
 

Role of transverse momentum dependence of unpolarized parton
distribution and fragmentation functions in the analysis

of azimuthal spin asymmetries

M. Anselmino,1,2,* M. Boglione,1,2,† U. D’Alesio,3,4,‡ F. Murgia,4,§ and A. Prokudin5,6,∥
1Dipartimento di Fisica, Università di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy

2INFN, Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy
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Information on the Sivers distribution and the Collins fragmentation functions and their transverse
momentum dependence is mainly based on fitting single-spin asymmetry data from semi-inclusive
deep inelastic scattering (SIDIS). Independent information on the Sivers distribution and the Collins
fragmentation can be obtained from the Drell-Yan and eþe− annihilation processes, respectively.
In the SIDIS case, the transverse momentum of the final observed hadron, which is the quantity
measured, is generated both by the average transverse momentum in the distribution and by that in the
fragmentation functions. As a consequence, these are strongly correlated, and a separate extraction is made
difficult. In this paper we investigate, in a simple kinematical Gaussian configuration, this correlation, its
role on the transverse single-spin asymmetries in SIDIS, and the consequences for predictions of the Sivers
asymmetry in Drell-Yan processes and for the Collins asymmetry in eþe− annihilation. We find that, in
some cases, these effects can be relevant and must be carefully taken into account.
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I. INTRODUCTION

Transverse-momentum-dependent parton distribution
and fragmentation functions (respectively, TMD PDFs
and TMD FFs, collectively denoted as TMDs) are impor-
tant tools for investigating the nucleon and its three-
dimensional structure. Among them, the Sivers function
[1,2] describes the asymmetry in the azimuthal distribution
of unpolarized quarks and gluons around the direction of
motion of a high-energy transversely polarized parent
hadron. Similarly, the Collins fragmentation function [3]
gives the azimuthal distribution of unpolarized hadrons
around the direction of motion of a transversely polarized
fragmenting quark. The former is related to the orbital
motion of partons inside a nucleon, while the latter

describes fundamental properties of the hadronization
process.
Azimuthal and transverse single-spin asymmetries

(SSAs) in inclusive and semi-inclusive hadron production
are the fundamental source of information on these non-
perturbative functions. The Sivers and the Collins effects
indeed play a crucial role in describing, within the so-called
TMD factorization approach, many of the transverse and
azimuthal asymmetries experimentally observed in semi-
inclusive deep inelastic scattering (SIDIS) and in eþe−

annihilations. The Sivers asymmetry is also crucial for
understanding the single-spin asymmetries in polarized
Drell-Yan processes, although experimental information
in this case is still scarce. The transverse momentum
dependence of the unpolarized TMDs is related to the
PT distribution of hadrons produced in unpolarized SIDIS
processes.
The first phase in the extraction of the TMDs from data

can now be considered as complete. It has shown that the
Sivers and Collins effects are indeed significant [4–14],
and information on the Sivers and Collins functions is now
available [15–23]. Using the Collins effect, the extraction
of the quark transversity distribution has also been made
possible [24]. In this phase a very simple parametrization of
the unknown functions has been adopted, with factorized
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dependences on the different variables and a simple (and
analytically integrable) Gaussian dependence on the trans-
verse momenta. Thanks to important theoretical progress, a
second phase has now started in which the QCD TMD
evolution can be taken into account and a global fit of data
from different processes can be attempted [25–32]. More
refined and realistic parametrizations of the TMDs can be
explored, leading to their more precise determination.
Before entering this phase, some considerations about

the procedure of extraction of TMDs from data and the
combined analysis of different processes are necessary.
This concerns the way in which TMDs build up the
measured quantities and the fact that often two of them
are coupled into a unique observable; thus, disentangling
information on a single TMD is not always straightforward
and could lead to uncertainties which have to be taken
into account. Here, we do this in the simple approach of
the first phase mentioned above, which much simplifies and
exemplifies the issues to be discussed, without spoiling
their general features.
We start by noticing that most of the available informa-

tion on spin asymmetries—related to the Sivers and Collins
functions—and on unpolarized TMDs, is obtained from
SIDIS processes data. In this case, however, the transverse
momentum of the final observed hadron, PT , originates
both from the transverse motion of the initial struck quark
inside the nucleon, k⊥, and the transverse momentum of
the final hadron with respect to the fragmenting quark, p⊥.
At leading order in a k⊥=Q power expansion, where Q is
the hard scale for the process considered, one has

PT ¼ p⊥ þ zk⊥; ð1Þ
where z is the light-cone momentum fraction of the hadron
in the quark fragmentation process. As a consequence, in
SIDIS, the transverse momentum dependences in the initial
quark TMD PDFs and in the fragmenting quark TMD FFs
are strongly correlated, as has been already pointed out
[26,27,31].
This dependence is usually parametrized by a Gaussian

function, in which the main parameters are the widths hk2⊥i
(for TMD PDFs) and hp2⊥i (for TMD FFs). Because of
the relation given in Eq. (1), it is possible to obtain good fits
of SIDIS data, with comparable χ2dof , corresponding to
different pairs of values for hk2⊥i and hp2⊥i. However, the
parameters of these comparable fits may lead to rather
different consequences when used to get estimates for
asymmetries in processes in which only TMD PDFs, like
Drell-Yan processes, or only TMD FFs, like two-hadron
production in eþe− annihilations, are involved.
In this paper we investigate this issue in more detail. To

this end, we consider in the TMD factorization approach of
the first phase the Sivers and Collins transverse single-spin
asymmetries, together with the corresponding unpolarized
cross sections, in SIDIS and Drell-Yan processes and in
eþe− annihilations. The plan of the paper is the following:

In Sec. II, we will present the general expressions for the
unpolarized cross sections and the single-spin asymmetries
of interest for our study, referring to the original literature
for their derivation. In Sec. III, we shall consider the study
of the Sivers asymmetry in SIDIS and Drell-Yan processes,
while in Sec. IV we will discuss the Collins asymmetries
in SIDIS and eþe− annihilations. Finally, in Sec. V we will
summarize our main results and their possible consequences
for future studies of azimuthal and single-spin asymmetries
in Drell-Yan processes and eþe− annihilations.

II. GENERAL RESULTS IN THE
TMD APPROACH

In this section, we recall the formalism which we shall
need for our discussion about the extraction of the trans-
verse momentum dependence of the TMDs. In semi-
inclusive DIS, TMD factorization theorems [33–39] relate
the transverse momentum of the produced hadron to the
intrinsic transverse momenta of the parton both inside the
target nucleon and in the quark hadronization process.
Such factorization theorems, and the analogous ones for
Drell-Yan processes and eþe− annihilations, are control-
lable approximations that allow one to relate the observed
cross sections to convolutions of TMDs. Even though
generic constraints on the functional form of the nonpertur-
bative functions are given by the theorems themselves, a
phenomenological analysis of the experimental data is
needed to determine the functional shape of the TMDs.
We present the explicit expressions of the measured

quantities within the TMD factorization approach at the
parton model level and with Gaussian parametrizations for
the TMDs; references to the original papers are given. It is,
however, convenient to recall here the parametrizations
adopted for the relevant TMDs. A parton inside a nucleon
with momentum P has a momentum p ¼ xPþ k⊥, while a
hadron produced in the fragmentation of a quark with
momentum pq has a momentum Ph ¼ zpq þ p⊥. Notice
that at leading order in a k⊥=Q power expansion, the
longitudinal and light-cone momentum fractions coincide,
neglecting the quark and final hadron masses.
The unpolarized TMD PDFs and TMD FFs are chosen,

respectively, as [40]

fq=pðx; k⊥Þ ¼ fq=pðxÞ
e−k

2⊥=hk2⊥i

πhk2⊥i
;

Dh=qðz; p⊥Þ ¼ Dh=qðzÞ
e−p

2⊥=hp2⊥i

πhp2⊥i
; ð2Þ

while the Sivers function is written as

ΔNfq=p↑ðx; k⊥Þ ¼ ΔNfq=p↑ðxÞ
ffiffiffiffiffi
2e

p k⊥
MS

e−k
2⊥=M2

S
e−k

2⊥=hk2⊥i

πhk2⊥i

≡ ΔNfq=p↑ðxÞ
ffiffiffiffiffi
2e

p k⊥
MS

e−k
2⊥=hk2⊥iS

πhk2⊥i
ð3Þ
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and the Collins function as

ΔNDh=q↑ðz; p⊥Þ ¼ ΔNDh=q↑ðzÞ
ffiffiffiffiffi
2e

p p⊥
MC

e−p
2⊥=M2

C
e−p

2⊥=hp2⊥i

πhp2⊥i

≡ ΔNDh=q↑ðzÞ
ffiffiffiffiffi
2e

p p⊥
MC

e−p
2⊥=hp2⊥iC

πhp2⊥i
; ð4Þ

where we have defined

hk2⊥iS ¼
hk2⊥iM2

S

hk2⊥i þM2
S
;

hp2⊥iC ¼ hp2⊥iM2
C

hp2⊥i þM2
C
: ð5Þ

These functional shapes are particularly suitable in
order to directly impose the known positivity bounds
on the Sivers and Collins functions. Notice that the
factorized transverse momentum dependences have a
Gaussian shape with a width which is constant and flavor
independent.

A. The Sivers SSA in the SIDIS process lp↑ → l0hX

Following Ref. [40] (see also Ref. [41]), where all details
can be found, the differential cross section for the semi-
inclusive production of a hadron h in the current fragmen-
tation region from the collision of an unpolarized lepton
beam with a transversely polarized target can be written, in
the deeply inelastic regime, as [see Eq. (79) of Ref. [40]]

dσlpðSTÞ→l0hX

dxBdQ2dzhd2PTdϕS
¼ 2α2

Q4

�
1þ ð1 − yÞ2

2
FUU þ � � �

þ
�
1þ ð1 − yÞ2

2
sinðϕh − ϕSÞFsinðϕh−ϕSÞ

UT þ ð1 − yÞ sinðϕh þ ϕSÞFsinðϕhþϕSÞ
UT þ � � �

��
: ð6Þ

We have considered the case of a transversely polarized
target (ST ¼ 1, SL ¼ 0) and an unpolarized beam (Pl

z ¼ 0);
we have omitted terms which are not related to the Sivers or
Collins asymmetries. xB, y, zh, and Q are the usual SIDIS
variables. Notice that, at order k⊥=Q, xB ¼ x and zh ¼ z.
PT is the magnitude of the hadron transverse momentum in
the γ�-nucleon center-of-mass frame; ϕh and ϕS are,
respectively, the azimuthal angle of the observed hadron
and that of the target polarization vector with respect to the
leptonic plane. The subscript UT in the structure functions
F reminds us that we are considering the case of an
unpolarized lepton beam and a transversely polarized
nucleon target (UU refers to the unpolarized situation).
In the SIDIS case, the asymmetries are expressed

through their azimuthal moments:

AWðϕh;ϕSÞ
UT ¼ 2

R
dϕhdϕS½dσ↑ − dσ↓�Wðϕh;ϕSÞR

dϕhdϕS½dσ↑ þ dσ↓� ; ð7Þ

where Wðϕh;ϕSÞ is the appropriate azimuthal weight
function required in order to isolate the specific contribu-
tion of interest and dσ↑;↓ is the differential cross section of
Eq. (6), with ST ¼ ↑;↓ denoting a transverse polarization
with the azimuthal angles ϕS and ϕS þ π, respectively.
Then we simply have

dσ↑ − dσ↓ ¼ 2α2

Q4
f½1þ ð1 − yÞ2� sinðϕh − ϕSÞFsinðϕh−ϕSÞ

UT

þ 2ð1 − yÞ sinðϕh þ ϕSÞFsinðϕhþϕSÞ
UT þ � � �g;

ð8Þ

dσ↑ þ dσ↓ ¼ 2α2

Q4
f½1þ ð1 − yÞ2�FUU þ � � �g: ð9Þ

The Sivers asymmetry is related to the sinðϕh − ϕSÞ
modulation, and from Eqs. (7)–(9) we find

Asinðϕh−ϕSÞ
UT ¼ Fsinðϕh−ϕSÞ

UT

FUU
: ð10Þ

From Eqs. (115) and (123) of Ref. [40] (remember that
xB ¼ x and zh ¼ z), we see that

FUU ¼
X
q

e2qfq=pðxÞDh=qðzÞ
e−P

2
T=hP2

Ti

πhP2
Ti

; ð11Þ

Fsinðϕh−ϕSÞ
UT ¼

X
q

e2qΔNfq=p↑ðxÞDh=qðzÞ

×

ffiffiffi
e
2

r
PT

MS

zhk2⊥i2S
hk2⊥i

e−P
2
T=hP2

T iS

πhP2
Ti2S

; ð12Þ

where [see Eq. (131) of Ref. [40]]

hP2
Ti ¼ hp2⊥i þ z2hk2⊥i; hP2

TiS ¼ hp2⊥i þ z2hk2⊥iS;
ð13Þ

with hk2⊥iS as in Eq. (5).
These relations, valid at first order in a k⊥=Q power

expansion, show explicitly the strong correlation in build-
ing the physical observables between the properties of the
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partonic transverse momentum distribution and those of the
partonic fragmentation. It is, in fact, the analysis of these
entangled effects which motivates our study. Notice that
this correlation is also modulated by the value of z.
From Eqs. (10)–(12) we see that the Sivers azimuthal

asymmetry for SIDIS processes can be factorized as

Asinðϕh−ϕSÞ
UT ðx; z; PTÞ ¼ AS

DISðx; zÞFS
DISðz; PTÞ; ð14Þ

where

AS
DISðx; zÞ ¼

P
qe

2
qΔNfq=p↑ðxÞDh=qðzÞ

2
P

qe
2
qfq=pðxÞDh=qðzÞ

; ð15Þ

FS
DISðz; PTÞ ¼

ffiffiffiffiffi
2e

p PT

MS

zhk2⊥i2S exp½−P2
T=hP2

TiS�
πhk2⊥ihP2

Ti2S
exp½−P2

T=hP2
Ti�

πhP2
Ti

: ð16Þ

If we now integrate separately the numerator and the
denominator of FS

DIS over the modulus of the transverse
momentum of the observed hadron, PTdPT , in the full PT
range ½0;þ∞Þ, and define the dimensionless parameters

ξ1 ¼
hp2⊥i
hk2⊥i

; ρS ¼
hk2⊥iS
hk2⊥i

¼ M2
S

M2
S þ hk2⊥i

; ð17Þ

we find the PT-integrated Sivers asymmetry for SIDIS,

Asinðϕh−ϕSÞ
UT ðx; zÞ ¼ AS

DISðx; zÞF S
DISðzÞ; ð18Þ

where

F S
DISðz; ξ1; ρSÞ ¼

ffiffiffiffiffi
eπ
2

r �
ρ3Sð1 − ρSÞ
ρS þ ξ1=z2

�
1=2

: ð19Þ

Notice that 0 < ρS < 1. For M2
S ≪ hk2⊥i, ρS → 0; in this

case, the k⊥-dependent part of the Sivers function is sharply
peaked around zero, and at its maximum almost equals the
k⊥-dependent component of the unpolarized distribution.
On the other hand, for M2

S ≫ hk2⊥i, ρS → 1; correspond-
ingly, the k⊥-dependent part of the Sivers function is
peaked around

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2⊥i=2

p
, where its value becomes smaller

and smaller. Both these borderline cases are not very
relevant from the phenomenological point of view,
although for completeness we shall consider the full range
of values for ρS.
A comment on the PTdPT integration, which applies as

well to the sections following, is necessary. Such an
integration can be performed analytically and leads to very
simple results, but it exceeds the range of validity of the
TMD factorization, which holds up to transverse momenta
of the order of a few GeVonly, such that PT=z ≪ Q. Above
that, higher-order QCD corrections become dominant.
However, because of the Gaussian dependences, the large

PT values do not contribute significantly to the integrations,
which are indeed dominated by the region of validity of
the TMD factorization. Our fully PT-integrated expressions
can be safely compared with data collected at small PT
values (PT up to 1–2 GeV).

B. The Collins SSA in SIDIS processes

The Collins effect generates a sinðϕh þ ϕSÞ modulation,
and from Eqs. (7), (8), and (9), we find that the azimuthal
moment of the Collins asymmetry in SIDIS processes can
be written as

AsinðϕhþϕSÞ
UT ¼ 2ð1 − yÞ

1þ ð1 − yÞ2
FsinðϕhþϕSÞ
UT

FUU
; ð20Þ

where FUU is given by Eq. (11) and FsinðϕhþϕSÞ
UT can be taken

from Eq. (127) of Ref. [40] (noticing that the parameterMh
is here denoted as MC):

FsinðϕhþϕSÞ
UT ¼

X
q

e2qh
q
1ðxÞΔNDh=q↑ðzÞ

×

ffiffiffi
e
2

r
PT

MC

hp2⊥i2C
hp2⊥i

e−P
2
T=hP2

T iT

πhP2
Ti2T

: ð21Þ

In this equation, hq1ðxÞ is the k⊥-integrated, collinear quark
transversity distribution, ΔNDh=q↑ðzÞ is the z-dependent
term in the Collins fragmentation function [see Eq. (4)],
hk2⊥iT is the flavor-independent average square transverse
momentum for the transversity distribution, and

hP2
TiT ¼ hp2⊥iC þ z2hk2⊥iT; ð22Þ

with hp2⊥iC given in Eq. (5).
In complete analogy to the Sivers asymmetry, in the

Collins case also we can write

AsinðϕhþϕSÞ
UT ðx; y; z; PTÞ ¼ AC

DISðx; y; zÞFC
DISðz; PTÞ; ð23Þ

where

AC
DISðx; y; zÞ ¼

1 − y
1þ ð1 − yÞ2

P
qe

2
qh

q
1ðxÞΔNDh=q↑ðzÞP

qe
2
qfq=pðxÞDh=qðzÞ

;

ð24Þ

FC
DISðz; PTÞ ¼

ffiffiffiffiffi
2e

p PT

MC

hp2⊥i2C exp½−P2
T=hP2

TiT �
πhp2⊥ihP2

Ti2T
exp½−P2

T=hP2
Ti�

πhP2
Ti

: ð25Þ

Once more, by integrating separately the numerator and
denominator of FC

DIS over PTdPT in the full range ½0;þ∞Þ,
and defining the dimensionless parameters

ξT ¼ hk2⊥iT
hk2⊥i

; ρC ¼ hp2⊥iC
hp2⊥i

¼ M2
C

M2
C þ hp2⊥i

; ð26Þ
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we can write the PT-integrated Collins asymmetry for
SIDIS as

AsinðϕhþϕSÞ
UT ðx; y; zÞ ¼ AC

DISðx; y; zÞFC
DISðzÞ; ð27Þ

with

FC
DISðz; ρC; ξ1=ξTÞ ¼

ffiffiffiffiffi
eπ
2

r �
ρ3Cð1 − ρCÞ

ρC þ z2ðξT=ξ1Þ
�
1=2

: ð28Þ

Notice the similarity with F S
DIS in Eq. (19).

C. The Sivers SSA in Drell-Yan processes,
h↑1h2 → l+l−X

Similarly to the SIDIS case, the Sivers asymmetry to be
measured in DY processes is (see Ref. [42] for all details)

A
sinðϕγ−ϕSÞ
N ≡ ADY

N ðy;M; qTÞ

¼ 2

R
dϕγ½dσ↑ − dσ↓� sinðϕγ − ϕSÞR

dϕγ½dσ↑ þ dσ↓� ; ð29Þ

where dσ↑;↓ stands here for the cross section

d4σh
↑;↓
1

h2→lþl−X

dydM2d2qT
; ð30Þ

with y, M, and qT being the rapidity, the invariant mass,
and the transverse momentum of the final leptonic pair,
respectively, while ϕγ and ϕS are the azimuthal angle of the
virtual boson and of the transverse polarization of the initial
hadron in the center-of-mass frame of the two colliding
hadrons, respectively.
We limit our discussion to the energy regimeM ≪ MW;Z,

where electromagnetic contributions dominate, neglecting
weak interaction terms. Following Ref. [42], with the para-
metrization of the TMDs as in Eqs. (2) and (3), the numerator
and the denominator of the SSA ADY

N read

Num½ADY
N � ¼ 4πα2

9M2s

X
q

e2qΔNfq=h↑
1

ðx1Þfq̄=h2ðx2Þ
ffiffiffiffiffi
2e

p qT
MS

×
hk2⊥i2S exp½−q2T=ðhk2⊥iS þ hk2⊥2iÞ�

πhk2⊥1i½hk2⊥iS þ hk2⊥2i�2
; ð31Þ

Den½ADY
N � ¼ 4πα2

9M2s
2
X
q

e2qfq=h1ðx1Þfq̄=h2ðx2Þ

×
exp½−q2T=ðhk2⊥1i þ hk2⊥2iÞ�

π½hk2⊥1i þ hk2⊥2i�
: ð32Þ

Here x1 and x2 are, as usual, the light-cone momentum
fractions of the active quark and antiquark annihilating into
the final lepton pair; hk2⊥1i and hk2⊥2i are the average square

transverse momenta of the unpolarized quarks or antiquarks
inside the unpolarized initial hadrons. They are taken to
be flavor and x1;2 independent. In general, they can be
different for different hadrons, like, for example, in the
pion-proton DY processes measured at COMPASS. At
leading order in a k⊥=M power expansion, as is well
known, one has

x1 ¼
Mffiffiffi
s

p ey; x2 ¼
Mffiffiffi
s

p e−y: ð33Þ

Again, the Sivers SSA ADY
N factorizes into two terms, one

(x1, x2) dependent and one qT dependent:

ADY
N ðy;M; qTÞ ¼ AS

DYðx1; x2ÞFS
DYðqTÞ; ð34Þ

where

AS
DYðx1; x2Þ≡ AS

DYðy;MÞ ¼
P

qe
2
qΔNfq=h↑

1

ðx1Þfq̄=h2ðx2Þ
2
P

qe
2
qfq=h1ðx1Þfq̄=h2ðx2Þ

;

ð35Þ

FS
DYðqTÞ ¼

ffiffiffiffiffi
2e

p qT
MS

hk2⊥i2S exp½−q2T=ðhk2⊥iS þ hk2⊥2iÞ�
πhk2⊥1i½hk2⊥iS þ hk2⊥2i�2

exp½−q2T=ðhk2⊥1i þ hk2⊥2iÞ�
π½hk2⊥1i þ hk2⊥2i�

:

ð36Þ
By integrating separately the numerator and denominator

of FS
DY over qTdqT in the full range ½0;þ∞Þ and defining

the dimensionless parameters

ξ21 ¼
hk2⊥2i
hk2⊥1i

; ρS ¼
hk2⊥iS
hk2⊥1i

¼ M2
S

M2
S þ hk2⊥1i

; ð37Þ

we get the PT-integrated Sivers asymmetry for DY:

ADY
N ðy;MÞ ¼ AS

DYðx1; x2ÞF S
DY; ð38Þ

with the simple expression

F S
DYðρS; ξ21Þ ¼

ffiffiffiffiffi
eπ
2

r �
ρ3Sð1 − ρSÞ
ρS þ ξ21

�
1=2

: ð39Þ

Notice the similarity between F S
DY and F S

DIS in Eq. (19).

D. The Collins azimuthal asymmetry in
e+ e − → h1h2X processes

Finally, we consider the Collins azimuthal asymmetry
for two almost back-to-back hadrons produced in opposite
jets in eþe− annihilations. We do this in the so-called
hadronic plane method, which is the most reliable from an
experimental point of view, since it does not require the
reconstruction of the jet thrust axis. On the other hand, from
a theoretical point of view, this method explicitly requires
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the assumption of a factorized, Gaussian-shaped transverse
momentum dependence in the fragmentation functions.
The adoption of the thrust axis method, which is somehow
more clean theoretically, would lead to similar results and
conclusions.
In the hadronic plane kinematical configuration, one

measures the transverse momentum P1T of the first hadron
h1, with respect to the plane containing the initial lepton
beams and the second hadron h2. Following Ref. [21] and
references therein, the differential cross section for the
process under consideration can be written as

dσe
þe−→h1h2X

dz1dz2d2P1Td cos θ
¼ 3πα2

2s
fDh1h2 þ Nh1h2 cosð2ϕ1Þg;

ð40Þ

where θ is the angle between the direction of motion of h2
and the beam axis; ϕ1 is the azimuthal angle of P1T ; and z1;2
are the light-cone momentum fractions of the hadrons h1;2.
From Eqs. (30) and (31) of Ref. [21], we have

Dh1h2 ¼ ð1þ cos2θÞ
X
q

e2qDh1=qðz1ÞDh2=q̄ðz2Þ

×
exp ½−P2

1T=hp̃2⊥i�
πhp̃2⊥i

; ð41Þ

Nh1h2 ¼
1

4

z1z2
z21 þ z22

sin2θ
X
q

e2qΔNDh1=q↑ðz1ÞΔNDh2=q̄↑ðz2Þ

×
2eP2

1T

hp̃2⊥i þ M̃2
C

exp
h
−P2

1T

�
1
M̃2

C
þ 1

hp̃2⊥i
�i

πhp̃2⊥i
; ð42Þ

where

M̃2
C ¼ z21 þ z22

z22
M2

C; hp̃2⊥i ¼
z21 þ z22

z22
hp2⊥i; ð43Þ

and MC is the parameter introduced in the Collins function
in Eqs. (4) and (5). Notice that the factorized z-dependent
part of the Collins function, ΔNDh=q↑ðzÞ, was denoted

Δ̃NDh=q↑ðzÞ in Ref. [21].
For simplicity, we are assuming that h1 and h2 are both

either pions or kaons, leaving aside, for instance, the πK case
that would in general require two different hp2⊥i values.
The azimuthal asymmetries of interest are the cosð2ϕ1Þ

modulations of the cross section in Eq. (40), driven by the
ratios Nh1h2=Dh1h2 . Data have been taken for different
charge combinations of the two hadrons—that is, h1h2 ¼
πþπ− þ π−πþ (U), πþπþ þ π−π− (L), and πþπ− þ π−πþþ
πþπþ þ π−π− (C). The actual quantities measured are

AULðCÞ
0 ≃ PU

0 − PLðCÞ
0 ; ð44Þ

where

PU;L;C
0 ¼ NU;L;C

h1h2

DU;L;C
h1h2

: ð45Þ

From Eqs. (41) and (42), we can write

Ph1h2
0 ðz1; z2; P1T ; θÞ ¼ Ah1h2

ee ðz1; z2; θÞFC
eeðz1; z2; P1TÞ;

ð46Þ
where

Ah1h2
ee ðz1; z2; θÞ ¼

1

4

sin2θ
1þ cos2θ

z1z2
z21 þ z22

×

P
qe

2
qΔNDh1=q↑

ðz1ÞΔNDh2=q̄↑
ðz2ÞP

qe
2
qDh1=qðz1ÞDh2=q̄ðz2Þ

;

ð47Þ

FC
eeðz1; z2; P1TÞ ¼

2eP2
1T

hp̃2⊥i þ M̃2
C

exp
h
−P2

1T

�
1
M̃2

C
þ 1

hp̃2⊥i
�i

πhp̃2⊥i
exp ½−P2

1T=hp̃2⊥i�
πhp̃2⊥i

:

ð48Þ
Once again, we proceed by integrating separately the

numerator and denominator of FC
ee over P1TdP1T in the full

range ½0;þ∞Þ, finding
Ph1h2
0 ðz1; z2; θÞ ¼ Ah1h2

ee ðz1; z2; θÞFC
ee; ð49Þ

with

FC
eeðρCÞ ¼ 2eρ2Cð1 − ρCÞ: ð50Þ

Notice that FC
ee is independent of z1 and z2.

E. Summary of main formulas

It is convenient to collect here, all together, the main
results of the previous sections, which will be used in the
sections to follow.

1. PT-integrated Sivers asymmetry in the SIDIS
process lp↑ → l0hX

Asinðϕh−ϕSÞ
UT ðx; zÞ ¼ AS

DISðx; zÞF S
DISðzÞ;

AS
DISðx; zÞ as in Eq: ð15Þ; ð51Þ

F S
DISðz; ρS; ξ1Þ ¼

ffiffiffiffiffi
eπ
2

r �
ρ3Sð1 − ρSÞ
ρS þ ξ1=z2

�
1=2

; ξ1 ¼
hp2⊥i
hk2⊥i

;

ρS ¼
hk2⊥iS
hk2⊥i

¼ 1

1þ hk2⊥i
M2

S

: ð52Þ
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2. PT-integrated Collins asymmetry
in the SIDIS process lp↑ → l0hX

AsinðϕhþϕSÞ
UT ðx; y; zÞ ¼ AC

DISðx; y; zÞFC
DISðzÞ;

AC
DISðx; zÞ as in Eq: ð24Þ; ð53Þ

FC
DISðz; ρC; ξ1=ξTÞ ¼

ffiffiffiffiffi
eπ
2

r �
ρ3Cð1 − ρCÞ

ρC þ z2ðξT=ξ1Þ
�
1=2

;

ξT ¼ hk2⊥iT
hk2⊥i

; ρC ¼ hp2⊥iC
hp2⊥i

¼ 1

1þ hp2⊥i
M2

C

:

ð54Þ

3. qT-integrated Sivers asymmetry
in the DY process, h↑1h2 → l+l−X

ADY
N ðy;MÞ ¼ AS

DYðx1; x2ÞF S
DY;

AS
DYðx1; x2Þ as in Eq: ð35Þ; ð55Þ

F S
DYðρS; ξ21Þ ¼

ffiffiffiffiffi
eπ
2

r �
ρ3Sð1 − ρSÞ
ρS þ ξ21

�
1=2

; ξ21 ¼
hk2⊥2i
hk2⊥1i

;

ρS ¼
hk2⊥iS
hk2⊥1i

¼ 1

1þ hk2⊥1
i

M2
S

: ð56Þ

4. PT-integrated Collins asymmetry
in the process e+ e− → h1h2X

Ph1h2
0 ðz1; z2; θÞ ¼ Ah1h2

ee ðz1; z2; θÞFC
ee;

Ah1h2
ee ðz1; z2; θÞas in Eq: ð47Þ; ð57Þ

FC
eeðρCÞ ¼ 2eρ2Cð1 − ρCÞ: ð58Þ

III. THE SIVERS CASE

In this section, we consider the fit of the Sivers SSAs in
SIDIS and Drell-Yan processes, and the possible phenom-
enological uncertainties induced by the strong correlation
between hk2⊥i and hp2⊥i in SIDIS azimuthal asymmetries in
Eqs. (1) and (13). More precisely, since at present only a
few experimental results are available on the Sivers SSA in
Drell-Yan processes, we study the consequences for pre-
dictions on this observable due to the uncertainty on hk2⊥i
and hp2⊥i as extracted from SIDIS data.
According to the present experimental situation, the

amount of available SIDIS data on the Sivers azimuthal
asymmetry Asinðϕh−ϕSÞ

UT allows us to obtain a sufficiently
well-constrained parametrization of the quark Sivers dis-
tributions, Δfq=p↑ðxÞ, at least in some kinematical ranges
(the present SIDIS data are limited to the xB ≲ 0.3 region).
We denote by ρ̂S and ξ̂1 the particular values of ρS and ξ1 in
Eq. (52), corresponding to a SIDIS best fit of the Sivers

function. We shall adopt the “hat” symbol also for the
corresponding Sivers SSAs.
Notice that for Drell-Yan processes with two different

initial beams, as is the case for the COMPASS experiment
at CERN, where one considers the reaction πp↑ → lþl−X,
one should also take into account the parameter ξ21
introduced in the previous sections. In order to simplify
the analysis and focus on the main issue, we only consider
the case ξ21 ¼ 1, corresponding to pp collisions.
As mentioned in the Introduction, different studies of

unpolarized azimuthal distributions [43], hadron multiplic-
ities [26,27,31], and the Sivers SSA in SIDIS processes
have been performed. These studies have indeed shown a
strong correlation between hk2⊥i and hp2⊥i, which manifests
itself in large differences in the values of ξ1 ¼ hp2⊥i=hk2⊥i,
which can be associated with different, equally good fits of
the same quantities—in particular, the Sivers asymmetry

Asinðϕh−ϕSÞ
UT .
To be definite, we consider in particular two different

parametrization sets for the Sivers distributions, which lead
to comparable values of χ2dof :
(1) The fit of Ref. [17], referred to as FIT09, for which

hk2⊥i ¼ 0.25 GeV2; hp2⊥i ¼ 0.20 GeV2;

M2
S ¼ 0.34 GeV2; ð59Þ

implying

ξ̂ð09Þ1 ¼ 0.80; ρ̂ð09ÞS ¼ 0.58: ð60Þ
The complete list of parameters fixing the Sivers
functions can be found in Table I of Ref. [17], where
more details on the fitting procedure, the parameter
extraction, and additional references are given.
It is important to remember here that, for this as

well as for all the following reference fits adopted,
the values of hk2⊥i and hp2⊥i are first extracted from
observables depending only on the unpolarized
TMD distribution and fragmentation functions,
and then used, as fixed parameters, in the fitting
procedure of the azimuthal spin asymmetries.

(2) The fit from Ref. [23], referred to as FIT16, for
which

hk2⊥i ¼ 0.57 GeV2; hp2⊥i ¼ 0.12 GeV2;

M2
S ¼ 0.80 GeV2; ð61Þ

implying

ξ̂ð16Þ1 ¼ 0.21; ρ̂ð16ÞS ¼ 0.58: ð62Þ
Again, detailed information and the complete list of
parameters can be found in Ref. [23] and its Table I.

Notice that the two parametrizations show very different
values of ξ̂1 but almost identical values of ρ̂S. This has the
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consequence that F̂ S
DY ≡ F S

DYðρ̂S; ξ21 ¼ 1Þ is the same for
the two reference fits, FIT09 and FIT16.
The possibility of obtaining equally good fits of the

SIDIS Sivers data with different values of the parameters—
in particular, ξ1—can be formalized by assuming that, at
least in some limited regions of the (ρS, ξ1) parameter
space, in moving away from the reference point along some
trajectory, one keeps having

AS
DISðx;zÞF S

DISðz;ρS;ξ1Þ≃ ÂS
DISðx;zÞF̂ S

DISðz; ρ̂S; ξ̂1Þ: ð63Þ

Notice that by changing the values of ξ1 and ρS, one
obtains in general different values of F S

DISðz; ρS; ξ1Þ: then,
by fitting the same data either with the lhs or the rhs of
Eq. (63), one extracts different values of Δfq=p↑ðxÞ, which
is contained in AS

DIS in Eq. (15). In fact, one has

AS
DIS ≃

	
F̂ S

DIS

F S
DIS



ÂS
DIS: ð64Þ

The predictions for the DY Sivers asymmetry, made
using the SIDIS Sivers function Δfq=p↑ðxÞ, are then
affected by its uncertainty; as both AS

DIS and AS
DY are linear

in the Sivers function, it is natural to assume that

AS
DY

ÂS
DY

≃
AS
DIS

ÂS
DIS

; ð65Þ

which, using Eq. (64), implies

AS
DY ≃

	
F̂ S

DIS

F S
DIS



ÂS
DY: ð66Þ

Notice that from Eqs. (52) and (64), one has

F S
DIS ¼ RS

DISF̂
S
DIS; AS

DIS ≃
1

RS
DIS

ÂS
DIS;

with RS
DIS ¼

�
ρ3Sð1 − ρSÞ
ρS þ ξ1=z2

ρ̂S þ ξ̂1=z2

ρ̂3Sð1 − ρ̂SÞ
�1=2

; ð67Þ

and, analogously, from Eq. (56) with ξ21 ¼ 1 and Eq. (66),
one has

F S
DY ¼ RS

DYF̂
S
DY; AS

DY ≃
1

RS
DIS

ÂS
DY; with

RS
DY ¼

�
ρ3Sð1 − ρSÞ
ρS þ 1

ρ̂S þ 1

ρ̂3Sð1 − ρ̂SÞ
�
1=2

: ð68Þ

Then, when moving in the parameter space from (ρ̂S, ξ̂1)
to (ρS, ξ1) along a generic trajectory, the predictions for the
Sivers DY asymmetry change as

ADY
N ¼ AS

DYF
S
DY ≃

	
RS
DY

RS
DIS



ÂS
DYF̂

S
DY ¼ RN

DYÂ
DY
N ; ð69Þ

where

RN
DY ¼

�
ρS þ ξ1=z2

ρ̂S þ ξ̂1=z2
ρ̂S þ 1

ρS þ 1

�
1=2

: ð70Þ

Let us now discuss some possible different scenarios,
one corresponding to the parameters of the sets FIT09
and FIT16 (RS

DY ¼ 1), and two more exploratory cases
(RS

DIS ¼ 1 and RN
DY ¼ 1).

A. Sivers effect, scenario 1: FIT09 vs FIT16

This is the case which motivated our study. We have two
different parametrization sets of the Sivers distribution,
FIT09 and FIT16 discussed above, which describe com-
parably well the Sivers azimuthal asymmetry measured in
SIDIS processes. We have investigated to what extent the
corresponding estimates for the Sivers asymmetry in Drell-
Yan processes can differ due to the uncertainty on the ξ1
parameter, see Eqs. (60) and (62). Notice that, in this case,

ρ̂ð09ÞS ¼ ρ̂ð16ÞS ≡ ρ̂S.
From Eq. (68), then, one sees that RS

DY ¼ 1 (remember
that we are considering the case of pp collisions here—that
is, ξ21 ¼ 1), and from Eqs. (69) and (70), one obtains that,
going from one set of parameters to the other, the
predictions for ADY

N are rescaled as

ADY
N ðρ̂S; ξ̂ð16Þ1 Þ ≃

�
ρ̂S þ ξ̂ð16Þ1 =z2

ρ̂S þ ξ̂ð09Þ1 =z2

�1=2
ÂDY
N ðρ̂S; ξ̂ð09Þ1 Þ: ð71Þ

Using the values given in Eqs. (60) and (62), one sees
that the rescaling factor in the above equation varies from
about 0.52 to 0.68 for z in the range [0.1, 0.7]. Since small z
values dominate the SIDIS data, we find that

ADY
N ðρ̂S; ξ̂ð16Þ1 Þ ≃ 1

2
ÂDY
N ðρ̂S; ξ̂ð09Þ1 Þ: ð72Þ

This simple example, based on two available fits of
the quark Sivers function, clearly shows how the uncer-
tainty in the parameter ξ1 ¼ hp2⊥i=hk2⊥i, due to the
unavoidable strong correlation between hk2⊥i and hp2⊥i in
SIDIS processes, see Eq. (13), induces large differences
when trying to estimate the Sivers SSA in Drell-Yan
processes. This effect should be carefully taken into
account when studying these asymmetries and their related
fundamental properties, e.g., the TMD scale evolution of
the Sivers function and its process dependence.

B. Sivers effect, scenario 2: Fixing AS
DIS and F S

DIS

In the previous scenario, based on the fact that two
equally good fits of the Sivers SIDIS asymmetry, FIT09
and FIT16, yield the same values of ρS even if one starts
with very different values of ξ1, we have shown how the
corresponding predictions for the Sivers asymmetries in
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pp Drell-Yan processes can vary by a factor of up to 2,
depending on which sets of parameters one uses.
Mathematically, we have kept the validity of Eq. (63) by
letting both F S

DIS and A
S
DIS change, but in opposite ways (if

one decreases, the other increases, and vice versa).
We now extend our investigation of what happens to the

estimates for the full DY Sivers asymmetry if we let the
SIDIS parameters vary in different ways in the (ρS, ξ1)
space. We first wonder whether it is possible to keep the
validity of Eq. (63) by requiring that both F S

DIS and A
S
DIS do

not change when moving along some lines in the parameter
space [notice that if AS

DIS does not change, then by Eq. (65),
AS
DY also does not change]. From Eq. (67), we see that this

request amounts to imposing

RS
DIS ¼

�
ρ3Sð1 − ρSÞ
ρS þ ξ1=z2

ρ̂S þ ξ̂1=z2

ρ̂3Sð1 − ρ̂SÞ
�1=2

¼ 1: ð73Þ

At fixed ξ1 and z, this constraint corresponds to a fourth-
order algebraic equation in the variable ρS:

ρ4S − ρ3S þ âðzÞρS þ âðzÞ z
2

ξ1
¼ 0;

with âðzÞ ¼ ρ̂3Sð1 − ρ̂SÞ
ρ̂S þ ξ̂1=z2

; ð74Þ

and we can look for its (real) solutions in terms of ξ1 and z
in the physical range 0 < ρS < 1. There are in fact two real
solutions, at least for some ranges of ξ1 values. As an
example, they are shown as a function of ξ1 and at fixed
z ¼ 0.2 in Fig. 1 for the FIT09 (left panel) and the FIT16
(right panel) cases. The black dots correspond to the
position in the parameter plane of the corresponding
reference fit. They both belong to the lower of the two
possible branches of solutions (the red solid and blue long-
dashed curves). The corresponding values of RN

DY (¼ RS
DY

in this scenario)—that is, the rescaling factor for the
predictions of the DY Sivers asymmetry in Eq. (70)—are
shown as a function of ξ1 in Fig. 2.
The left panel of Fig. 2 shows that the rescaling factor for

the set FIT09, for which ξ̂ð09Þ1 ¼ 0.80, decreases to almost
1=2 when ξ1 approaches 0.20, as seen in the previous
scenario (notice, however, that in this case ρS also changes).
Concerning the set FIT16 (right panel of Fig. 2), we see
that, although the range of ξ1 values leading to an allowed
value of ρS is more restricted, in any case the depletion
effect on the total DY asymmetry can still be large as soon
as ξ1 decreases.
Notice that, even if our calculation leads to two possible

solutions for ρS at fixed ξ1 (the reference fits corresponding
to the lower one), the rescaling factor RN

DY, which is the
quantity of interest from the physical point of view, is very
similar for the two cases. Qualitatively similar results and
conclusions apply when considering z ¼ 0.4 and 0.6.
The plots in Figs. 1 and 2 are shown for all values of ξ1

mathematically compatible with the physical request
0 < ρS < 1, but one should not forget that very small
values of ξ1 are not realistic. Actually, the range 0.15≲
ξ1 ≲ 2.5 would largely cover most of the parametrizations
proposed in the literature (see also Ref. [31]).
Let us finally stress once more that, as compared to the

previous scenario, in this case it is the qT-integrated
component of the overall DY asymmetry that is rescaled
by a factor RN

DY ¼ RS
DY, while the collinear component is

approximately unchanged, since RS
DIS ¼ 1, see Eqs. (68)

and (69).

C. Sivers effect, scenario 3: Fixing ADY
N

Finally, we wonder whether it is possible to change the
parameters ρS and ξ1, moving away from the reference fit
values in the parameter space, still getting the same results
not only for the PT-integrated Sivers SIDIS asymmetry,

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
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1.0
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Sivers Fit 2009

Scenario 2 z 0.2
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s

Sivers Fit 2016

Scenario 2 z 0.2

FIG. 1. The curves in the (ρS, ξ1) parameter space show the set of values of ρS and ξ1 which leave unchanged the PT-integrated factor
of the Sivers asymmetry, F S

DISðz ¼ 0.2Þ. The black dots correspond to the values ρ̂S and ξ̂1 obtained in the fits of Ref. [17] (left plot,
FIT09) and of Ref. [23] (right plot, FIT16), which describe equally well the SIDIS Sivers asymmetry. Notice that for each value of ξ1 one
finds two possible values of ρS. Similar results are obtained by changing z from 0.2 to 0.4 or 0.6.
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Asinðϕh−ϕSÞ
UT , but also for the qT-integrated Sivers DY

asymmetry, ADY
N . This amounts to requesting that

RN
DY ¼

�
ρS þ ξ1=z2

ρ̂S þ ξ̂1=z2
ρ̂S þ 1

ρS þ 1

�
1=2

¼ 1; ð75Þ

or, equivalently,

RS
DY ¼ RS

DIS: ð76Þ
By defining

b̂ðzÞ ¼ ρ̂S þ 1

ρ̂S þ ξ̂1=z2
; ð77Þ

Equation (75) translates into the simple linear relation

ρS ¼
b̂ðzÞξ1=z2 − 1

1 − b̂ðzÞ for b̂ðzÞ ≠ 1; ð78Þ

where b̂ðzÞ is a rapidly increasing function of z. To give
an idea, b̂ð09Þðz ¼ 0.2Þ ≃ 0.08, b̂ð09Þðz ¼ 0.6Þ ≃ 0.56,
b̂ð16Þðz ¼ 0.2Þ ≃ 0.27, b̂ð16Þðz ¼ 0.6Þ ≃ 1.36. Requiring
that 0 < ρS < 1 restricts the allowed values of ξ1 in terms
of b̂ðzÞ:

if b̂ < 1; then z2=b̂ < ξ1 < z2ð2 − b̂Þ=b̂;
if b̂ > 1; then z2ð2 − b̂Þ=b̂ < ξ1 < z2=b̂: ð79Þ

As an example, Fig. 3 shows, for the sets FIT09 (left
panel) and FIT16 (right panel) and for z ¼ 0.2, the values
of ρS corresponding to the allowed ξ1 range that keep fixed
the values of both the total Drell-Yan and SIDIS Sivers
asymmetries when moving away from the (ρ̂S, ξ̂1) values of
the corresponding fit.
The slope of the straight lines in the plots increases,

and therefore the allowed range for ξ1 shrinks, as b̂ðzÞ
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FIG. 3. The two lines in the (ρS, ξ1) parameter space show the set of values of ρS and ξ1 which leave unchanged the SIDIS Sivers

asymmetry Asinðϕh−ϕSÞ
UT , see Eq. (51), and the predictions for the Drell-Yan Sivers asymmetry ADY

N , see Eq. (69). The black dots
correspond to the values ρ̂S and ξ̂1 obtained in the fits of Ref. [17] (left plot, FIT09) and of Ref. [23] (right plot, FIT16), which describe
equally well the SIDIS Sivers asymmetry.
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FIG. 2. The plots show how the predictions for the Drell-Yan qT-integrated Sivers asymmetry ADY
N , see Eq. (55), change, as functions

of ξ1, when the parameters extracted from SIDIS data move along the corresponding lines of Fig. 1. The rescaling factor RN
DY is defined

in Eqs. (69) and (70). In this scenario the PT-integrated SIDIS Sivers asymmetry Asinðϕh−ϕSÞ
UT , see Eq. (51), does not change, together with

its factors AS
DIS and F S

DIS.
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approaches 1, changing sign when it crosses this value.
For b̂ðzÞ ¼ 1—that is, for 0 < z ¼ ξ̂1=21 < 1—Eq. (75) can
be fulfilled only for ξ1 ≡ ξ̂1, and ρS is undetermined.
Notice that in this case, like in scenario 1, although the

total Sivers asymmetries are unchanged, the separate
factors depending on the longitudinal momentum fractions
and on the transverse momenta, AS and F S respectively,
change according to Eqs. (67), (68), and (76). The rescaling
factor RS

DIS ¼ RS
DY is shown in Fig. 4 as a function of ξ1 in

the allowed range, for the two reference fits.
By comparing Figs. 1 and 3, we see that future

qT-integrated data on the Drell-Yan Sivers asymmetries
could constrain more severely the range of allowed ξ1
values—in particular, for the FIT16 set (right panel of
Fig. 3). On the other hand, Fig. 4 shows that even in this
restricted range, as soon as the value of ξ1 changes (with
respect to that of the reference fits), the two factors of the
total asymmetry—AS, which depends on the longitudinal
momentum fractions and F S, which depends on the trans-
verse momenta—can change by a sizeable factor. For AS,
this implies a sizeable change in the collinear part of the
Sivers distribution function ΔNfq=p↑ðxÞ, like 1=RS

DIS.
Again, the plots shown in Fig. 4 cover all variable ranges

mathematically allowed, but one should keep in mind that
too small values of RS

DIS are not physically acceptable.
Such values would yield large values of AS

DIS and AS
DY

[see Eqs. (67) and (68)], and consequently, large values of
Δfq=p↑ðxÞ, which eventually violate the positivity bound
jΔfq=p↑ðxÞj ≤ 2fq=pðxÞ.
These results, and those of the previous two scenarios,

clearly show how the choice of a specific set for theGaussian
widths of the unpolarized TMDs could play a crucial role in
the extraction of the Sivers function from the analysis of
the corresponding SIDIS azimuthal asymmetries and, as a
consequence, in the predictions for the Sivers asymmetries in
DY processes.

IV. THE COLLINS CASE

Let us now extend the considerations of the previous
section to the Collins asymmetries and see how the
uncertainty on the choice of ξ1 can affect the extraction
of the transversity distribution and the Collins function
from SIDIS and eþe− annihilation data, see Eqs. (53), (54)
and (57), (58). Notice that although FC

eeðρCÞ does not
depend explicitly on ξ1, possible conditions onFC

DIS induce
a correlation between ρC and ξ1.
The Collins case is more complicated than the Sivers case.

In fact, in the latter case the explored Sivers function always
enters linearly, convoluted either with the unpolarized FF
function in the SIDIS asymmetries, or with the unpolarized
PDF in the DY asymmetries. Instead, in the Collins asym-
metries, the Collins FF enters linearly in the SIDIS case—
coupled to the transversity distribution—while in the eþe−

case it appears “quadratically,” in the sense that the Collins
function associated with hadron h1 is convoluted with the
Collins function associated with hadron h2. This makes the
analysis less direct, since variations in the transverse-
momentum-dependent factors can generate different effects
on the x- and z-dependent parts. More precisely, they can
affect only the transversity distribution hq1ðxÞ, or only the
collinear part of the Collins FFΔNDh=q↑ðzÞ, or both of them
simultaneously.
Moreover, no experimental data are presently available

on the p⊥ distributions in the cross section for eþe− →
h1h2X processes, from which one could attempt an
extraction of the unpolarized hp2⊥i width. Old measure-
ments exist, that were recently analyzed in Ref. [44], but
they correspond to single hadron production in eþe−

annihilations, a process for which TMD factorization
theorems are not proven to be applicable.
In order to simplify our discussion, we assume that

changes in the values of ξ1 and ρC will possibly be reflected
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FIG. 4. The plots show the rescaling factor RS
DIS ¼ RS

DY which fixes the changes of F S
DIS and F S

DY, see Eqs. (67) and (68), when the
parameters ρS and ξ1 move as in the corresponding plots of Fig. 3. Notice that AS

DIS and AS
DY, and therefore the collinear component of

the Sivers function, change as 1=RS
DIS. In this scenario, both the PT-integrated SIDIS Sivers asymmetry Asinðϕh−ϕSÞ

UT , see Eq. (51), and the
qT-integrated DY Sivers asymmetry ADY

N , see Eq. (55), do not change.
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only in variations of the overall numerical factors appearing
in the collinear parts of the transversity distribution and the
Collins FF, rather than in their functional shapes. At the
qualitative level of the present treatment, this allows us to
focus on the main effects, avoiding additional complica-
tions. For the same reason, we take ξT ¼ hk2⊥iT=hk2⊥i ¼ 1,
assuming that the transversity distribution has the same
transverse momentum dependence as the unpolarized
TMDs.
As for the Sivers case, in our analysis we consider two

different reference parametrizations for the transversity
distribution and the Collins FF with comparable accuracies
of the corresponding fits to data:
(1) The fit of Ref. [24], referred to as FIT07 in the

following, for which

hk2⊥i ¼ 0.25 GeV2; hp2⊥i ¼ 0.20 GeV2;

M2
C ¼ 0.88 GeV2; ð80Þ

implying

ξ̂ð07Þ1 ¼ 0.80; ρ̂ð07ÞC ¼ 0.81: ð81Þ

The complete list of parameters can be found in
Table II of Ref. [24], where more details on the
fitting procedure, the parameter extraction, and
additional references are given.

(2) The fit from Ref. [21], referred to as FIT15, for
which

hk2⊥i ¼ 0.57 GeV2; hp2⊥i ¼ 0.12 GeV2;

M2
C ¼ 0.28 GeV2; ð82Þ

corresponding to

ξ̂ð15Þ1 ¼ 0.21; ρ̂ð15ÞC ¼ 0.70: ð83Þ

Again, full details and the complete list of param-
eters can be found in Ref. [21] and its Table I.

We recall that for the Collins asymmetry in eþe−
annihilations we have considered here the A0 asymmetry,
corresponding to the experimental “hadronic plane” setup,
where no direct reference to the qq̄ jet thrust axis is made
(see Ref. [21] and references therein). Notice also that,
similarly to the SIDIS Sivers case, the two reference fits
differ significantly in the values of ξ̂1 and much less in the
values of ρ̂C (ρ̂S for the Sivers asymmetry).
In the Sivers case discussed in the previous section, we

investigated how the freedom left on the parameters ξ1 and
ρS by SIDIS data could affect the predictions for the Sivers
asymmetry in DY processes. This was because of the lack
of experimental information on polarized DY scattering
experiments. In the case of the Collins asymmetry, instead,
sufficient experimental information is available both from

SIDIS and eþe− annihilation data. We then investigate the
freedom left on the parameters ξ1 and ρC by these data; that
is, we study whether, moving in the parameter space (ρC,
ξ1) away from a given reference set (ρ̂C, ξ̂1), the following
relations remain true:

AC
DISF

C
DISðρC; ξ1Þ ≃ ÂC

DISF̂
C
DISðρ̂C; ξ̂1Þ;

AC
eeFC

eeðρCÞ ≃ ÂC
eeF̂

C
eeðρ̂CÞ: ð84Þ

Notice that by using Eq. (54), with ξT ¼ 1, and Eq. (58),
in complete analogy with the Sivers case, we can also write

FC
DIS ¼ RC

DISF̂
C
DIS; AC

DIS ≃
1

RC
DIS

ÂC
DIS;

with RC
DIS ¼

�
ρ3Cð1 − ρCÞ
ρC þ z2=ξ1

ρ̂C þ z2=ξ̂1
ρ̂3Cð1 − ρ̂CÞ

�1=2
ð85Þ

and

FC
ee ¼ RC

eeF̂
C
ee; AC

ee ≃
1

RC
ee
ÂC
ee;

with RC
ee ¼

ρ2Cð1 − ρCÞ
ρ̂2Cð1 − ρ̂CÞ

: ð86Þ

Due to the factorized nature of our approach, there could
be several solutions of Eq. (84). We consider as examples a
few possible scenarios which differ by one further addi-
tional condition, leading to different ways of modifying the
collinear and transverse-momentum-dependent terms in
the asymmetries, and ultimately, the corresponding com-
ponents of the transversity distribution hq1ðxÞ and of the
Collins FF ΔNDh=q↑ðzÞ.

A. Collins effect, scenario 1

In this scenario, we look for possible allowed sets of
(ρC, ξ1) values which not only leave unchanged the two
(SIDIS and eþe−) Collins asymmetries in Eq. (84), but also
the PT-integrated SIDIS Collins factor FC

DIS:

FC
DISðρC; ξ1Þ ¼ F̂C

DISðρ̂C; ξ̂1Þ; ð87Þ
that is,

RC
DIS ¼

�
ρ3Cð1 − ρCÞ
ρC þ z2=ξ1

ρ̂C þ z2=ξ̂1
ρ̂3Cð1 − ρ̂CÞ

�1=2
¼ 1: ð88Þ

As for the Sivers case, the above constraint corresponds
to a fourth-order algebraic equation for ρC, at fixed ξ̂1, ρ̂C,
and z:

ρ4C − ρ3C þ ĉðzÞρC þ ĉðzÞ z
2

ξ1
¼ 0;

with ĉðzÞ ¼ ρ̂3Cð1 − ρ̂CÞ
ρ̂C þ z2=ξ̂1

: ð89Þ
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Again, it turns out that two of the four possible solutions for
ρC are complex, while the other two can be real, at least for
some range of ξ1 values. As an example, they are shown in
Fig. 5, for both the FIT07 (left panel) and FIT15 (right
panel) parametrizations, as a function of ξ1 at fixed z ¼ 0.2.
Notice that, although the plots are shown up to ξ1 ¼ 1.2, at
variance with ρS for the Sivers case, the two solutions for
ρC survive, almost constant, up to much larger ξ1 values.
From Eqs. (85) and (86) we have, in this scenario,

AC
DIS ¼ ÂC

DIS; AC
ee ¼

1

RC
ee
ÂC
ee: ð90Þ

Let us recall that AC
DIS in Eq. (24) is a linear convolution

of the transversity distribution hq1ðxÞ and the collinear
component of the Collins function ΔNDh=q↑ðzÞ, while
AC
ee in Eq. (47) is “quadratic” in ΔNDh=q↑ . Then, it is

reasonable to assume that, in order to keep satisfying

Eq. (90) while the parameters (ρc, ξ1) vary as in Fig. 5,
ΔNDh=q↑ rescales, approximately, as 1=

ffiffiffiffiffiffiffi
RC
ee

p
and, as a

consequence, hq1ðxÞ must rescale as
ffiffiffiffiffiffiffi
RC
ee

p
. This rescaling

factor is shown in Fig. 6 for each of the two possible
solutions ρCðξ1Þ.
This figure shows that in the range of ξ1 considered, the

rescaling factor differs from unity by a factor of �10% at
most, which is well inside the uncertainties of the extraction
procedure [21,24]. However, as z increases to 0.6, the
allowed range of ξ1 shrinks to larger values for the FIT07
case, while for the FIT15 set the rescaling factor

ffiffiffiffiffiffiffi
RC
ee

p
decreases to 0.6 at larger ξ1.
Let us also notice that in this scenario, and within a

phenomenological TMD approach, the possible Collins
contribution to SSAs in p↑p → hX, p↑p → h jetX proc-
esses should remain approximately unchanged, like in the
SIDIS case, since the transversity distribution and the
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FIG. 6. The expected rescaling factor
ffiffiffiffiffiffiffi
RC
ee

p
for the collinear transversity distribution hq1ðxÞ when the parameters ρC, ξ1 move away

from the reference fit values as in the corresponding plots of Fig. 5. Simultaneously, the Collins collinear distribution ΔNDh=q↑ðzÞ
rescales as 1=

ffiffiffiffiffiffiffi
RC
ee

p
. In this scenario the total PT-integrated Collins asymmetries, Eqs. (55) and (57), remain unchanged, as well as the

FC
DIS factor.
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FIG. 5. The curves in the (ρC, ξ1) parameter space show the set of values of ρC and ξ1 which leave unchanged the PT -integrated factor
of the Collins asymmetry, FC

DISðz ¼ 0.2Þ. The black dots correspond to the values ρ̂C and ξ̂1 obtained in the fits of Ref. [24] (left plot,
FIT07) and of Ref. [21] (right plot, FIT15), which describe equally well the SIDIS and eþe− Collins asymmetries. Notice that for each
value of ξ1, one finds two possible values of ρC. Similar results are obtained by changing z from 0.2 to 0.4 or 0.6.
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Collins FF change simultaneously by an inverse overall
factor.

B. Collins effect, scenario 2

In this scenario, we still require that the two Collins
asymmetries for SIDIS and eþe− collisions remain approx-
imately unchanged [Eq. (84)], imposing this time as a
further condition that the transverse-momentum-dependent
terms of the two Collins asymmetries change in the same
way:

FC
ee

F̂C
ee

¼ FC
DIS

F̂C
DIS

; ð91Þ

that is, from Eqs. (85) and (86),

RC
DIS ¼ RC

ee: ð92Þ

At fixed ξ̂1, ρ̂C, z, the above constraint translates into an
algebraic cubic equation for ρCðξ1Þ:

ρ3C þ
	
z2

ξ1
− 1



ρ2C −

z2

ξ1
ρC þ d̂ðzÞ ¼ 0;

with d̂ðzÞ ¼ ρ̂Cð1− ρ̂CÞ
	
ρ̂C þ z2

ξ̂1



: ð93Þ

Only two out of the three solutions are real in the range of
ξ1 values of interest. As an illustration, they are shown in
Fig. 7 for both the FIT07 (left panel) and FIT15 (right
panel) parametrizations, as a function of ξ1 at fixed z ¼ 0.2.
Notice that the solutions for the FIT07 case, shown on the
left panel, survive, almost constant, up to values of ξ1 much
larger than those shown in the plot.

The condition (92) implies

AC
ee

ÂC
ee

¼ AC
DIS

ÂC
DIS

¼ 1

RC
DIS

¼ 1

RC
ee
; ð94Þ

which corresponds to a situation in which both the collinear
terms of the transversity distribution, hq1ðxÞ, and that of the
Collins fragmentation function, ΔNDh=q↑ðzÞ, are approx-

imately rescaled by the same factor 1=
ffiffiffiffiffiffiffiffiffi
RC
DIS

p
.

For each of the two possible solutions ρCðξ1Þ shown in
Fig. 7, the corresponding rescaling factor 1=

ffiffiffiffiffiffiffiffiffi
RC
DIS

p ¼
1=

ffiffiffiffiffiffiffi
RC
ee

p
is shown in Fig. 8, as a function of ξ1 at fixed

z ¼ 0.2, for the FIT07 (left panel) and the FIT15 (right
panel) cases. For the FIT07 case, we see that, with the
exception of the very small ξ1 region, the rescaling factor is
not far from unity, for both branches of ρðξ1Þ. For the FIT15
case, the rescaling factor can be remarkably different for
the two solutions, and for one of them can be sizeably
larger than unity; however, as we commented before, the
region ξ1 ≲ 0.2 is unlikely to be a physical one.
As z increases to 0.6, for the FIT07 case the rescaling

factor for the two solutions differs more and can reach
values sensibly different from unity already for not very
small ξ1, of the order 0.4 ÷ 0.5.

C. Collins effect, scenario 3

Finally, we consider a scenario based on Eq. (84) and the
further constraint that the collinear and the qT-integrated
components of the Collins asymmetry for eþe− annihila-
tions remain separately fixed. According to Eq. (86), this
corresponds to the condition

RC
ee ¼ 1; ð95Þ

that is,

ρ3C − ρ2C þ ρ̂2Cð1 − ρ̂CÞ ¼ 0: ð96Þ
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FIG. 7. The curves in the (ρC, ξ1) parameter space show the set of values of ρC and ξ1 which satisfy Eq. (92) at z ¼ 0.2. The black dots
correspond to the values ρ̂C and ξ̂1 obtained in the fits of Ref. [24] (left plot, FIT07) and of Ref. [21] (right plot, FIT15), which describe
equally well the SIDIS and eþe− Collins asymmetries. Notice that for each value of ξ1, one finds two possible values of ρC. Similar
results are obtained by changing z from 0.2 to 0.4 or 0.6.

M. ANSELMINO et al. PHYS. REV. D 98, 094023 (2018)

094023-14



This equation has the following analytical solutions:

ρC ¼ ρ̂C; ρC ¼ 1

2

	
1 − ρ̂C −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ρ̂C − 3ρ̂2C

q 

;

ρC ¼ 1

2

	
1 − ρ̂C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ρ̂C − 3ρ̂2C

q 

: ð97Þ

The second root is always negative in the physical range
0 < ρ̂C < 1, while the other two take the values

ρð07Þ1C ¼ ρ̂ð07ÞC ¼ 0.81; ρð07Þ2C ¼ 0.50; ð98Þ

ρð15Þ1C ¼ ρ̂ð15ÞC ¼ 0.70; ρð07Þ2C ¼ 0.63; ð99Þ

respectively, for the FIT07 and FIT15 cases.

From Eqs. (85) and (86) we have, in this scenario,

AC
ee ¼ ÂC

ee; AC
DIS ¼

1

RC
DIS

ÂC
DIS; ð100Þ

from which one expects a situation in which the collinear
component of the Collins FF, ΔNDh=q↑ðzÞ, remains
unchanged, while the transversity distribution hq1ðxÞ
changes by a factor 1=RC

DIS. The behavior of this rescaling
factor 1=RC

DISðρC; ξ1; zÞ is shown in Fig. 9 as a function of
ξ1 at fixed z ¼ 0.2 for the FIT07 (left panel) and the FIT15
(right panel) cases, and in each case for the two allowed ρC
solutions, Eqs. (98) and (99).
One can see that in both cases, the rescaling factor is

very similar for the two possible values of ρC and is almost
equal to 1, apart from the small unphysical ξ1 region. As z
increases to 0.6, the difference between the two solutions
is more pronounced for the FIT07 case, and the rescaling
factor differs more sizeably from unity in both cases.
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for the collinear transversity distribution hq1ðxÞ and the collinear Collins function

ΔNDh=q↑ðzÞ when the parameters ρC, ξ1 move away from the reference fit values as in the corresponding plots of Fig. 7. In this scenario,
the total PT-integrated Collins asymmetries, Eqs. (55) and (57), remain unchanged, while FC

DIS and FC
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ee factor.
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V. CONCLUSIONS

We have investigated to what extent the actual para-
metrizations of the most studied TMDs—the Sivers dis-
tribution and the Collins fragmentation function—can be
fixed by data and what uncertainties could remain. We feel
that such a study is necessary at this stage of the exploration
of the 3D nucleon structure, just before a full implementa-
tion of the TMD evolution is performed and when new
amounts of data are soon expected from COMPASS, JLab
12, and hopefully in the not so far future, from the electron
ion collider (EIC).
We have done so motivated by the observation that most

data originate from SIDIS processes in which the parton
distribution and fragmentation properties both contribute to
build up the final observables, like in Eq. (13), which
clearly shows a strong correlation between hk2⊥i and hp2⊥i.
Indeed, equally good fits of SIDIS asymmetry data could
be obtained with rather different values of these two
parameters. On the other hand, other processes, like lepton
pair production in hadronic collisions (DY) or hadron pair
production in eþe− annihilations, are only sensitive to the
TMD parton distributions or the TMD parton fragmenta-
tion functions, respectively.
We have assumed a simple scheme, mainly so far

adopted, in which the collinear and transverse degrees
of freedom of the TMDs are factorized, with Gaussian
dependences for the transverse-momentum-dependent
components [Eqs. (2)–(4)]. We have limited our consid-
erations to the PT- or qT-integrated asymmetries
[Eqs. (51)–(58)], which have a very simple structure
according to which the Gaussian transverse dependence
of the TMDs results in factors which are functions of the
Gaussian widths. A change in such parameters, like hk2⊥i
and hp2⊥i, may affect the extraction of the collinear part
of the TMDs.
We have considered separately the extraction of the

Sivers and the Collins TMDs. The former is related to
measured azimuthal asymmetries in polarized SIDIS,
and to so far not yet well known asymmetries in polarized
DY processes. The latter is related to measured azimuthal
asymmetries in polarized SIDIS and in unpolarized eþe−
annihilation processes.
We have found that special care must be taken of the

uncertainty in the ratio ξ1 ¼ hp2⊥i=hk2⊥iwhen discussing or
adopting the extraction of the collinear part of the Sivers
distribution, ΔNfq=p↑ðxÞ, the collinear part of the Collins

distribution, ΔNDh=q↑ðzÞ, or the transversity distribution,
hq1ðxÞ.
In particular, since equally good fits of the Sivers SIDIS

asymmetry can be obtained with considerably different
values of ξ1, the extraction of the corresponding collinear
part of the Sivers function,ΔNfq=p↑ðxÞ, or, equivalently, the
prediction of the Sivers asymmetry in DY processes, may
vary by up to a factor of 2. A correct prediction of the Sivers
asymmetry in DY processes is of particular importance,
because of the expected sign change of the Sivers function
in SIDIS and DY processes, which remains to be accurately
tested. It is also relevant for the phenomenological study of
the TMD evolution of the Sivers distribution.
Concerning the extraction of the collinear component of

the Collins function ΔNDh=q↑ðzÞ and the transversity
distribution hq1ðxÞ from SIDIS and eþe− data, the uncer-
tainty on ξ1 seems to have milder effects. In fact, the
rescaling factors for these functions, when changing the
values of the parameters without altering the quality of
the fits, are not far from unity, as shown in Figs. 6, 8, and 9.
Although our plots cover all mathematically allowed values
of ξ1 down to ξ1 ¼ 0, the physical value of this parameter
is expected to be larger than approximately 0.15 [31].
A precise determination of the parameter ξ1 ¼

hp2⊥i=hk2⊥i, at least according to the kinematical configu-
ration of our Gaussian parametrization, is of crucial
importance for a better knowledge of the Collins, Sivers,
and transversity distributions. This parameter enters in the
studies of the SIDIS multiplicities and unpolarized cross
sections, which therefore deserve much attention, both
experimentally and phenomenologically. In general, the
QCD analysis of the available data is a formidable task, due
to the difficulties in the correct implementation of the full
theoretical framework and the quality of the experimental
results, as recently pointed out in Ref. [45]. New important
data, helpful in this respect, might soon be available from
JLab 12, COMPASS, and future EIC experiments, as well
as from Belle, BABAR, and BESIII in the fragmentation
sector.
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