similar to those achieved
in the baseline regressions.
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2005). The joint use of the two knowledge sources favours the combination of technological

potential and marketability, thus benefiting the whole invention process (Vincenti, 1990;

Fleming, 2002).

The significant coefficients of the control variables show that female inventors are less

productive than males, inventors holding a PhD produce inventors with higher number of

claims, and retired inventors have patents with lower claim count. Working in a specific

R&D division and exploiting knowledge that is internal to the firm are positively related

to the amount of forward citations received, hence to patent quality. Finally, the share of

foreign-owned patents negatively correlates the patent count and working in a multina-

tional company is negatively related to patent quantity and citations received, suggesting

that links to foreign companies may be detrimental to inventors’ performance.

TABLE 7 ABOUT HERE

Table 8 shows the results of the regressions carried out to test Hp 2a and Hp 2b, in Panel A

and B respectively. The moderating effect of R&D job is not confirmed by the data since

the coefficient of sci&mkt*R&Djob is always negative but never significant. Therefore,

working in a well-defined R&D environment inside companies does not seem to affect in

any way the positive influence of the joint use of external knowledge sources on inventors’

patenting performance.

In Panel B, we find that Hp 2b is confirmed for the count of claims. The coefficient of

the interaction term sci&mkt*PhD is negative and significant in column 5, indicating a

moderating effect. In particular, the effect of sci&mkt for the group of inventors without

a PhD is 0.5, corresponding to an increase in the number of claims by a rate of 1.66

(incidence rate ratio of 0.5), but this is diminished by a factor of 0.62 (incidence rate ratio

of -0.47) in the group of inventors holding a PhD. In other words, inventors’ patent quality

as measured in terms of technological breadth and expected market value of their patents

is positively influenced by external knowledge, but this effect is smaller for inventors

holding a PhD compared to those not holding it. This finding in qualitatively confirmed

in the model that includes organisation level factor (column 6).

The results of the analysis show the positive contribution of external-to-the-firm knowl-
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edge to inventors’ performance: in particular, the joint use of scientific and market knowl-

edge is positive and significant in every estimate carried out. Moreover, in line with

existing empirical evidence, other factors emerge as drivers of invention production and

their quality, including individual characteristics such as gender and education, internal

knowledge and job position inside companies. However, one of these (i.e. education) acts

as a moderating factor of the positive effect of external knowledge on inventive activity.

TABLE 8 ABOUT HERE

5.2 Robustness checks

In this section, we test the validity of our results through two robustness checks. In the

first place, we check that the results are robust to a different codification of knowledge

variables. In particular, we replicate the analysis after assigning values 0 and 1 using the

mean rating as a threshold. Each individual knowledge variable has value 1 for inventors

who gave a rating higher than the average rating in the sample, 0 otherwise. By doing

so, we use a threshold that is directly related to the distribution of the variables in the

sample, hence being less arbitrary. After creating the knowledge dummies and aggregating

them under scientific and market knowledge, we construct the four knowledge sourcing

strategies sci only, mkt only, sci&mkt and none as described in section 3.3.2.23

Table 9 shows the results of the robustness check based on the newly created knowledge

sourcing strategies. We carry out negative binomial regressions because the dependent

variables are count variables. Overall, the main results are fully confirmed by this check.

As far as patent count is concerned, we note that all knowledge strategies are significant

in both models and sci&mkt has a slightly larger coefficient than the two others. This

mirrors a 1.3 difference in Npat compared to inventors not using scientific and market

knowledge jointly. Such figure is very similar to that obtained in the baseline estimates,

thus confirming the main results. The results are qualitatively confirmed as far as the

count of forward citations is concerned, since the coefficients of the knowledge strategies

are positive but not significant (column 4). Finally, similarly to what obtained in the main
23Descriptive statistics of the newly created variables are reported in Appendix D, table 17.
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results, the count of claims is positively and significantly influenced by sci only, mkt only

and sci&mkt, and more so by the latter. A 0.309 coefficient implies a 1.3 difference in

number of claims for inventors jointly using external sources of knowledge, which confirms

the main results.

As for control variables, the negative relationship between Npat and female is confirmed,

as much as the positive influence of holding a PhD on the number of claims in each

inventors’ patents. Similarly, retired inventors show lower number of claims, as in the main

estimates. In addition to this, we confirm the positive role of R&D job and of internal

knowledge for the total number of forward citations received as well as the negative

relationship between patent count and the share of foreign patents. Finally, mne has a

negative and significant coefficient in all models.

TABLE 9 ABOUT HERE

The second robustness check carried out consists of changing dependent variables, in

search of similar but alternative measures of patent quantity and quality at inventor level.

In particular, we construct averages of patent count, citation count and claim count, with

the aim of obtaining weighted measures that are more easily comparable across inventors.

To achieve this, we compute MeanNpat as Npat divided for the number of years of

activity between the first and last patent invented in 2000-2006, where the priority year

is used to work out each inventor’s patenting period. MeanForwCit is obtained dividing

ForwCit for Npat and MeanClaims corresponds to Claims/Npat.24

Since these are continuous variable, the regressions have been estimated by means of

ordinary least squares with robust standard errors, clustered at the level of the firm. The

results of the second robustness check are reported in Table 10. The figures shows a

positive and significant contribution of mkt only and sci&mkt on inventors’ quantity of

patents produced during their years of activity. This is in line with what underlined by

our main findings. Similarly, the data show a positive and significant influence of sci&mkt

on the average forward citation count. The second check also qualitatively confirms the
24Descriptive statistics of the newly created variables are reported in Appendix D, table 18. Inventors

in our sample apply for a patent every other year (yearly mean=0.5), their patents have 15 claims on
average and they receive 1.8 citations per patent. The correlation between claims and citations is 0.1.
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positive link between knowledge sourcing strategies and the average claim count, because

the coefficients are positive but not significant. In addition, Table 10 confirms the sign

and significant of female, PhD and R&D job.

To sum up, the first robustness check fully confirms the main finding of this work, thus

showing that these are not sensitive to data issues regarding the methods employed to

aggregate knowledge variables. The second robustness check confirms the signs of the

relationships previously underlined, but it also shows that the use of external knowledge

is slightly less relevant for average measures of patent quantity and quality than it is for

absolute measures.

TABLE 10 ABOUT HERE

6 Discussion and conclusion

This paper has investigated the role of scientific and market knowledge for the inventive

process inside firms. We show that the joint use of the two knowledge sources is positively

associated with industry inventors’ performance. To do that, we exploit data from a survey

of inventors combined with EPO patent data and we estimate a model where inventors’

performance depends upon their knowledge sourcing strategies as well as a number of

other individual, patent and firm level factors.

This work relies on a survey of patent inventors, thus limiting the possibility to know

about the knowledge strategies of non-patenting inventors. This problem is partly over-

come by counting both granted and not-yet granted patents, which allows to consider all

the inventive activity of inventors. Another limitation is represented by potential endo-

geneity concerns, which cannot be ruled out even though we include in the regressions

a comprehensive set of control variables. In particular, we cannot exclude that more

productive and better inventors are likely to interact with external organisations because

they are better known, rather than because they aim at becoming so. With this respect,

it should be noted that our findings are confirmed by two robustness checks.

Nonetheless, this study provides interesting associations between individual inventors’

32



patenting activities and their use of various sets of knowledge. For this reason, the re-

sults offer various contributions to the literature and elements of novelty. Firstly, we

show that individuals are key agents in the innovative process inside firms and that exter-

nally sourced knowledge is as important for individuals as it is for companies. Moreover,

their knowledge sourcing strategies are relevant for their inventive outcome even when

accounting for individual characteristics, patent factors and organisational determinants.

Previous empirical evidence in the innovation literature has extensively focused on the role

of organisational-level factors and/or intrinsic patent features in explaining the outcomes

of innovative activities (see e.g. Hall et al., 2005; Harhoff et al., 1999; Pasquini et al.,

2012; Suzuki, 2011). More recently, it has also been shown that inventors should rely

on various sources of knowledge to increase the chances of patent commercialisations

(Pasquini et al., 2012), although the opposite is true for the value of patented inventions

(Schneider, 2009). Our findings show a positive and significant relation between quantity

and quality of inventors’ patents and the joint use of scientific and market knowledge,

confirming the importance of external-to-the firm knowledge for companies’ innovation

activities.

With respect to extant research, we add that quantity as well as quality of inventors’

patents benefit from the combination of both types of external knowledge. In particular,

we contend that inventors using knowledge from a wide set of external organisations

exploit characteristics of different kinds of knowledge that fulfil different needs of the

inventive process. In other words, they merge the technological and scientific potential

deriving from scientific knowledge with the practical and technical support deriving from

market knowledge. Besides, the independent use of scientific and market knowledge are

also significant explanatory factor of inventors’ performance, thus showing positive returns

to both scientific and technical knowledge, in line with Mohammadi and Franzoni (2014).

In addition, if we look at the relative value of scientific with respect to industrial knowledge

sources, our data shows that the former are more important than the latter, notably for

patent and citation count. This is in line with a study by Arora et al. (2016), which

specifically considers outside sourced inventions rather than knowledge sources. Yet, they
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show that inventions sourced from universities and other technology specialists tend to be

the most valuable for companies, whereas those from customers provide the highest net

surplus because less costly. Finally, we also show that having a higher level of education

moderates the positive effect of the joint use of external knowledge sources, most likely

because better educated inventors are endowed with a highly specialised knowledge set

that allows them to need less external knowledge.

Aside from what we have learned, our work offers methodological benefits. The empirical

analysis in based on an original survey that provides brand new insights about the demand

of knowledge expressed by the actors directly involved in the innovative process, along with

information at individual level not available from patent applications. This type of data

is not easy to collect since it requires the realisation of ad-hoc surveys. Although survey

data present various challenges to confront with, notably the issue of self-reporting, they

offer a unique opportunity to disentangle the determinants of innovative output inside

firms. In addition, we apply an empirical framework that is only rarely employed at the

individual level.

This study also offers implications for innovation policies. The evidence of a complemen-

tarity relationship between various and different sources of knowledge for the inventive

process supports the well-known argument that knowledge exchange across a wide range

of organisations is beneficial to firms’ innovation performance and competitiveness. This

is particularly true with respect to universities, given that they are often among the

less used sources of external knowledge (although highly valuable), notably if compared

to firms (Giuri et al., 2007). Since our study addresses individual innovativeness, it is

arguable that knowledge sharing between firms’ employees and universities or research

centres, as well as other market actors, requires constant effort and investment in estab-

lishing relationships. Policies that create incentives for information and idea sharing with

external agents, as well as across firms’ departments, could be beneficial to improve the

overall organisational innovative process.

In addition, our findings are also relevant for the European regional context. We have

shown that “innovation followers” such as the Midlands, Catalonia e Piedmont host pri-
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vate inventors that take advantage of knowledge linkages arising from their network of

interactions with the external innovation environment. As a consequence, firms’ compet-

itiveness could benefit from this because it increases their patent stock, the technological

value of their patent portfolio, and the expected market value of their inventions. If this

is the case, companies’ knowledge sourcing strategies should put inventors at their core

in order to improve their innovation performance and in turns, trigger success for regions

that are catching up with respect to top performers. This line of reasoning is aligned

with the policy objective of achieving in the European Union a smart, sustainable and

inclusive economic growth, as promoted by the 10-year growth strategy “Europe 2020”.25

In particular, it should be noted that the EU has committed to strengthening links in the

regional innovation chain by encouraging and supporting cooperation between the world

of science (Universities and public research organisations) and the world of business.
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Tables

Catalonia Midlands Piedmont Full sample
Obs. 223 117 533 873

Npat Mean 1.5695 1.5726 1.9849 1.8235
St Dev 1.5948 1.1545 2.3218 2.0383
Min 1 1 1 1
Max 15 8 27 27

ForwCit Mean 4.4529 2.5726 4.3095 4.1134
St Dev 12.2657 3.8131 10.1011 10.1418
Min 0 0 0 0
Max 114 17 106 114

Claims Mean 26.0583 27.1025 29.4840 28.2898
St Dev 35.8544 25.77 47.0160 42.0305
Min 1 1 1 1
Max 315 155 568 568

Table 1: Descriptive statistics of the dependent variables

Variable Mean St Dev MKT suppl. custom. compet. SCIENT. private labs univ. public labs

MARKET K. 0.7122 0.4530 1
suppliers 0.4050 0.4912 0.5384* 1
customers 0.4808 0.4999 0.6263* 0.3232* 1
competitors 0.4206 0.4940 0.5575* 0.1837* 0.3684* 1
SCIENTIFIC K. 0.5039 0.5003 0.1826* 0.1743* 0.1541* 0.2067* 1
private R&D labs 0.2941 0.4559 0.2177* 0.1975* 0.1616* 0.2302* 0.6668* 1
university 0.3855 0.4870 0.1163* 0.1595* 0.0924* 0.1613* 0.8015* 0.3706* 1
public R&D labs 0.2013 0.4012 0.1307* 0.1756* 0.1594* 0.1859* 0.5191* 0.4035* 0.5593* 1

Table 2: Descriptive statistics of the knowledge sources (* correlations significant and 5%
level). Obs = 704.

Mean Corr

Variable Freq Mean St Dev Npat ForwCit Claims Npat ForwCit Claims

sci only 78 0.1049 0.3067 1.9487 4.2564 31.5769 0.0191 0.0035 0.0253
mkt only 233 0.3135 0.4642 1.9442 4.1115 25.8583 0.0361 -0.0032 -0.0491
sci&mkt 290 0.3903 0.4881 1.8931 5.0379 33.9724 0.0216 0.0725* 0.1083*
none 142 0.1911 0.3934 1.5070 2.3802 20.9788 -0.0843* -0.0889* -0.0962*

Table 3: Descriptive statistics of knowledge sourcing strategies; mean and correlation table
of dependent variables across knowledge sourcing strategies (* correlations significant at
5% level). Obs = 704.
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Variable Description Mean St Dev Min Max

female Dummy 1/0 for female inventors 0.1054 0.3072 0 1
age Age of the inventor 44.71 10.39 22 79
age sq Age squared 2106.4 991 484 6241
HighSc Dummy 1/0 for secondary school degree 0.2302 0.4212 0 1
BSc Dummy 1/0 for bachelor degree 0.3906 0.4882 0 1
MSc Dummy 1/0 for master degree 0.1718 0.3774 0 1
PhD Dummy 1/0 for doctoral studies 0.1627 0.3693 0 1
job mob Dummy 1/0 for inventors who changed job in 2000-06 0.6763 0.4682 0 1
retired Dummy 1/0 for inventors who retired in 2000-06 0.0413 0.1990 0 1
intern knowl Dummy 1/0 for inventors using internal knowledge 0.8802 0.3249 0 1
piedmont Dummy 1/0 for inventors from Piedmont 0.6105 0.4879 0 1
catalonia Dummy 1/0 for inventors from Catalonia 0.2554 0.4364 0 1
midlands Dummy 1/0 for inventors from Midlands 0.1340 0.3409 0 1
y1 Dummy 1/0 for inventors starting patenting in 2000 0.1898 0.3924 0 1
y2 Dummy 1/0 for inventors starting patenting in 2001 0.1750 0.3802 0 1
y3 Dummy 1/0 for inventors starting patenting in 2002 0.1561 0.3632 0 1
y4 Dummy 1/0 for inventors starting patenting in 2003 0.1279 0.3342 0 1
y5 Dummy 1/0 for inventors starting patenting in 2004 0.1036 0.3050 0 1
y6 Dummy 1/0 for inventors starting patenting in 2005 0.0902 0.2866 0 1
y7 Dummy 1/0 for inventors starting patenting in 2006 0.1575 0.3645 0 1
share coinv Share of co-invented patents 0.6788 0.4529 0 1
share foreign Share of patents owned by foreign firms 0.1656 0.3681 0 1
electrical eng Dummy 1/0 for ost1 0.2468 0.4314 0 1
instruments Dummy 1/0 for ost2 0.1160 0.3204 0 1
chemicals Dummy 1/0 forost 3 0.1424 0.3496 0 1
pharmaceut. Dummy 1/0 for ost4 0.0471 0.2119 0 1
industrial eng Dummy 1/0 for ost5 0.1114 0.3148 0 1
mechanical eng Dummy 1/0 for ost6 0.2710 0.4447 0 1
civil eng Dummy 1/0 for ost7 0.0654 0.2474 0 1
mne Dummy 1/0 for whether the firm is multinational 0.4868 0.5001 0 1
R&D job Dummy 1/0 for inventors working in R&D division 0.4327 0.4958 0 1

Table 4: Descriptive statistics of the control variables. Obs = 704.
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Hp 1 1 2 3 4 5 6

VARIABLES Npat Npat ForwCit ForwCit Claims Claims

sci only 0.252 0.319* 0.346 0.533** 0.269** 0.220*
(0.169) (0.177) (0.214) (0.233) (0.130) (0.121)

mkt only 0.255** 0.293** 0.302* 0.250 0.253** 0.246**
(0.111) (0.115) (0.171) (0.229) (0.110) (0.114)

sci&mkt 0.246** 0.255** 0.447*** 0.421* 0.428*** 0.270**
(0.107) (0.116) (0.166) (0.221) (0.124) (0.117)

female -0.187* -0.167 -0.107 -0.0385 -0.162 -0.116
(0.109) (0.113) (0.201) (0.199) (0.120) (0.117)

age 0.0048 0.0187 -0.0113 -0.0081 -0.0166 0.00451
(0.0242) (0.0238) (0.0503) (0.0633) (0.0250) (0.0250)

age sq 6.55e-06 -0.0001 0.0002 0.0001 0.0002 -0.0001
(0.0002) (0.0002) (0.0005) (0.0006) (0.0002) (0.0002)

BSc 0.0773 0.0716 0.0266 -0.0608 0.164 0.113
(0.105) (0.104) (0.183) (0.205) (0.107) (0.106)

MSc -0.0498 -0.0419 -0.218 -0.357 -0.0164 -0.0104
(0.111) (0.110) (0.235) (0.241) (0.122) (0.113)

PhD 0.0299 0.0522 0.358 -0.224 0.302** 0.218
(0.122) (0.129) (0.307) (0.298) (0.134) (0.134)

job mob -0.0151 -0.0395 -0.0820 0.0603 -0.0990 0.0360
(0.0667) (0.0730) (0.143) (0.146) (0.0745) (0.0786)

R&D job 0.0949 0.0486 0.357** 0.166 0.0995 0.0631
(0.0702) (0.0766) (0.140) (0.158) (0.0815) (0.0806)

retired -0.141 -0.139 -0.239 -0.170 -0.303** -0.101
(0.149) (0.136) (0.251) (0.261) (0.122) (0.124)

intern knowl 0.0532 0.0970 0.521 0.465 0.0280 0.0491
(0.141) (0.148) (0.322) (0.320) (0.171) (0.165)

share coinv -0.0924 -0.112 0.0632 0.0960 0.0546 0.0340
(0.0809) (0.0862) (0.173) (0.154) (0.0991) (0.102)

share foreign -0.233*** -0.159* -0.261 0.0406 -0.129 -0.0109
(0.0833) (0.0933) (0.192) (0.197) (0.104) (0.102)

mne -0.215* -0.562** -0.150
(0.110) (0.220) (0.105)

Constant -0.185 -0.485 -0.417 -0.470 2.517*** 2.236***
(0.616) (0.585) (1.283) (1.527) (0.614) (0.604)

Observations 704 704 704 704 704 704

Region dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Patent techn. classes Yes Yes Yes Yes Yes Yes
Firm dummies - Yes - Yes - Yes

Loglikelihood -1117 -1064 -1530 -1455 -2959 -2853

Lnalpha -2.045*** -2.763*** 0.876*** 0.527*** -0.450*** -0.740***
(0.301) (0.553) (0.0778) (0.0755) (0.0791) (0.0812)

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Negative binomial regressions. Baseline results Hp 1.
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Panel A: Hp 2a 1 2 3 4 5 6

VARIABLES Npat Npat ForwCit ForwCit Claims Claims

sci only 0.257 0.325* 0.350 0.541** 0.271** 0.221*
(0.168) (0.175) (0.217) (0.236) (0.131) (0.122)

mkt only 0.263** 0.304*** 0.306* 0.257 0.258** 0.249**
(0.112) (0.117) (0.170) (0.222) (0.111) (0.116)

sci&mkt 0.294** 0.312** 0.503** 0.503** 0.483*** 0.288**
(0.132) (0.143) (0.222) (0.238) (0.150) (0.146)

R&D job 0.132 0.0931 0.402** 0.237 0.143 0.0785
(0.0928) (0.102) (0.198) (0.236) (0.104) (0.113)

sci&mkt*R&Djob -0.0897 -0.108 -0.111 -0.166 -0.112 -0.0370
(0.132) (0.143) (0.271) (0.314) (0.165) (0.167)

Constant -0.195 -0.496 -0.430 -0.435 2.524*** 2.244***
(0.617) (0.582) (1.290) (1.508) (0.616) (0.603)

Observations 704 704 704 704 704 704
Controls Yes Yes Yes Yes Yes Yes
Firm controls - Yes - Yes - Yes

Loglikelihood -1117 -1064 -1530 -1455 -2960 -2854

Lnalpha -2.046*** -2.771*** 0.876*** 0.526*** -0.451*** -0.740***
(0.302) (0.565) (0.0786) (0.0762) (0.0795) (0.0812)

Panel B: Hp 2b 1 2 3 4 5 6

VARIABLES Npat Npat ForwCit ForwCit Claims Claims

sci only 0.208 0.291 0.302 0.486** 0.188 0.182
(0.168) (0.185) (0.210) (0.234) (0.121) (0.123)

mkt only 0.258** 0.296*** 0.298* 0.251 0.261** 0.251**
(0.111) (0.115) (0.168) (0.227) (0.110) (0.114)

sci&mkt 0.285*** 0.285** 0.494*** 0.495** 0.509*** 0.318***
(0.106) (0.114) (0.175) (0.229) (0.132) (0.119)

PhD 0.187 0.156 0.520 0.00974 0.572*** 0.376**
(0.198) (0.203) (0.415) (0.382) (0.200) (0.182)

sci&mkt*PhD -0.271 -0.191 -0.309 -0.436 -0.470* -0.281
(0.235) (0.224) (0.447) (0.360) (0.246) (0.222)

Constant -0.174 -0.473 -0.347 -0.400 2.558*** 2.236***
(0.610) (0.583) (1.297) (1.522) (0.611) (0.603)

Observations 704 704 704 704 704 704

Controls Yes Yes Yes Yes Yes Yes
Firm controls - Yes - Yes - Yes

Loglikelihood -1116 -1063 -1530 -1455 -2956 -2853

Lnalpha -2.052*** -2.773*** 0.874*** 0.523*** -0.460*** -0.744***
(0.302) (0.564) (0.0774) (0.0748) (0.0767) (0.0811)

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Negative binomial regressions. Baseline results Hp 2a and Hp 2b.
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1 2 3 4 5 6

VARIABLES Npat Npat ForwCit ForwCit Claims Claims

sci only 0.258** 0.246** 0.307 0.338 0.265** 0.225**
(0.111) (0.121) (0.207) (0.217) (0.112) (0.105)

mkt only 0.193** 0.237*** 0.0780 0.140 0.220** 0.225**
(0.0757) (0.0759) (0.203) (0.245) (0.0919) (0.0889)

sci&mkt 0.304*** 0.277*** 0.463** 0.328 0.417*** 0.309***
(0.0963) (0.0983) (0.185) (0.210) (0.115) (0.116)

female -0.179* -0.165* -0.110 -0.119 -0.191* -0.169
(0.0988) (0.0994) (0.198) (0.194) (0.114) (0.108)

age 0.0176 0.0327 0.0067 0.0189 -0.0023 0.0107
(0.0218) (0.0216) (0.0487) (0.0585) (0.0233) (0.0224)

age sq -0.0001 -0.0003 -4.72e-05 -0.0002 3.36e-05 -0.0002
(0.0002) (0.0002) (0.0005) (0.0006) (0.0002) (0.0002)

BSc 0.0883 0.0869 0.0424 -0.0666 0.193* 0.131
(0.101) (0.101) (0.174) (0.198) (0.101) (0.0995)

MSc -0.0211 -0.0136 -0.185 -0.338 0.0343 0.00725
(0.110) (0.108) (0.216) (0.229) (0.115) (0.110)

PhD 0.0457 0.0636 0.404 -0.169 0.352*** 0.208
(0.115) (0.122) (0.292) (0.302) (0.133) (0.130)

job mob 0.0165 -0.0131 -0.0288 0.114 -0.0540 0.0588
(0.0640) (0.0710) (0.136) (0.147) (0.0730) (0.0758)

R&D job 0.0755 0.0432 0.348*** 0.188 0.0896 0.0751
(0.0670) (0.0738) (0.133) (0.154) (0.0797) (0.0795)

retired -0.0575 -0.0737 -0.124 -0.0194 -0.242** -0.0689
(0.122) (0.123) (0.259) (0.273) (0.119) (0.126)

intern knowl 0.0467 0.104 0.506* 0.449 0.0232 0.0240
(0.133) (0.141) (0.305) (0.298) (0.160) (0.155)

share coinv -0.0820 -0.0927 0.0702 0.0675 0.0481 0.0441
(0.0773) (0.0868) (0.160) (0.153) (0.0944) (0.0975)

share foreign -0.178** -0.105 -0.204 0.0993 -0.0606 0.0467
(0.0827) (0.0927) (0.184) (0.188) (0.104) (0.0944)

mne -0.223** -0.573*** -0.163*
(0.102) (0.213) (0.0979)

Constant -0.498 -0.814 -0.806 -0.936 2.115*** 2.096***
(0.566) (0.545) (1.232) (1.408) (0.588) (0.559)

Observations 704 704 704 704 704 704

Region dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Patent techn. classes Yes Yes Yes Yes Yes Yes
Firm dummies - Yes - Yes - Yes

Loglikelihood -1182 -1130 -1603 -1530 -3141 -3030

Lnalpha -2.114*** -2.774*** 0.896*** 0.579*** -0.445*** -0.729***
(0.326) (0.597) (0.0741) (0.0726) (0.0785) (0.0856)

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Negative binomial regressions. Robustness check No 1.
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1 2 3 4 5 6

VARIABLES MeanNpat MeanNpat MeanForwCit MeanForwCit MeanClaims MeanClaims

sci only 0.0978 0.116 -0.233 0.105 0.881 0.312
(0.0803) (0.0867) (0.483) (0.353) (1.351) (1.558)

mkt only 0.0738* 0.0908** 0.0459 0.387 0.726 0.553
(0.0404) (0.0456) (0.325) (0.368) (0.992) (1.140)

sci&mkt 0.0848* 0.0846* 0.256 0.426* 2.072 1.043
(0.0434) (0.0490) (0.237) (0.250) (1.313) (1.198)

female -0.109** -0.0911 0.298 0.505 0.154 0.172
(0.0520) (0.0557) (0.460) (0.476) (1.265) (1.359)

age 0.0036 0.0076 0.0408 -0.0089 -0.162 -0.199
(0.009) (0.0103) (0.0761) (0.0881) (0.247) (0.266)

age sq -0.0000 -0.0000 -0.0005 0.0001 0.0006 0.0007
(0.0001) (0.0001) (0.001) (0.001) (0.0024) (0.0026)

BSc 0.0033 -0.0036 -0.560* -0.423 0.93 0.881
(0.0451) (0.0487) (0.306) (0.336) (0.924) (1.049)

MSc -0.0097 -0.0283 -0.794*** -0.674** -0.643 -0.112
(0.0493) (0.0527) (0.304) (0.303) (1.027) (1.310)

PhD -0.00363 0.0159 0.251 -0.385 3.134* 2.737
(0.0529) (0.0685) (0.658) (0.447) (1.777) (2.098)

job mob -0.0267 -0.0244 -0.122 0.230 0.203 1.336
(0.0306) (0.0369) (0.278) (0.256) (0.996) (0.935)

R&D job 0.0183 -0.00415 0.502** 0.0555 0.497 0.559
(0.0317) (0.0389) (0.230) (0.234) (0.810) (0.897)

retired -0.0524 -0.0411 -0.0342 -0.0510 -1.337 -0.179
(0.0661) (0.0637) (0.467) (0.381) (1.097) (1.301)

intern knowl 0.00112 0.0211 0.615 0.177 0.199 -0.213
(0.0686) (0.0582) (0.398) (0.398) (1.625) (1.763)

share coinv -0.0199 -0.0257 0.431 0.275 0.56 0.386
(0.0367) (0.0394) (0.315) (0.276) (1.144) (1.223)

share foreign -0.0543 -0.0178 -0.215 0.0281 1.29 2.372
(0.0411) (0.0504) (0.383) (0.361) (1.312) (1.752)

mne -0.0319 -0.323 0.162
(0.0558) (0.247) (1.389)

Constant 0.590** 0.497* -0.0142 0.459 13.54** 16.32**
(0.280) (0.260) (1.796) (2.218) (6.341) (6.831)

Observations 704 704 704 704 704 704

Region dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Patent techn. classes Yes Yes Yes Yes Yes Yes
Firm dummies - Yes - Yes - Yes

Adj. R-squared 0.3225 0.3528 0.0566 0.2358 0.0907 0.1982

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 10: OLS regressions. Robustness check No. 2.
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Figures

Figure 1: Distribution of patent applications

Appendices

Appendix A

MIDLANDS PIEDMONT

mean whole sample mean contacted diff in mean mean whole sample mean contacted diff in mean

N=6458 N=881 N=3690 N=1293

Npat 1.393 1.4297 -0.0367 1.6818 1.9466 -0.2648***
tot_forw_cit 3.6946 2.5816 1.113 3.239 4.0572 -0.8182***
max_forw_cit 2.8323 2.1768 0.6555 2.371 2.8259 -0.4549***
count_claims 25.3434 25.0623 0.2811 25.0775 28.5228 -3.4453***
count_backw_cit 5.1466 6.0634 -0.9168 4.759 6.5073 -1.7483***
share_coinv_pat 0.5861 0.5068 0.0793 0.6622 0.686 -0.0238*
share_forei_pat 0.2567 0.2391 0.0176 0.1151 0.0702 0.0449***

Table 11: Sample representativeness: comparison of whole sample vs. contacted inventors.
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MIDLANDS PIEDMONT

mean contacted mean respondents diff in mean mean contacted mean respondents diff in mean

N=881 N=117 N=1293 N=539

Npat 1.4297 1.5726 -0.1429 1.9466 1.9849 -0.0383
tot_forw_cit 2.5816 2.5726 0.009 4.0572 4.3095 -0.2523
max_forw_cit 2.1768 1.923 0.2538 2.8259 2.7861 0.0398
count_claims 25.0623 27.0854 -2.0231 28.5228 29.4784 -0.9556
count_backw_cit 6.0634 6.7094 -0.646 6.5073 7.2195 -0.7122
share_coinv_pat 0.5068 0.5098 -0.003 0.686 0.6841 0.0019
share_forei_pat 0.2391 0.2264 0.0127 0.0702 0.1067 -0.0365***

Table 12: Sample representativeness: comparison of contacted inventors vs. respondents.

CATALONIA MIDLANDS PIEDMONT

m. whole sample m. respondents diff m. whole sample m. respondents diff m. whole sample m. respondents diff

N=4186 N=225 N=6458 N=117 N=3690 N=539

Npat 1.3557 1.5695 -0.2138 1.393 1.5726 -0.1796* 1.6818 1.9849 -0.3031***
tot_forw_cit 3.3392 4.4529 -1.1137 3.6946 2.5726 1.122*** 3.239 4.3095 -1.0705**
max_forw_cit 2.6426 2.991 -0.3484 2.8323 1.923 0.9093*** 2.371 2.7861 -0.4151*
count_claims 20.8296 26.0583 -5.2286* 25.3113 27.0854 -1.7741 24.3345 29.4784 -5.1439**
count_backw_cit 3.2873 4.0269 -0.7396 5.1466 6.7094 -1.5628* 4.759 7.2195 -2.4605***
share_coinv_pat 0.7244 0.7544 -0.03 0.5861 0.5098 0.07629* 0.6622 0.6841 -0.0219
share_forei_pat 0.228 0.2742 -0.0462 0.2567 0.2264 0.0303 0.1151 0.1067 0.0084

Table 13: Sample representativeness: comparison of whole sample vs. respondents.

Appendix B

Factor Variance Difference Proportion Cumulative

Factor 1 1.95895 0.14896 0.2449 0.2449
Factor 2 1.80999 0.26028 0.2262 0.4711
Factor 3 1.54971 . 0.1937 0.6648

Table 14: Factor analysis/correlation. Method: principal-component factors. Retained
factors = 3.

Factor 1 Factor 2 Factor 3 Uniqueness

colleagues 0.8589 0.2473
business others 0.7801 0.3162
suppliers 0.6556 0.4688
customers 0.8166 0.3054
competitors 0.7005 0.4437
private R&D labs 0.6578 0.381
university 0.8331 0.2597
public R&D labs 0.8424 0.2592

Table 15: Rotated factor loadings (pattern matrix) and unique variances (blanks represent
abs(loading)<.6).
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Appendix C

1 2

ForwCit ForwCit

sci only 0.376 0.398
(0.257) (0.259)

mkt only 0.419** 0.432**
(0.190) (0.191)

sci&mkt 0.453** 0.361*
(0.189) (0.193)

Inflate Inflate

sci&mkt -0.634*
(0.378)

MSc 0.985**
(0.406)

PhD 0.249
(0.462)

R&D job -0.771 -0.577
(0.476) (0.369)

share coinv -0.724*
(0.411)

Constant -0.274 -0.231
(1.302) (1.296)

Observations 704 704
Control variables Yes Yes
Loglikelihood -1544 -1538
Vuong test 1.448 2.170

*** p<0.01, ** p<0.05, * p<0.1

Table 16: Zero-inflated negative binomial regressions. Dependent variable ForwCit.

Appendix D

Variable Obs Mean St Dev Min Max

sci only 120 0.1615 0.3682 0 1
mkt only 138 0.1857 0.3891 0 1
sci&mkt 385 0.5181 0.5000 0 1
none 100 0.1345 0.3415 0 1

Table 17: Descriptive statistics of knowledge variables employed in Robustness check No.
1.
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Variable Obs Mean St Dev Min Max

MeanNpat 743 0.5472 0.5054 0.1428 5
MeanForwCit 743 1.8730 3.1895 0 26
MeanClaims 743 15.2070 9.8300 1 83

Table 18: Descriptive statistics of dependent variables employed in Robustness check No.
2.
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