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Typicalities and Probabilities of Exceptions in Nonmotonic
Description LogicsI

Gian Luca Pozzatoa,∗

aDipartimento di Informatica, Università degli Studi di Torino, corso Svizzera 185, 10149 Torino, Italy

Abstract

We introduce a nonmonotonic procedure for preferential Description Logics in order to
reason about typicality by taking probabilities of exceptions into account. We consider
an extension, called ALC + TP

R, of the logic of typicality ALC + TR by inclusions
of the form T(C) vp D with probability p, whose intuitive meaning is that “all the
typical Cs are Ds, and the probability that a C is not a D is 1− p”. We consider a no-
tion of extension of an ABox containing only some typicality assertions, then we equip
each extension with a probability. We then restrict entailment of a query F to those
extensions whose probabilities belong to a given and fixed range. We propose a deci-
sion procedure for reasoning in ALC + TP

R and we exploit it to show that entailment
is EXPTIME-complete as for the underlying ALC.

Keywords: Description Logics, Typicality, Nonmonotonic Reasoning, Probabilities
of exceptions

1. Introduction

Description Logics [1], for short: DLs, represent one of the most important for-
malisms of knowledge representation and are at the base of the languages for building
ontologies in the Semantic Web such as OWL. Their success is essentially motivated
by two key advantages: on the one hand, DLs have a well-defined semantics based on
first-order logic; on the other hand, they provide a good trade-off between the expres-
sivity of the language and the computational complexity of their reasoning services.
Description Logics are useful in practice in several application domains.

According to Description Logics, a knowledge base contains two components:

• a TBox, containing inclusion relations among concepts: for instance, we would
need to formalize the fact that cats are mammals, and this is represented by
Cat v Mammal ;
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• an ABox containing facts about the domain, for instance we would need to for-
malize that Tom is a cat, and this is represented by Cat(tom).

Standard Description Logics – and, as a consequence, existing ontologies – are not able
to represent prototypical properties and to reason about defeasible inheritance. Recall-
ing a well known example coming from the literature of nonmonotonic reasoning, we
can have a TBox representing that birds fly (Bird v Fly), but that penguins are birds
that do not fly (Penguin v Bird and Penguin v ¬Fly). This knowledge base is
consistent only if there are no penguins. In order to tackle this problem, nonmonotonic
extensions of Description Logics have been actively investigated since the early 90s
[2, 3, 4, 5, 6, 7, 8], allowing one to represent prototypical properties of classes and to
reason about defasible inheritance.

A simple but powerful nonmonotonic extension of DLs is proposed in [9]: in this
approach “typical” or “normal” properties can be directly specified by means of a “typ-
icality” operator T enriching the underlying DL, and a TBox can contain inclusions of
the form T(C) v D to represent that “typical Cs are also Ds” or “normally, Cs have
the property D”. The Description Logic so obtained is calledALC+TR and, as a dif-
ference with standard DLs, one can consistently express exceptions and reason about
defeasible inheritance as well. For instance, a knowledge base can consistently express
that “normally, referees award penalty kicks”, whereas “Italian referees usually do not
award penalty kicks” (since in Italian “serie A” a video assistant referee “VAR” often
intervenes in order to change the official referee’s decisions) as follows:

T(Referee) v ∃awards.PenaltyKick
T(Referee u Italian) v ¬∃awards.PenaltyKick

The semantics of the T operator is characterized by a set of postulates that are essen-
tially a restatement of axioms and rules of rational entailment as introduced in [10],
recognized as the core properties of nonmonotonic reasoning. As a consequence, T
inherits well-established properties like specificity: in the example, if one knows that
Daniele is a typical Italian referee, then the logic ALC + TR allows us to infer that he
usually does not award penalty kicks, giving preference to the most specific informa-
tion.

The logic ALC + TR itself is too weak in several application domains. Indeed,
although the operator T is nonmonotonic (T(C) v E does not imply T(CuD) v E),
the logic ALC + TR is monotonic, in the sense that if the fact F follows from a given
knowledge base KB, then F also follows from any KB’ ⊇ KB. As a consequence,
unless a KB contains explicit assumptions about typicality of individuals, there is no
way of inferring defeasible properties about them: in the above example, if KB contains
the fact that Mark is a referee, i.e.

Referee(mark)

belongs to KB, it is not possible to infer that he awards penalty kicks

∃awards.PenaltyKick(mark).
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This would be possible only if the stronger information that Mark is a typical referee

T(Referee)(mark)

belongs to (or can be inferred from) KB. In order to overwhelm this limit and perform
useful inferences, in [11, 12] the authors have introduced a nonmonotonic extension
of the logic ALC + TR based on a minimal model semantics, corresponding to a
notion of rational closure as defined in [10] for propositional logic. Intuitively, the idea
is to restrict our consideration to (canonical) models that maximize typical instances
of a concept when consistent with the knowledge base. The resulting logic, call it
ALC + TRaCl

R , supports typicality assumptions, so that if one knows that Mark is a
referee, one can nonmonotonically assume that he is also a typical referee if this is
consistent, and therefore that he awards penalty kicks. From a semantic point of view,
the logic ALC + TRaCl

R is based on a preference relation among ALC + TR models
and a notion of minimal entailment restricted to models that are minimal with respect
to such preference relation.

The logicALC+TRaCl
R imposes to consider all typicality assumptions that are con-

sistent with a given KB. Let us consider another example, where a Description Logic
knowledge base expresses that typical students are young persons that, normally, make
use of social networks, as well as that, normally, Italians love spaghetti. Furthermore,
the knowledge base states that a typical young person goes to parties. Moreover, we
have that Mario, Fabrizio, Pietro, Ruggero, Patrizia, Roberta and Donatella are Italian
students. If it is consistent to assume that they are typical ones, then the logic imposes
that they are all social network users, that they all love spaghetti and that they all go to
parties. We have seven different students, and the logicALC+TRaCl

R assumes that each
one of them corresponds to a prototypical one. This would also happen in case we had
hundreds of students, leading to the assumption that, in absence of explicit information
(for instance, in case we discover that Donatella does not like spaghetti), there are no
exceptions: this seems to be too strong in several application domains. It could be use-
ful to reason about scenarios with exceptional individuals, or one could need to assign
different probabilities to typicality inclusions. In the example, one could need to rep-
resent that the properties of being young and being part of the social media ecosphere
are all typical properties of students: however, it could be needed to also describe that
the probability of finding exceptional students not being young is lower than the one of
finding exceptional students not using social networks.

In this work we introduce a new Description Logic called ALC + TP
R, which ex-

tends ALC by means of typicality inclusions equipped by probabilities of exceptional-
ity of the form

T(C) vp D,

where p ∈ (0, 1). The intuitive meaning is that:

“normally, Cs are Ds and the probability of having exceptional Cs – not being Ds – is
1− p”.

In other words, all the typical instances of the concept C are also instances of the
concept D, and the probability that a C element is not also a D element, i.e. it is an
exceptional C element, is 1− p. For instance, we can have
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T(Student) v0.6 SportLover
T(Student) v0.9 SocialNetworkUser

whose intuitive meaning is that being sport lovers and social network users are both
typical properties of students, however the probability of having exceptional students
not loving sport is higher than the one of finding students not using social networks, in
particular we have the evidence that the probability of having exceptions is 40% and
10%, respectively.

It is worth noticing that the probability p equipping a typicality inclusion T(C) vp

D could be wrongly interpreted as “typical Cs are also Ds with probability p”, stating
that if an individual is a typical instance of the concept C, then there is the probability
p that such an instance is also a D element, then that there are some typical Cs that are
notDs: this is not the case, since in the semantics of the logicALC+TRaCl

R underlying
our logic ALC + TP

R, that we will recall in Section 2, all typical Cs are Ds and, as
mentioned here above, p is used to represent the probability of (not) finding exceptional
Cs not being Ds.

As a difference with DLs under the distributed semantics introduced in [13, 14],
where probabilistic axioms of the form p :: C v D are used to capture uncertainty in
order to represent thatCs areDs with probability p, in the logicALC+TP

R we are able
to ascribe typical properties to concepts and to reason about probabilities of exceptions
to those typicalities. We define different extensions of an ABox containing only some
of the “plausible” typicality assertions: each extension represents a scenario having a
specific probability. Then, we provide a notion of nonmonotonic entailment restricted
to extensions whose probabilities belong to a given and fixed range, in order to reason
about scenarios that are not necessarily the most probable. We introduce a decision
procedure for checking entailment in ALC + TP

R and we exploit it in order to show
that reasoning in ALC + TP

R with probabilities of exceptions is EXPTIME complete,
therefore we retain the same complexity of the underlying standard ALC.

The plan of the paper, which extends and revises a preliminary version appeared
in [15], is as follows. In Section 2 we recall the basic concepts of Description Logics
extended with the typicality operator. In Section 3 we extend such logics in order to
deal with probabilities of exceptions introducing the logic ALC + TP

R, whereas in
Section 4 we introduce a decision procedure for reasoning in the proposed logic and
we study its complexity. We conclude with a discussion and a comparison with related
approaches in Section 5.

2. Preferential Description Logics

Let us first recall the main notions about the Description Logic of typicalityALC+
TR introduced in [9, 16, 11]. The logic ALC + TR is obtained by adding to standard
ALC the typicality operator T [9]. The intuitive idea is that T(C) selects the typical
instances of a concept C. We can therefore distinguish between the properties that
hold for all instances of concept C (C v D), and those that only hold for the normal
or typical instances of C (T(C) v D).

The semantics of the T operator can be given by means of a set of postulates that
are a reformulation of axioms and rules of nonmonotonic entailment in rational logic R
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[10]: in this respect an assertion of the form T(C) v D is equivalent to the conditional
assertion C |∼ D in R. A modelM is a triple 〈∆I , fT, .I〉: given a domain ∆I and
an evaluation function .I , one can define a function fT : Pow(∆I) 7−→ Pow(∆I)
that selects the typical instances of any S ⊆ ∆I ; in case S = CI for a concept C, the
selection function selects the typical instances of C, namely:

(T(C))I = fT(CI).

fT has the following properties for all subsets S of ∆I , that are essentially a restate-
ment of the properties characterizing rational logic R:

(fT − 1) fT(S) ⊆ S
(fT − 2) if S 6= ∅, then also fT(S) 6= ∅
(fT − 3) if fT(S) ⊆ R, then fT(S) = fT(S ∩R)
(fT − 4) fT(

⋃
Si) ⊆

⋃
fT(Si)

(fT − 5)
⋂
fT(Si) ⊆ fT(

⋃
Si)

(fT − 6) if fT(S) ∩R 6= ∅, then fT(S ∩R) ⊆ fT(S)

The semantics of the T operator can be equivalently formulated in terms of rational
models [11]: a modelM is any structure 〈∆I , <, .I〉 where ∆I is the domain, < is an
irreflexive, transitive, well-founded and modular (for all x, y, z in ∆I , if x < y then
either x < z or z < y) relation over ∆I . In this respect, x < y means that x is “more
normal” than y, and that the typical members of a concept C are the minimal elements
of C with respect to this relation. An element x ∈ ∆I is a typical instance of some
concept C if x ∈ CI and there is no C-element in ∆I more typical than x. In detail,
.I is the extension function that maps each concept C to CI ⊆ ∆I , and each role R to
RI ⊆ ∆I ×∆I . For concepts ofALC, CI is defined as usual. For the T operator, we
have

(T(C))I = Min<(CI),

where Min<(CI) = {x ∈ CI |6 ∃y ∈ CI s.t. y < x}. We have obtained a result
similar to those ones obtained in [17, 18, 19] for the propositional case:

Theorem 1 (Representation theorem in [11]). A knowledge base is satisfiable in a
model M = 〈∆I , <, .I〉 as above if and only if it is satisfiable in a model M =
〈∆, fT, .I〉 where fT satisfies (fT − 1)− (fT − 6), and (T(C))I = fT(CI).

A model M can be equivalently defined by postulating the existence of a function
kM : ∆I 7−→ N, where kM assigns a finite rank to each domain element: the rank
function kM and < can be defined from each other by letting x < y if and only if
kM(x) < kM(y).

Given standard definitions of satisfiability of a KB in a model, we define a notion of
entailment inALC+TR. Given a query F (either an inclusion C v D or an assertion
C(a) or an assertion of the form R(a, b)), we say that F is entailed from a KB, written
KB |=ALC+TR F , if F holds in all ALC + TR models satisfying KB.

Even if the typicality operator T itself is nonmonotonic (i.e. T(C) v E does not
imply T(C uD) v E), what is inferred from a KB can still be inferred from any KB’
with KB ⊆ KB’, i.e. the logic ALC + TR is monotonic. In order to perform useful
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nonmonotonic inferences, in [11] the authors have strengthened the above semantics
by restricting entailment to a class of minimal models. Intuitively, the idea is to restrict
entailment to models that minimize the untypical instances of a concept. The resulting
logic is called ALC + TRaCl

R and it corresponds to a notion of rational closure on top
ofALC+TR. Such a notion is a natural extension of the rational closure construction
provided in [10] for the propositional logic.

The nonmonotonic semantics of ALC + TRaCl
R relies on minimal rational models

that minimize the rank of domain elements. Informally, given two models of KB,
one in which a given domain element x has rank 2 (because for instance z < y <
x), and another in which it has rank 1 (because only y < x), we prefer the latter,
as in this model the element x is assumed to be “more typical” than in the former.
Query entailment is then restricted to minimal canonical models. The intuition is that
a canonical model contains all the individuals that enjoy properties that are consistent
with KB. A model M is a minimal canonical model of KB if it satisfies KB, it is
minimal and it is canonical1. A query F is minimally entailed from a KB, written KB
|=ALC+TRaCl

R
F , if it holds in all minimal canonical models of KB.

In order to ascribe typical properties to individuals, the notion of rational closure
is extended to the ABox: in particular, the typicality of an individual is maximized by
minimizing its rank. In general, it is not possible to separately assign a unique minimal
rank to each individual, then alternative minimal ranks must be considered. The idea
is that of considering all the possible minimal consistent assignments of ranks to the
individuals explicitly named in the ABox. Each assignment adds some properties to
named individuals which can be used to infer new conclusions. A skeptical view of
considering only those conclusions which hold for all assignments is then adopted.
More formally, the idea is that an individual ai can have a given rank kj(ai) just in case
it is compatible with all the inclusions of the TBox that do not contain the T operator
or that have a T(C) on the left-hand side with C’s rank which is at least kj(ai). The
minimal possible rank assignment kj for all ai is computed as follows: µj

i computes all
the concepts that ai would need to satisfy in case it had the rank kj(ai). The algorithm
verifies whether µj

i is compatible with the rational closure of the TBox and whether
it is minimal. All constants are considered simultaneously, since the possible ranks of
different individual constants depend on each other. The union of all µj

i (for all ai)
takes into account the ranks attributed to all individual constants.

In [11] it is shown that query entailment in ALC + TRaCl
R is in EXPTIME. The

construction of the rational closure and the correspondence between semantics and
construction is recalled in Section 4.

3. Dealing with Probabilities of Exceptions

In this section we define an alternative semantics that allows us to equip a typical-
ity inclusion with the probability of not having exceptions for that, and then to reason

1In Theorem 10 in [11] the authors have shown that for any consistent KB there exists a finite minimal
canonical model of KB.
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about such inclusions. In the resulting Description Logic, called ALC + TP
R, a typi-

cality inclusion has the form
T(C) vp D,

and its intuitive meaning is “typical Cs are also Ds, and the probability of having ex-
ceptional Cs not being Ds is 1− p”. We then define a nonmonotonic procedure whose
aim is to describe alternative completions of the ABox obtained by assuming typicality
assertions about the individuals explicitly named in the ABox: the basic idea is similar
to the one proposed in [9], where a completion of an ALC+T ABox is proposed in
order to assume that every individual constant of the ABox is a typical element of the
most specific concept he belongs to, if this is consistent with the knowledge base. An
analogous approach is proposed in [20], where different extensions of the ABox are
introduced in order to define plausible but surprising scenarios. Here we propose a
similar, algorithmic construction in order to compute only some assumptions of typi-
cality of individual constants, in order to describe alternative scenarios having different
probabilities: different extensions/scenarios are obtained by considering different sets
of typicality assumptions of the form T(C)(a), where a occurs in the ABox.

Definition 1. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and R ∈ R, we define:

C := A | > | ⊥ | ¬C | C u C | C t C | ∀R.C | ∃R.C

An ALC + TP
R knowledge base is a pair (T ,A). T contains axioms of the form either

• C v C or

• T(C) vp C

where p ∈ R, p ∈ (0, 1).

A contains assertions of the form either

• C(a) or

• R(a, b)

where a, b ∈ O.

Given an inclusion T(C) vp D, the higher the probability p the more the inclusion
is “exceptions-free” or, equivalently, the less is the probability of having exceptional
Cs not being also Ds. In this respect, the probability p is a real number included
in the open interval (0, 1): the probability 1 is not allowed, in the sense that an in-
clusion T(C) v1 D (the probability of having exceptional Cs not being Ds is 0)
corresponds to a strict inclusion C v D (all Cs are Ds). Given another inclusion
T(C ′) vp′ D′, with p′ < p, we assume that this inclusion is less “strict” than the other
one, i.e. the probability of having exceptional C ′s is higher than the one of having
exceptional Cs with respect to properties D′ and D, respectively. Recalling the ex-
ample of the Introduction, where KB contains T(Student) v0.9 SocialNetworkUser
and T(Student) v0.6 SportLover , we have that typical students make use of social
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networks, and that normally they also love sport; however, the second inclusion is less
probable with respect to the first one: both are properties of a prototypical student,
however there are more exceptions of students not loving sport with respect to those
not being active on social networks.

Before introducing formal definitions, we provide an example inspired to Example
1 in [20] in order to give an intuitive idea of what we mean for reasoning inALC+TP

R

with probabilities of exceptions. We will complete it with part 2 in Example 5.

Example 1 (Reasoning in ALC + TP
R part 1). We aim at providing a formalization

of some information about illnesses and symptoms. Let KB = (T ,A) where T is as
follows:

Bipolar v Depressed (1)
T(Depressed) v0.85 ¬∃hasSymptom.MoodReactivity (2)
T(Bipolar) v0.7 ∃hasSymptom.MoodReactivity (3)
T(ProstateCancerPatient) v0.6 ∃hasSymptom.MoodReactivity (4)
T(ProstateCancerPatient) v0.8 ∃hasSymptom.Nocturia (5)

The above TBox T represents that (2), normally, depressed people do not have mood
reactivity, namely the ability to feel better temporarily in response to positive life
events. On the contrary, (3) states that this is a typical symptom of the bipolar dis-
order, a subtype of depression with atypical features that shares many of the typical
symptoms of depression but is characterized by improved mood in response to positive
events. Inclusion (1) intuitively represents that the bipolar disorder is a kind of de-
pression. Mood reactivity, as well as nocturia, are also typical symptoms of prostatic
cancer (inclusions (4) and (5), respectively): more in detail, (4) says that we have
a probability of 40% of having exceptional prostatic cancer patients with no mood
swings, whereas (5) says that the probability of having exceptional prostatic cancer
patients without nocturia is 20%.

Concerning TBox reasoning, as a first example we have that in the logicALC+TP
R,

from the above knowledge base we can infer2 that, normally, depression in patients is
not classified as bipolar disorder:

T(Depressed) v ¬Bipolar ,

and this is a wanted inference. As another example of reasoning about the TBox, we
have that

(6) T(Depressed u Spleenless) v ¬∃hasSymptom.MoodReactivity

follows from KB, and this is also a wanted inference, since undergoing spleen removal
is irrelevant with respect to mood reactivity as far as we know. This is a nonmonotonic

2As mentioned, at this point of the presentation we only want to give an intuition of inferences character-
izingALC + TP

R. Technical details and definitions will be provided in Definitions 5 and 6.
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inference that does no longer follow if it is discovered that typical depressed people
without their spleen are subject to mood reactivity: given

T ′ = T ∪ {T(Depressed u Spleenless) v ∃hasSymptom.MoodReactivity},

we have that the inclusion (6) does no longer follow from KB with T ′ in the logic
ALC + TP

R.
As for rational closure, the set of inclusions that are entailed from a ALC + TP

R

KB is closed under the property known as rational monotonicity: for instance, from KB
and the fact that the inclusion representing that, normally, depressed people are not
elder

T(Depressed) v ¬Elder

is not entailed from KB in ALC + TP
R, it follows that we can infer the inclusion

T(Depressed u Elder) v ¬∃hasSymptom.MoodReactivity ,

namely, a typical depressed and elder patient has not mood reactivity (the subconcept
Depressed u Elder inherits the typical properties of the concept Depressed ).

Concerning ABox reasoning, if we know that Jim is depressed:

A = {Depressed(jim)},

then we can infer that Jim has not mood swings with a probability of 85%, since
T(Depressed)(jim) is minimally entailed from KB in ALC + TRaCl

R and the inclu-
sion (2) is equipped by a probability of 0.85. If we discover that Jim is affected by
a bipolar disorder, then ALC + TP

R allows us to retract such inference, whereas the
fact that Jim has mood swings (∃hasSymptom.MoodReactivity(jim)) is entailed and
evaluated having probability of 70%. The same conclusions are also entailed in case
we discover that Jim is elder, i.e. Elder(jim) is added to the ABox, in detail:

• from (T , {Depressed(jim),Elder(jim)}), the logic ALC + TP
R allows us to

infer ¬∃hasSymptom.MoodReactivity(jim) with probability of 85%;

• from (T , {Bipolar(jim),Elder(jim)}), the logic ALC + TP
R allows us to infer

∃hasSymptom.MoodReactivity(jim) with probability of 70%.

It is worth noticing that it is possible to have knowledge bases containing inclusions of
the form T(C) vp D, where p ≤ 0.5 that, if wrongly interpreted, could be con-
sidered as counter intuitive. For instance, the inclusion T(Student) v0.3 Young
could be wrongly interpreted as “normally, students are not young people”. How-
ever, probabilities in ALC + TP

R are not intended to express neither degrees of belief
of the inclusions they equip nor a notion of proportion of exceptions. In the example,
even if its corresponding probability of exceptionality is low, the right interpretation
of T(Student) v0.3 Young is that being a young person is anyway a property of a
prototypical student: as a difference with T(Student) v0.9 ¬SocialNetworkUser , we
essentially have that the probability of finding exceptional students not being young is
higher than the one of finding exceptional students not using social networks, but both
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are typical properties of a student. In case the ontology engineer needs to formalize that
typical students are not young person, he just need to have T(Student) vp ¬Young
in his KB with a suitable p. As mentioned before, the correct reading of a typical-
ity inclusion T(C) vp D is that the probability of finding exceptional Cs not being
Ds is 1 − p, which is different from “typical Cs are also Ds with probability p”: the
language proposed in this work allows the user/the ontology engineer to ascribe typ-
ical properties of a concept C, and then to equip each property with a probability p
of (not) finding exceptions. The meaning of probability here is significantly different
from those of the DISPONTE semantics in [14] and, as we will discuss in Section 5.1,
to define typicality in probabilistic DLs in [21]: in the logic ALC + TP

R all typicality
inclusions represent typicality properties, independently from probabilities equipping
them. This is why one can make use of probabilities lower than 0.5, since it could be
useful in situations like the one described in the following example.

Example 2. Suppose that we want to automatically build an ontology in the logic
ALC + TP

R from the information of a web site dedicated to the villains of Disney car-
toons3. Our objective is to build a prototype of the villain, extracting information from
available resources, in the form of inclusions T(Villain) vp1

C1, T(Villain) vp2

C2, . . ., T(Villain) vpn
Cn, where probabilities p1, p2, . . . , pn are automatically cal-

culated in a suitable way. It could be the case that, processing resources reporting
features of 30 different villains, 13 over 30 propose an “Intelligent” villain, whereas
for 6 over 30 the web pages suggest that considered villains are not intelligent. We
have no information about the remaining 11 characters about their being intelligent or
not. The inaccuracy of the web resources could suggest to consider “Intelligent” as a
typical property of villains, even if 13 over 30 is less than 50%. This could be justified
by the fact that the difference between the percentage of intelligent villains and the one
of not intelligent villains is significantly higher (over a given and fixed threshold). In
this case, the system could capture this situation with an inclusion

T(Villain) v0.43 Intelligent ,

where 0.43 is computed as 13/30. Following the same approach, suppose that 3 over
30 villains are good looking, whereas 10 over 30 are not: in my approach, this could
be captured with an inclusion

T(Villain) v0.33 ¬GoodLooking .

Obviously, one can think of considering as typical only those properties occurring in
more than the 50% (or even more) of the elements belonging to a given class: in the
example, if we further discover that 27 over 30 villain characters has an hero as his
opponent, we can have

T(Villain) v0.9 ∃hasOpponent .Hero,

3We want to stress that, as in any probabilistic formal framework, probabilities are assumed to come from
an application domain. This is true also for other frameworks: probabilities for our typicality inclusions come
out in the same way of probabilities in probabilistic extensions of logic programs or degrees of belief in fuzzy
logics. In this paper, we focus on the proposal of the formalism itself, therefore the machinery for obtaining
probabilities from a dataset of the application domain is out of the scope.
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without adding any inclusion about the properties “Intelligent” and “Good Looking”:
our language allows the ontology engineer to choose what he wants to consider as
typical, in particular in a context when available resources (especially in the www)
have a low level of accuracy.

3.1. Extensions of ABox
Given a KB, we define the finite set Tip of concepts occurring in the scope of the

typicality operator, i.e. Tip = {C | T(C) vp D ∈ KB}. Given an individual a
explicitly named in the ABox, we define the set of typicality assumptions T(C)(a)
that can be minimally entailed from KB in the nonmonotonic logic ALC + TRaCl

R ,
with C ∈ Tip. We then consider an ordered set TipA of pairs (a,C) of all possible
assumptions T(C)(a), for all concepts C ∈ Tip and all individual constants a in the
ABox.

Definition 2 (Assumptions in ALC + TP
R). Given anALC+TP

R KB=(T ,A), let T ′
be the set of inclusions of T without probabilities, namely

T ′ = {T(C) v D | T(C) vp D ∈ T } ∪ {C v D ∈ T }.

Given a finite set of concepts Tip, we define, for each individual name a occurring in
A:

Tipa = {C ∈ Tip | (T ′,A) |=ALC+TRaCl
R

T(C)(a)}.

We also define

TipA = {(a,C) | C ∈ Tipa and a occurs in A}

and we impose an order on its elements: TipA = [(a1, C1), (a2, C2), . . . , (an, Cn)].
Furthermore, we define the ordered multiset

PA = [p1, p2, . . . , pn],

respecting the order imposed on TipA, where

pi =
m∏
j=1

pij for all T(Ci) vpi1 D1,T(Ci) vpi2 D2, . . . ,T(Ci) vpim Dm in T .

The ordered multiset PA is a tuple of the form [p1, p2, . . . , pn], where pi is the prob-
ability of the assumption T(C)(a), such that (a,C) ∈ TipA at position i. pi is the
product of all the probabilities pij of typicality inclusions T(C) vpij D in the TBox.

Following the basic idea underlying surprising scenarios outlined in [20], we con-
sider different extensions Ãi of the ABox and we equip them with a probability Pi.
Starting from PA = [p1, p2, . . . , pn], the first step is to build all alternative tuples
where 0 is used in place of some pi to represent that the corresponding typicality as-
sertion T(C)(a) is no longer assumed (Definition 3). Furthermore, we define the ex-
tension of the ABox corresponding to a string so obtained (Definition 4). In this way,
the highest probability is assigned to the extension of the ABox corresponding to PA,
where all typicality assumptions are considered. The probability decreases in the other
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extensions, where some typicality assumptions are discarded, thus 0 is used in place
of the corresponding pi. The probability of an extension Ãi corresponding to a string
PAi

= [pi1, pi2, . . . , pin] is defined as the product of probabilities pij when pij 6= 0,
i.e. the probability of the corresponding typicality assumption when this is selected for
the extension, and 1 − pj when pij = 0, i.e. the corresponding typicality assumption
is discarded, that is to say the extension contains an exception to the inclusion.

Definition 3 (Strings of possible assumptions S). Given a KB=(T ,A), let the set TipA
and PA = [p1, p2, . . . , pn] be as in Definition 2. We define the set S of all the strings
of possible assumptions with respect to KB as

S = {[s1, s2, . . . , sn] | ∀i = 1, 2, . . . , n either si = pi or si = 0}

Definition 4 (Extension of ABox). Let KB=(T ,A),PA = [p1, p2, . . . , pn] and TipA =
[(a1, C1), (a2, C2), . . . , (an, Cn)] as in Definition 2. Given a string of possible as-
sumptions [s1, s2, . . . , sn] ∈ S of Definition 3, we define the extension Ã of A with
respect to TipA and S as:

Ã = {T(Ci)(ai) | (ai, Ci) ∈ TipA and si 6= 0}

We also define the probability of Ã as PÃ =
n∏

i=1

χi where χi =

{
pi if si 6= 0
1− pi if si = 0

It can be observed that, in ALC + TRaCl
R , the set of typicality assumptions that can

be inferred from a KB corresponds to the extension of A corresponding to the string
PA (no element is set to 0): all the typicality assertions of individuals occurring in the
ABox, that are consistent with the KB, are assumed. On the contrary, in ALC + TR,
no typicality assumptions can be derived from a KB, and this corresponds to extending
A by the assertions corresponding to the string [0, 0, . . . , 0], i.e. by the empty set. It is
easy to observe that we obtain a probability distribution over extensions of A.

Example 3. Given a KB=(T ,A), let the only typicality inclusions in T be:

T(C) v0.6 D
T(E) v0.85 F .

Let a and b be the only individual constants occurring inA. Suppose also that T(C)(a),
T(C)(b), and T(E)(b) are entailed from KB in ALC + TRaCl

R . We have that

TipA = {(a,C), (b, C), (b, E)}

and
PA = [0.6, 0.6, 0.85].

All possible strings, corresponding extensions of A and probabilities are shown in
Table 1.
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Table 1: Plausible extensions of the ABox of Example 3.
String Extension Probability

[0.6, 0.6, 0.85] Ã1 = {T(C)(a),T(C)(b),T(E)(b)} PÃ1
= 0.6× 0.6× 0.85 = 0.306

[0, 0, 0.85] Ã2 = {T(E)(b)} PÃ2
= (1− 0.6)× (1− 0.6)× 0.85 = 0.136

[0, 0.6, 0] Ã3 = {T(C)(b)} PÃ3
= (1− 0.6)× 0.6× (1− 0.85) = 0.036

[0.6, 0, 0] Ã4 = {T(C)(a)} PÃ4
= 0.6× (1− 0.6)× (1− 0.85) = 0.036

[0, 0.6, 0.85] Ã5 = {T(C)(b),T(E)(b)} PÃ5
= (1− 0.6)× 0.6× 0.85 = 0.204

[0.6, 0, 0.85] Ã6 = {T(C)(a),T(E)(b)} PÃ6
= 0.6× (1− 0.6)× 0.85 = 0.204

[0.6, 0.6, 0] Ã7 = {T(C)(a),T(C)(b)} PÃ7
= 0.6× 0.6× (1− 0.85) = 0.054

[0, 0, 0] Ã8 = ∅ PÃ8
= (1−0.6)×(1−0.6)×(1−0.85) = 0.024

PÃ1
+ PÃ2

+ . . . + PÃ8
=

1

3.2. Reasoning in ALC + TP
R

We are now ready to provide formal definitions for nonmonotonic entailment in the
Description Logic ALC + TP

R. Intuitively, given KB and a query F , we distinguish
two cases:

• if F is an inclusion C v D, then it is entailed from KB if it is minimally entailed
from KB’ in the nonmonotonicALC+TRaCl

R , where KB’ is obtained from KB by
removing probabilities of exceptions, i.e. by replacing each typicality inclusion
T(C) vp D with T(C) v D;

• if F is an ABox fact C(a), then it is entailed from KB if it is entailed in the
monotonic ALC + TR from the knowledge bases including the extensions of
the ABox of Definition 4.

More in detail, we provide both (i) a notion of entailment restricted to scenarios whose
probabilities belong to a given range and (ii), similarly to [14], a notion of probability
of the entailment of a query C(a), as the sum of the probabilities of all extensions from
which C(a) is so entailed.

Here below are the formal definitions of entailment of a query F in the logic
ALC + TP

R. Given a knowledge base KB and two real numbers p and q, we write
KB |=〈p,q〉

ALC+TP
R

F to represent that F follows – or is entailed – from KB restricting

reasoning to scenarios whose probabilities range from p to q. We distinguish the case
in which the query is a TBox inclusion from the one in which it is an ABox assertion.

Definition 5 (Entailment in ALC + TP
R). Given a KB=(T ,A), two real numbers p, q ∈

(0, 1], and a query F which is a TBox inclusion either C v D or T(C) v D, we say
that F is entailed from KB in ALC + TP

R in range 〈p, q〉, written KB |=〈p,q〉
ALC+TP

R

F , if

(T ′,A) |=ALC+TRaCl
R

F , where T ′ = {T(C) v D | T(C) vr D ∈ T } ∪ {C v D ∈
T }.
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Definition 6 (Entailment in ALC + TP
R). Given a KB=(T ,A), given Tip a set of con-

cepts, and given p, q ∈ (0, 1], let E = {Ã1, Ã2, . . . , Ãk} be the set of extensions of A
of Definition 4 with respect to Tip, whose probabilities are such that p ≤ P1 ≤ q, p ≤
P2 ≤ q, . . . , p ≤ Pk ≤ q. Let T ′ = {T(C) v D | T(C) vr D ∈ T } ∪ {C v
D ∈ T }. Given a query F which is an ABox assertion C(a), where a ∈ O, we say
that F is entailed from KB in ALC + TP

R in range 〈p, q〉, written KB |=〈p,q〉
ALC+TP

R

F , if

(T ′,A ∪ Ãi) |=ALC+TR
F for all Ãi ∈ E .

We also define the probability of the entailment of a query as P(F ) =
k∑

i=1

Pi.

It is worth noticing that, in Definition 5, probabilities p and q do not play any role:
indeed, probabilities of scenarios are related to ABox extensions, that are not involved
when we are reasoning about TBoxes. As already mentioned, in this case entailment in
ALC +TP

R corresponds to entailment in the nonmonotonic Description LogicALC +
TRaCl

R .

4. A Decision Procedure for Reasoning with Probabilities in Description Logics

In this section we describe a decision procedure for reasoning in the logic ALC +
TP

R, in order to check whether a query F is entailed from a given KB as in Defini-
tions 5 and 6. We then exploit such decision procedure to show that the problem of
entailment in the logic ALC + TP

R is in EXPTIME. This allows us to conclude that
reasoning about typicality and defeasible inheritance with probabilities of exceptions
is essentially inexpensive, in the sense that reasoning retains the same complexity class
of the underlying standard Description Logic ALC, which is known to be EXPTIME-
complete [1].

Given anALC+TP
R KB=(T ,A) and a query F , we define a procedure computing

the following four steps:

1. compute the set Tipa of all typicality assumptions that are minimally entailed
from the knowledge base in the nonmonotonic logic ALC + TRaCl

R ;
2. compute all possible Ãi extensions of the ABox and compute their probabilities;
3. select the extensions whose probabilities belong to a given range 〈p, q〉;
4. check whether the query F is entailed from all the selected extensions in the

monotonic logic ALC + TR.

Step 4 is based on reasoning in the monotonic logic ALC + TR: to this aim, the
procedure relies on a polynomial encoding of ALC + TR into ALC introduced in
[22]. Step 1 is based on reasoning in the nonmonotonic logic ALC + TRaCl

R : in this
case, the procedure computes the rational closure of anALC+TR knowledge base by
means of the algorithm introduced in [11], which is sound and complete with respect
to the minimal model semantics recalled in Section 2. Also the algorithm computing
the rational closure relies on reasoning in the monotonic logic ALC + TR, then on
the above mentioned polynomial encoding in ALC. We first recall the procedures for
reasoning inALC+TR andALC+TRaCl

R , then we describe the overall procedure for
reasoning in the logic ALC + TP

R.
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4.1. Reasoning in ALC + TR

In order to reason in ALC + TR, in [22] the authors provide the following poly-
nomial encoding in standard ALC of KB4. The idea on which the encoding is based
exploits the definition of the typicality operator T in terms of a Gödel-Löb modality
2 as follows: T(C) is defined as C u 2¬C where the accessibility relation of the
modality 2 is the preference relation < in ALC + TR models.

Let KB=(T ,A) be a knowledge base where A does not contain positive typicality
assertions on individuals of the form T(C)(a). The encoding KB’=(T ′,A′) of KB in
ALC is defined as follows. First of all, we let A′ = ∅. Then, for each A v B ∈ T , not
containing T, we introduceA v B in T ′. For each T(A) occurring in T , we introduce
a new atomic concept Box¬A and, for each inclusion T(A) vp B ∈ T , we add to T ′
the inclusion

A u Box¬A v B.

In order to capture the properties of the 2 modality, a new roleR is introduced to repre-
sent the relation < in preferential models, and the following inclusions are introduced
in T ′:

Box¬A v ∀R.(¬A u Box¬A)
¬Box¬A v ∃R.(A u Box¬A)

The first inclusion accounts for the transitivity of<. The second inclusion accounts for
the well-foundedness, namely the fact that if an element is not a typicalA element then
there must be a typical A element preferred to it. For the encoding of the inclusions,
if Cl v Cr is not a typicality inclusion, then C ′l = Cl and C ′r = Cr; if Cl v Cr is a
typicality inclusion T(A) v Cr, then C ′l = A u Box¬A and C ′r = Cr.

The size of KB’ is polynomial in the size of the KB. The same for C ′l and C ′r,
assuming the size of Cl and Cr be polynomial in the size of KB.

Given the above encoding, in [22] it is shown that (we write KB |=ALC F to mean
that F holds in all ALC models of KB):

KB |=ALC+TR
Cl v Cr if and only if KB’ |=ALC C ′l v C ′r

and, as a consequence, that the problem of deciding entailment inALC+TR is in EX-
PTIME, since reasoning in ALC is EXPTIME-complete. EXPTIME-hardness follows
from the fact that ALC + TR includes ALC. In conclusion, the problem of deciding
entailment in ALC + TR is EXPTIME-complete.

4.2. Reasoning in ALC + TRaCl
R

We have mentioned that the semantics of the logicALC+TRaCl
R corresponds to the

rational closure of an ALC + TR knowledge base introduced in [11]. Here we recall
this machinery, essentially an extension to ALC + TR of the definition of rational
closure introduced by Lehmann and Magidor in [10] for the propositional case. We
first consider the rational closure with respect to the TBox, in which essentially we

4The results provided in [22] are extended to the more expressive logic SHIQ. Here we focus our
attention on the basicALC.
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only consider which inclusions belong to the rational closure of KB. Next we will
consider rational closure with respect to the ABox, in which we consider the individuals
explicitly named in the ABox itself.

Definition 7 (Exceptionality). Let KB=(T ,A) be a knowledge base. A concept C is
said to be exceptional for KB if and only if KB |=ALC+TR T(>) v ¬C. An inclusion
T(C) v D is exceptional for KB if C is exceptional for KB. The set of typicality
inclusions of KB which are exceptional in KB are denoted as E(KB).

Similarly to the rational closure for propositional logic in [10], we introduce a se-
quence of knowledge bases, starting from the initial one, KB, in order to iteratively
use exceptionality in the construction of the rational closure. At each step, in order
to reason about the following exceptional subset of KB, we remove the inclusions
T(C) v D of KB that are not exceptional for KB. Before we do this, if there is an
assertion T(C)(a) ∈ A, we add to a all the typical properties of C that we are remov-
ing. In order to reason in the same way for equivalent concepts, we need the slightly
more complicated formulation of Ai below.

Definition 8. Given KB=(T ,A), it is possible to define a sequence of knowledge bases
E0, . . . , Ei, . . . , En by letting E0 = (T0,A0) where T0 = T and A0 = A and, for
i > 0, Ei = (Ti,Ai) where

• Ti = E(Ei−1) ∪ {C v D ∈ T | T does not occur in C}

• Ai = Ai−1 ∪ {(¬C t D)(a) | T(C) v D in (Ei−1 − Ei) and there is a
T(B)(a) ∈ A such that Ei−1 6|=ALC+TR T(>) v ¬B and Ej |=ALC+TR
T(>) v ¬B for all j < i− 1}

(as a consequence of the next Definition 9, these are theBs such that rank(B) = i−1).
Clearly T0 ⊇ T1 ⊇ T2, . . ., while A0 ⊆ A1 ⊆ A2, . . . Observe that, being KB

finite, there is a least n ≥ 0 such that, for all m > n, Tm = Tn or Tm = ∅. We take
(Tn,An) as the last element of the sequence of knowledge bases starting from KB.

Informally, for the definition ofAi, if T(B)(a) ∈ A (i.e., a is a typicalB-element),
and B has rank i− 1, then, for all the inclusions T(C) v D in (Ei−1 − Ei), since C
has also rank i− 1 we have that: if a is a C-element, then it is a typical C-element and
the assertion (¬C tD)(a) must hold.

Definition 9 (Rank of a concept). A concept C has rank i (denoted by rank(C) = i)
for KB=(T ,A), if and only if i is the least natural number for which C is not excep-
tional for Ei. If C is exceptional for all Ei then rank(C) =∞, and we say that C has
no rank.

Consider the least n ≥ 0 such that, for all m > n, Tm = Tn or Tm = ∅. Then
from the above definition it follows that if a concept C has a rank, its highest possible
value is n. The notion of rank of a formula allows one to define the rational closure of
a knowledge base KB with respect to the TBox.
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Definition 10 (Rational closure of TBox). Given KB = (T ,A), we define the ra-
tional closure T of T , as T = {T(C) v D | either rank(C) < rank(C u
¬D) or rank(C) =∞} ∪ {C v D | KB |=ALC+TR C v D}.

Let us now consider the rational closure of the ABox as defined in [11]:

Definition 11 (Rational closure of ABox). Given KB = (T ,A), let a1, . . . , am be
the individuals explicitly named in A. Let k1, k2, . . . , kh be all the possible rank as-
signments to the individuals occurring in A.

• Given a rank assignment kj we define:

– for each ai: µ
j
i = {(¬C t D)(ai) s.t. T(C) v D in T , and kj(ai) =

rank(C)} ∪ {(¬C tD)(ai) s.t. C v D ∈ T };
– let µj = µj

1 ∪ . . .∪ µj
m for all µj

1 . . . µ
j
m just calculated for all a1, . . . , am

in A

• We say that kj is consistent with (T ,A) if:

– if T(C)(ai) ∈ A, then kj(ai) = rank(C);

– T ∪ A ∪ µj is consistent in ALC + TR;

• We say that kj is minimal and consistent with (T ,A) if kj is consistent with
(T ,A) and there is no ki consistent with (T ,A) s.t. for all ai, ki(ai) ≤ kj(ai)
and for some b, ki(b) < kj(b).

• The rational closure of A (A) is the set of all assertions derivable in ALC +
TR from T ∪ A ∪ µj for all minimal consistent rank assignments kj: A =⋂

kjminimal consistent{C(a) | T ∪ A ∪ µj |=ALC+TR C(a)}.

In [11] it is shown that, given a knowledge base KB=(T ,A), the semantics based on
rational models is equivalent with the above notion of rational closure of KB, namely:

• given an inclusion C v D, KB |=ALC +TRaCl
R C v D if and only if C v D ∈ T

• given an ABox fact C(a), KB |=ALC +TRaCl
R C(a) if and only if C(a) ∈ A.

Moreover, it is shown that the problem of deciding whether T(C) v D ∈ T is in
EXPTIME and that an individual constant a and a concept C, the problem of deciding
whether C(a) ∈ A is EXPTIME-complete.
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4.3. Reasoning in ALC + TP
R: the overall procedure

Let us finally introduce the overall procedure for reasoning inALC+TP
R and then

let us analyze its complexity.
Let KB=(T ,A) be an ALC + TP

R knowledge base. Let T ′ be the set of inclusions
of T without probabilities of exceptions: T ′ = {T(C) v D | T(C) vr D ∈ T } ∪
{C v D ∈ T }, that the procedure will consider in order to reason in ALC + TR

and ALC + TRaCl
R for checking query entailment and finding all plausible typicality

assumptions, respectively. Other inputs of the procedure are the finite set of concepts
Tip, a query F , and two real numbers p, q ∈ (0, 1] describing a range of probabilities.
If F is an inclusion C v D (where C could be T(C ′)), we just need to check whether
(T ′,A) |=ALC+TRaCl

R
C v D in ALC + TRaCl

R . If F is an ABox formula of the form
C(a), Algorithm 1 builds all possible scenarios, computes their probabilities and then
checks whether KB |=〈p,q〉

ALC+TP
R

F if F holds in all those scenarios having a probability

between p and q.

Algorithm 1 Entailment inALC + TP
R: KB |=〈p,q〉

ALC+TP
R

F

1: procedure ENTAILMENT((T ,A), T ′, F , Tip, p, q)
2: if F is of the form C v D then . If F is an inclusion, we rely onALC + TRaCl

R for entailment
3: return (T ′,A) |=

ALC+TRaCl
R

F

. Otherwise, F is an ABox assertion of the form C(a)
4: TipA ← ∅ . build the set S of possible assumptions
5: for each C ∈ Tip do
6: for each individual a ∈ A do . Reasoning inALC + TRaCl

R
7: if (T ′,A) |=

ALC+TRaCl
R

T(C)(a) then TipA ← TipA ∪ {T(C)(a)}

8: PA ← ∅ . compute the probabilities of Definition 2 given T and TipA
9: for each C ∈ Tip do

10: ΠC ← 1
11: for each T(C) vp D ∈ T do ΠC ← ΠC × p

12: PA ← PA ∪ ΠC

13: S← build strings of possible assumptions as in Definition 3 given TipA and PA
14: E ← ∅ . build extensions ofA
15: for each si ∈ S do
16: build the extension Ãi corresponding to si and compute PÃi

as in Definition 4

17: if p ≤ PÃi
≤ q then E ← E ∪ Ãi . select extensions with probability in 〈p, q〉

18: for each Ãi ∈ E do . query entailment inALC + TR

19: if (T ′,A ∪ Ãi) 6|=ALC+TR
F then return KB 6|=〈p,q〉

ALC+TP
R

F

20: return KB |=〈p,q〉
ALC+TP

R

F . F is entailed in all extensions

In the following example we focus on ABox reasoning in the logic ALC + TP
R.

Example 4. Let us consider a KB whose TBox is:

T(ItalianTeenAger) v0.4 ∃listenTo.TrapMusic
T(ItalianTeenAger) v0.8 SoccerLover
T(Student) v0.75 ¬TaxPayer
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and whose ABox is:

{ItalianTeenAger(fabrizio),Student(fabrizio)}

In the logic ALC + TP
R we have four different scenarios, combining the assumptions:

T(ItalianTeenAger)(fabrizio)
T(Student)(fabrizio)

As an example, we have that

KB |=〈0.5,1〉
ALC+TP

R

¬TaxPayer(fabrizio),

whereas we have that

KB 6|=〈0.5,1〉
ALC+TP

R

∃listenTo.TrapMusic(fabrizio).

As another example, we have that

KB 6|=〈0.01,0.2〉
ALC+TP

R

¬TaxPayer(fabrizio),

whereas in the underlying nonmonotonic logic ALC + TRaCl
R we cannot restrict rea-

soning to suitable scenarios and, therefore, we have that

KB |=ALC+TRaCl
R
∃listenTo.TrapMusic(fabrizio)

as well as

KB |=ALC+TRaCl
R
¬TaxPayer(fabrizio).

We exploit the procedure of Algorithm 1 to show that the problem of entailment in
the logicALC+TP

R is EXPTIME complete. This allows us to conclude that reasoning
about typicality and defeasible inheritance with probabilities of exceptions is essen-
tially inexpensive, since reasoning retains the same complexity class of the underlying
standard ALC, which is known to be EXPTIME-complete [1].

Theorem 2 (Complexity of entailment). Given a KB in ALC + TP
R, real numbers

p, q ∈ (0, 1] and a query F whose size is polynomial in the size of KB, the problem of
checking whether KB |=〈p,q〉

ALC+TP
R

F is EXPTIME-complete.

Proof 1. Let n be the size of KB, i.e. the length of the string representing it. Consider
the operations computed by Algorithm 1. First, in line 2 the procedure distinguishes
the following two cases:
1. the query F is a TBox inclusion of the form C v D, including the case in which C
is a typicality inclusion T(C ′): as mentioned before, in this case the procedure relies
on reasoning in the nonmonotonic logic ALC + TRaCl

R , and checks whether such an
inclusion belongs to the rational closure of the knowledge base. In [11] it is shown
that query entailment in ALC + TRaCl

R is in EXPTIME, and we are done;
2. the query F is an ABox assertion of the form C(a), and the algorithm proceeds as
follows:
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• lines 4-7: the algorithm checks, for each concept C ∈ Tip and for each individ-
ual name a of the ABox whether T(C)(a) is minimally entailed from the KB in
the nonmonotonic logic ALC + TRaCl

R . The number of individual names in the
ABox is O(n). We have assumed that Tip contains only concepts belonging to
KB, therefore also the size of Tip is O(n). It follows that the number of different
T(C)(a) considered is O(n2). For each T(C)(a) the algorithm relies on rea-
soning in ALC + TRaCl

R , which is in EXPTIME, therefore we make a polynomial
number of computations in EXPTIME;

• lines 8-12: the algorithm builds the ordered multiset PA of Definition 2: obvi-
ously, this operation consists in computing the product of the probabilities of the
inclusions T(C) vp D ∈ T , which are O(n), for each C ∈ Tip, again O(n).
Therefore, this problem can be solved with O(n2) operations, i.e. in polynomial
time;

• line 13: the algorithm builds the set S of possible assumptions (Definition 3). We
have to consider all possible strings obtained by assuming (or not) each typical-
ity assumption T(C)(a), that areO(n2). Consider a generic string 〈s1, s2, . . . , sn2〉.
For each si, we have two options: we can choose either to not include the corre-
sponding typicality assumption, then si = 0, or to include it, then si corresponds
to the probability pi for that concept. So we can build 2 × 2 × . . . × 2 different
strings, therefore O(2n

2

), that is to say the multiset S has exponential size in n;

• lines 14-16: the algorithm builds the extensions of the ABox corresponding to
strings of S, again an exponential number of extensions (O(2n

2

));

• line 17: the algorithm selects extensions whose probabilities PÃi
are in the range

[p, q]: again, since S has exponential size in n, this operation can be solved in
EXPTIME;

• steps 18-20: the algorithm relies on reasoning in monotonicALC+TR in order
to check whether the query F is entailed in all extensions in E . Since the size
of E is O(2n), we have O(2n) call to query entailment in ALC + TR, which is
an EXPTIME-complete problem. It is worth noticing that the size of the KB is
augmented by the size of the extension Ãi, which is however polynomial in n,
precisely O(n2). We can conclude that these operations are in EXPTIME.

EXPTIME hardness immediately follows from the fact that the logicALC+TP
R extends

standardALC, which is EXPTIME-complete [1]. Indeed, we can consider a knowledge
base without the T operator (therefore, without probabilities), and consider Tip = ∅.
2

Let us now conclude Example 1 introduced in Section 3 in the light of the defini-
tions provided above.

Example 5 (Reasoning in ALC + TP
R part 2). Suppose that the ABox is

A = {Bipolar(john),ProstateCancerPatient(greg)},

we can consider two typicality assumptions:
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(a) T(Bipolar)(john)
(b) T(ProstateCancerPatient)(greg)

then we can distinguish among four different extensions:

(i) both (a) and (b) are assumed: in this scenario, whose probability is 0.7× (0.6×
0.8) = 0.336, we conclude that both John and Greg have mood swings, and that
Greg has nocturia;

(ii) we assume (b) but not (a): this scenario has probability (1−0.7)×(0.6×0.8) =
0.144, and we can only conclude ∃hasSymptom.MoodReactivity(greg) and
∃hasSymptom.Nocturia(greg);

(iii) we assume (a) and not (b): this scenario, having a probability 0.7× (1− (0.6×
0.8)) = 0.364, allows us to conclude ∃hasSymptom.MoodReactivity(john);

(iv) neither (a) nor (b) is added to A: here the probability is (1− 0.7)× (1− (0.6×
0.8)) = 0.156, but we are not able to conclude anything about John and Greg.

The probability that John has mood swings is defined as the sum of the probabilities of
scenarios where such inference can be performed, namely scenarios (1) and (3), and it
is therefore 0.336 + 0.364 = 0.7.

Let us conclude this section with a further example that suggests another possible ap-
plication of the Description LogicALC+TP

R in order to find a plausible but not trivial
medical diagnosis to explain patients’ symptoms and signs. In medical diagnosis, the
most likely explanation for a set of symptoms is not always the solution to the prob-
lem, whereas reasoning about scenarios whose probabilities are such that they can be
considered as plausible, but not the most probable/obvious could help the medical staff
in taking alternative explanations into account. In the following example we exploit
the logicALC +TP

R in order to formulate a plausible diagnosis in order to explain the
symptoms of a patient, as an alternative to the most obvious one.

Example 6. Let us consider again the KB=(T ,A) of Example 1, that we recall and
extend here for the sake of readability: T is as follows:

Bipolar v Depressed (1)
T(Depressed) v0.85 ¬∃hasSymptom.MoodReactivity (2)
T(Bipolar) v0.7 ∃hasSymptom.MoodReactivity (3)
T(ProstateCancerPatient) v0.6 ∃hasSymptom.MoodReactivity (4)
T(ProstateCancerPatient) v0.8 ∃hasSymptom.Nocturia (5)
T(Depressed) v0.65 Smart (6)

whereas A = {Depressed(greg),¬Smart(greg)}.
Let us consider a set V of formulas of the form C(a) representing patients’ symp-

toms and signs. For instance, let V describe Greg’s symptom, in particular that he has
mood reactivity:

V = {∃hasSymptom.MoodReactivity(greg)}.
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We have that V is not entailed by KB, but KB ∪ V is consistent. Indeed, in the logic
ALC + TRaCl

R we have that Greg is a bipolar person having mood swings, and this is
consistent with all the inclusions in T .

We are then interested in finding a diagnosis for Greg’s symptoms, that is to say a
set of assertions D such that V follows from KB ∪ D. For instance:

D1 = {Bipolar(greg)},

but also
D2 = {ProstateCancerPatient(greg)}

as well as
D3 = {Bipolar(greg),ProstateCancerPatient(greg)}

are examples of diagnosis, explaining those symptoms.
We exploit the logic ALC + TP

R in order to describe surprising/not trivial/not ob-
vious diagnosis, in order to suggest an alternative iter that could suggest further inves-
tigations in case the most plausible explanation is not the correct one.

Let us first consider the set of typicality assumptions that can be entailed in the
nonmonotonic logic ALC + TRaCl

R . We have that:

• T(Bipolar)(greg) is entailed from KB ∪ D1 and KB ∪ D3

• T(ProstateCancerPatient)(greg) is entailed from KB ∪ D2 and KB ∪ D3

• T(Depressed)(greg) is not entailed from any knowledge base, since assuming
that Greg is a typical depressed person would necessarily imply that he is smart
(by inclusion (6)), and this is inconsistent with the information of A that Greg is
not (¬Smart(greg)).

In the logic ALC + TP
R we can reason about the following scenarios. Let us

consider D3, and let TipA be as follows:

(greg ,Bipolar), (greg ,ProstateCancerPatient)

We have also PA = [0.7, 0.48], where 0.7 is the probability equipping the only typical
property of the concept Bipolar , whereas 0.48 = 0.6 × 0.8 (0.6 and 0.8 equip the two
typicality inclusions of the concept ProstateCancerPatient).

We can reason about the following scenarios:
Ã3

1 = {T(Bipolar)(greg)}, with PÃ3
1

= 0.7× 0.52 = 0.364

Ã3
2 = {T(ProstateCancerPatient)(greg)}, with PÃ3

2

= 0.3× 0.48 = 0.144

Ã3
3 = {T(Bipolar)(greg),T(ProstateCancerPatient)(greg)}, with PÃ3

3

= 0.7 ×
0.48 = 0.336.

In the logic ALC + TP
R, we have that

KB ∪ Di |=〈0,1〉ALC+TP
R

∃hasSymptom.MoodReactivity(greg)

22



for i = 1, 2, 3, that is to say all the above set of assertions represent a diagnosis for the
symptom V = {∃hasSymptom.MoodReactivity(greg)}.

The logic ALC + TP
R could suggest an alternative – plausible but not obvious –

diagnosis, in case of a failure of the most probable one. In this respect, the extension
Ã3

2 with the lowest probability could suggest that Greg has prostate cancer, and such a
non trivial diagnosis could be confirmed by an evaluation of other typical symptoms of
such a disease (e.g. nocturia).

5. Discussion and Conclusions

In this work we have introduced the Description Logic ALC +TP
R, which extends

the nonmonotonic Description Logic of typicalityALC+TRaCl
R by means of probabili-

ties equipping typicality inclusions. In this setting, T(C) vp D means that “normally,
Cs are Ds and we have a probability of 1− p of having exceptional Cs not being Ds”.
From a knowledge representation point of view, as a difference fromALC+TRaCl

R , the
logic ALC + TP

R allows one to distinguish among typicality inclusions by means of
their probabilities: given two typical properties D1 and D2 of a given concept C, one
can formalize the fact that the probability of having exceptional elements of C with re-
spect to the property D1 is higher than the one of having exceptional ones with respect
to D2 by means of a pair of inclusions

T(C) vp1 D1

T(C) vp2 D2

where p1 < p2.
Probabilities of exceptions are then used in order to reason about plausible scenar-

ios, obtained by selecting only some – i.e., not necessarily all – typicality assumptions
and whose probabilities belong to a given and fixed range. We have also introduced a
decision procedure for reasoning in the Description Logic ALC + TP

R, and we have
exploited it in order to estimate the complexity of the proposed logic; in detail we have
shown that reasoning in DLs with rational closure and probabilities of exceptions is
essentially inexpensive, in the sense that the complexity of entailment in ALC + TP

R

remains in EXPTIME as in the underlying standard Description Logic ALC.
It is worth noticing that the proposed logic ALC + TP

R is not intended to replace
existing extensions of DLs for representing and reasoning about prototypical properties
and defeasible inheritance. The idea is that, in some applications, the need of reasoning
about probabilities of exceptions and to restrict reasoning to plausible – but not neces-
sarily the most probable – scenarios could help domain experts to achieve their goals,
wherever standard reasoning is not enough to do it.

The logicALC+TP
R, as well as the underlyingALC+TRaCl

R , are based on the ratio-
nal closure, then they inherit its virtues, but also its weakness. It is well known that the
main advantage of the rational closure is related to its good computational properties.
However, rational closure is affected by the “all or nothing” behavior, in the sense that
it does not allow one to separately reason about the inheritance of different properties.
For instance, let us recall the example in the Introduction: we have that typical stu-
dents are sport lovers, and normally they are also social network users. Furthermore,
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we can consistently express that, normally, third age students are not social network
users. As a consequence, third age students are recognized as untypical students, then
no inheritance of typical properties is possible, for instance it is not possible to infer
that they are sport lovers. The problem also affects the definition of scenarios in the
logic ALC + TP

R: if T(Student)(gary) is a typicality assumption to be considered in
the construction of different scenarios (since it is entailed in ALC + TRaCl

R from the
knowledge base), then Gary inherits all the properties of typical students. On the con-
trary, if T(ThirdAgeStudent)(gary) is the typicality assertion to be considered for the
scenarios generation, no inheritance of typical students is possible for Gary. In order to
solve this problem, a strengthening of a rational closure-like algorithm with defeasible
inheritance networks has been studied by [23]. In [24] the author has proposed an alter-
native semantics by considering models equipped with multiple preference relations,
whence with multiple “typicality” operators. In this variant, it should be possible to
distinguish different aspects of typicality/exceptionality and consequently to avoid the
“all or nothing” behavior of rational closure with respect to property inheritance.

5.1. Related Works
The recent literature is rich of sophisticated approaches introduced in order to

tackle the problem of reasoning under probabilistic uncertainty in Description Log-
ics and ontologies, following the need of reasoning about vague and incomplete in-
formation available from web resources. Among them, a work that can be considered
as strongly related to the one presented in this paper is [21], where the author intro-
duces two probabilistic extensions of expressive Description Logics SHIF(D) and
SHOIN (D). These extensions are semantically based on the notion of probabilis-
tic lexicographic entailment [25] and allow to represent and reason about prototypical
properties of classes that are semantically interpreted as lexicographic entailment in-
troduced by Lehmann from conditional knowledge bases. Intuitively, the basic idea is
to interpret inclusions of the TBox and facts in the ABox as probabilistic knowledge
about random and concrete instances of concepts. As an example, an expression of the
form

(SocialNetworkUser | Student)[0.7, 1]

represents that “typically, a randomly chosen student makes use of social networks
with a probability of at least 70%”, whereas default knowledge can be expressed as

(Young | Student)[1, 1] (∗)

whose meaning is that prototypical students are young people (but we have no informa-
tion about the probability of having or not exceptions). Obviously, also strict inclusions
C v D are allowed.

In these extensions, we can also have ABox facts like

(Student | >)[0.8, 1] (∗∗)

for an individual name chris , representing that Chris is a student with a probability of
at least 80%.

There are two main differences between the approach of [21] and our proposal:
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• on the one hand, we have a significant difference in the meaning of the probabil-
ity: here, the probability of an inclusionC v D is intended as the probability that
an individual belonging to C also belongs to D, then admitting the presence of
typicalCs not beingDs. As mentioned at the very beginning of the Introduction,
in our framework the probability p equipping a typicality inclusion T(C) vp D
is used to represent the probability of (not) finding exceptional Cs not being Ds,
but all typical Cs are also Ds by the semantics of the logic ALC + TRaCl

R un-
derlying our logic. Furthermore, in our framework, each typicality inclusion is
equipped by a probability, whereas in [21] we can have prototypical properties
like (∗) where no probability is provided;

• reasoning about individuals in the logic ALC + TP
R is based on the definition

of an extension of an ABox, obtained by assuming (or not) typicality prop-
erties about the individuals themselves: given the individual name chris , we
build different scenarios from the typicality assertions that can be nonmonoton-
ically inferred from the knowledge base in the underlying nonomonotonic logic
ALC+TRaCl

R , for instance that Chris is a typical student T(Student)(chris) and
a typical tennis player T(TennisPlayer)(chris). In the probabilistic extensions
introduced in [21] one can express probabilities about facts of the ABox like in
(∗∗), but reasoning about ABox facts is not related to typical properties of named
individuals entailed by the knowledge base.

As the logic of typicality ALC + TRaCl
R , the lexicographic entailment defined in [21]

inherits interesting and useful nonmonotonic properties from lexicographic entailment
in [25], such as specificity, rational monotonicity and some forms of irrelevance. As
mentioned above, the logic ALC + TRaCl

R inherits, however, the main drawback of
rational closure, namely the “all or nothing” behavior, whereas the notion of lexico-
graphic entailment allows one to deal with overriding less specific properties without
such inheritance blocking. On the contrary, in order to perform useful, stronger non-
monotonic inferences, the logic of typicality ALC + TRaCl

R is obtained by adding an
additional nonmonotonic machinery on top of the logic. It could be of interest to study
a formal relation between these two approaches in order to reason about defeasible
inheritance in Description Logics, as well as to evaluate the opportunity of using the
latter as the basis for the logic ALC + TP

R.
Several other nonmonotonic extensions of DLs have been proposed in the literature

in order to reason about inheritance with exceptions, essentially based on the integra-
tion of DLs with well established nonmonotonic reasoning mechanisms [2, 3, 4, 16,
5, 6, 8], ranging from Reiter’s defaults to minimal knowledge and negation as failure.
We remind to [9, 8] for a detailed discussion about extensions of DLs for defeasible
inheritance, and to [16] for a formal and precise comparison between the approach
based on the typicality operator T and circumscribed knowledge bases. In none of
them, probability of exceptions in concept inclusions is taken into account, as far as we
know.

Probabilistic extensions of DLs, allowing one to label inclusions (and facts) with
degrees representing probabilities, have been introduced in [13, 14]. In this approach,
called DISPONTE, the authors propose the integration of probabilistic information
with DLs based on the distribution semantics for probabilistic logic programs [26].
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The basic idea is to label inclusions of the TBox as well as facts of the ABox with
a real number between 0 and 1, representing their probabilities, assuming that each
axiom is independent from each others. The resulting knowledge base defines a prob-
ability distribution over worlds: roughly speaking, a world is obtained by choosing,
for each axiom of the KB, whether it is considered as true of false. The distribution is
further extended to queries and the probability of the entailment of a query is obtained
by marginalizing the joint distribution of the query and the worlds. As an example,
consider the following variant of the knowledge base inspired by the people and pets
ontology in [14]:

0.3 :: ∃hasAnimal .Pet v NatureLover (1)
0.6 :: Cat v Pet (2)
0.9 :: Cat(tom) (3)
hasAnimal(kevin, tom) (4)

The inclusion (1) expresses that individuals that own a pet are nature lovers with a
30% probability, whereas (2) is used to state that cats are pets with probability 60%.
The ABox fact (3) represents that Tom is a cat with probability 90%. Inclusions
(1), (2) and (3) are probabilistic axioms, whereas (4) is a certain axiom, that must
always hold. The KB has eight possible worlds, representing all possible combina-
tions of considering/not considering each probabilistic axiom. For instance, the world
{((1), 1), ((2), 0), ((3), 1)} represents the situation in which we have that (1) and (3)
hold, i.e. ∃hasAnimal .Pet v NatureLover and Cat(tom), whereas (2) does not. The
query NatureLover(kevin) is true only in the last world, i.e. having that (1), (2) and
(3) are all true, whereas it is false in all the other ones. The probability of such a query
is 0.3× 0.6× 0.9 = 0.162.

There are two main differences between the logicALC+TP
R proposed in this work

and probabilistic DLs. On the one hand, as already mentioned in the Introduction, in
the logic ALC + TP

R probabilities are used in order to express different degrees of
admissibility of exceptions with respect to such typicality inclusions. Probabilities are
then the basis of different scenarios built by assuming – or not – that individuals are
typical instances of a given concept. On the contrary, in DISPONTE probabilities are
used to capture a notion of uncertainty about information of the KB, therefore an in-
clusion C v D having a very low probability p has a significantly different meaning
with respect to an inclusion T(C) vp D, representing anyway a typical property: nor-
mally, Cs are Ds, even if with a high probability of having exceptions to such typical
inclusion. On the other hand, in ALC + TP

R probabilities are restricted to typical-
ity inclusions only. On the contrary, in DISPONTE probabilities can be associated to
concept inclusions as well as to ABox facts.

In [20] a nonmonotonic procedure for reasoning about surprising scenarios in DLs
has been proposed. In this approach, the Description Logic ALC + TR is extended
by inclusions of the form T(C) vd D, where d is a degree of expectedness. Similarly
to ALC + TP

R, a notion of extension of an ABox is introduced in order to assume
typicality assertions about individuals satisfying cardinality restrictions on concepts,
then degrees of expectedness are used in order to define a preference relation among
extended ABoxes: entailment of queries is then restricted to ABoxes that are minimal
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with respect to such preference relations and that represent surprising scenarios. Also
in this case, we have two main differences with the approach of the logic ALC + TP

R:
first, inALC+Texp

R degrees of expectedness are non-negative integers used essentially
to define a – partial – preference relation among extended ABoxes, whereas they are
not used in order to estimate probabilities of typicality inclusions. Second, cardinality
restrictions play a fundamental role in order to “filter” extended ABoxes. On the con-
trary, in the logic ALC + TP

R, entailment is defined in terms of the probability of a
given scenario and can be used to estimate the probability of a given query.

Several approaches in the literature exploit the well established paradigm of An-
swer Set Programming (ASP) to deal with incomplete information. Extensions of ASP
making use of probabilities are proposed in [27, 28]. In [27] the authors introduce
a declarative language, called P-log, which extends ASP by means of probabilistic
constructs. More in detail, a P-log program contains random attributes - essentially,
random variables – in addition to standard ASP statements: such random attributes
have the form a(X) where both X and the value of a(X) range over finite domains.
P-log is able to deal with nonmonotonic probabilistic inferences, namely an update of a
P-log program/knowledge base can cause the generation of new possible worlds in the
adopted probabilistic models. As an example, consider the following P-log program,
inspired to the one proposed in [27]:

year : {2018, 1978}. (1)
year = 2018 ←− not abnormal . (2)
random(year) ←− abnormal . (3)

In this program, year has two possible values: 2018 and 1978 (statement 1). Rule 2
states that, in a typical/not abnormal situation, we are considering the current year, then
the value of year is 2018. Otherwise, we are in an untypical/abnormal situation, and
rule 3 states that the value of year will be randomly assigned. Since the program does
not contain the atom abnormal , rule 2 allows the reasoner to conclude that year=2018,
with a single possible world having probability 1. If we enrich the program by

abnormal . (4)

rule 2 is no longer applicable, whereas rule 3 allows the reasoner to conclude that there
are two possible worlds, one in which the value of year is 2018 and another one in
which the value of year is 1978, both with a probability of 50%. As a difference with
our approach, where probabilities aims at estimating probabilities of exceptions, in this
work probabilities are intended as a measure of the degree of a belief of an agent.

In [28] the authors introduce an extension of ASP inspired by Markov Logic Net-
works (MLN) introduced in [29]. They propose a language, called LPMLN , which
combines the stable model semantics of ASP with the basic ideas underlying MLN,
whose main aim is to combine first-order logic and probabilistic graphical models. In
this work, the authors move this combination to the context of logic programming,
where rules are equipped with weights that are closely related to probabilities of [27].
As the same authors point out, the language LPMLN is strongly related to the language
P-log, as well as to the language PC+ introduced in [30] for probabilistic reasoning
about actions.
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Several works also discuss the combination of open and closed world reasoning
in DLs. In particular, formalisms have been defined for combining DLs with logic
programming rules (see, for instance, [31] and [32]). A grounded circumscription ap-
proach for DLs with local closed world capabilities has been defined in [33]. More
in detail, in [32] the authors introduce the formalism of MKNF+ knowledge bases,
which allows for a flexible integration of DLs and Answer Set Programming. The se-
mantics of the formalisms, based on the logic of MKNF [4], overcomes the discrepancy
between the open world assumption of DLs and the closed world assumption of rules.
[32] presents several algorithms for reasoning with MKNF+ knowledge bases and
establishes tight complexity results. In [31] the authors combine Answer Set Program-
ming with the Description Logics SHIF(D) and SHOIN (D), introducing the no-
tion of description logic programs, consisting in a DL knowledge base together with a
generalized normal program P . While rule bodies may contain DL queries, nonmono-
tonicity is provided via negation-as-failure. [34] presents a non-monotonic extension of
the description logic SHROIQ based on the logic MKNF, which encompasses some
of the most prominent languages related to OWL, rules, non-monotonic reasoning, and
their integrations. Given the relation among ASP and default logic, this approach has
some similarities with the extensions of DLs based on defaults [35, 3]: the nonmono-
tonic inferences induced by program rules are limited to named individuals only. A
common limitation of the nonmonotonic extensions of DLs based on minimal knowl-
edge and negation as failure (including the integrations of DLs and rules) is that they
provide no support for capturing specificity nor priorities. In [36], the authors exploit
ASP for reasoning in an extension of the low-complexity Description Logic SROEL
with the typicality operator T based on the rational closure. In order to strengthen the
rational entailment, the authors consider a minimal model semantics. They rely on a
Small Model result, where models correspond to answer sets of a suitable ASP encod-
ing, and exploit Answer Set Preferences for reasoning under minimal entailment. They
also provide complexity results for the problem of instance checking, which is ΠP

2 -
complete. As already mentioned at the very beginning of this section, none of these
works take probabilities into account.

5.2. Future Works

In future work we aim at extending the logic ALC + TP
R to more expressive De-

scription Logics, such as those underlying the standard language for ontology engi-
neering OWL. As a first step, in [22] the logic with the typicality operator and the
rational closure construction have been applied to the logic SHIQ. Moreover, we aim
at extending the logic ALC + TP

R with cardinality restrictions, in order to investigate
the precise relation with the approach proposed in [20] and mentioned above.

We are currently developing a preliminary implementation of the reasoning ma-
chinery for the logic ALC + TP

R, and a prototype will be soon available. The cur-
rent version of the system is implemented in Pyhton and exploits the translation of an
ALC+TR knowledge base into standardALC introduced in [11], summarized in Sec-
tion 4.1 and adopted by the system RAT-OWL [37]. The system also makes use of the
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library owlready2 5 that allows one to rely on the services of efficient DL reasoners,
e.g. the HermiT reasoner, in order to generate different scenarios and to reason about
them as described in Section 4. As mentioned, this prototype represents a very prelimi-
nary attempt to implement reasoning services for the logicALC+TP

R, whereas a more
mature version, obtained by investigating the application of techniques introduced in
[38, 39] in order to improve its efficiency, will be addressed in future works.

As we have pointed out in the previous section, the approach based on the proba-
bilities of typicality inclusions of the logic ALC + TP

R and the DISPONTE semantics
in [13, 14] could be combined in order to describe a probabilistic extension of DLs
with typicalities and probabilities of having exceptions: a knowledge base can contain
axioms labelled by probabilities that can be interpreted as “epistemic” ones, i.e. as
degrees of our belief in those axioms, as in [13], as well as typicality inclusions with
probabilities about exceptions. In this respect, an inclusion

p :: T(C) vq D

represents that we have degree of belief p in the fact that typical Cs are also Ds with a
probability q of not having exceptions. In this line of research, in [40, 41, 42, 43] we
have introduced an extension of the logic ALC +TP

R in order to tackle the problem of
dealing with the composition of concepts in presence of prototypical properties: in this
respect, the prototype of a compound concept cannot result from the composition of the
prototypes of its components, take the pet fish as an example. It is well established in
the literature that fuzzy-based approaches are not adequate to provide a solution to this
problem, whereas an extension of the logic ALC + TP

R with a DISPONTE semantics
seems to be a good candidate for a solution to such problem. Moreover, combining
the logic ALC + TP

R with the DISPONTE semantics should provide an alternative
solution to the problem of the “all or nothing” behavior of rational closure with respect
to property inheritance discussed above. Such a further extension will be material for
future works.
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