
RESEARCH ARTICLE

A new approach for Small Ruminant

Lentivirus full genome characterization

revealed the circulation of divergent strains

Barbara Colitti1, Elisabetta Coradduzza2, Giantonella Puggioni2, Maria

Teresa Capucchio1, Ramsés Reina3, Luigi BertolottiID
1*, Sergio Rosati1

1 University of Turin, Dept. Veterinary Science, Grugliasco, Torino, Italy, 2 Istituto Zooprofilattico

Sperimentale della Sardegna, Sassari, Italy, 3 Institute of Agrobiotechnology (CSIC-UPNA-Government of

Navarra), Navarra, Spain

* luigi.bertolotti@unito.it

Abstract

Small Ruminant Lentiviruses (SRLV) include at least 4 viral highly divergent genotypes.

Genotypes A and B are widely distributed and genotypes C and E have been recognized in

restricted geographic areas. New phylogroups have been identified targeting conserved

regions. However, this approach suffers from the potential risk to misamplify highly diver-

gent strains. Pathogenic strains are easily adapted to fibroblastic cells, but non-pathogenic

strains isolation may require a different approach. We developed a fast and effective method

for SRLV full genome characterization after cell culture isolation. Spleen samples were col-

lected during regular slaughter from sheep and goats in northwestern Italy. Spleen-derived

macrophage cultures were monitored for reverse transcriptase activity and RNA was

extracted from the supernatant of positive cultures. Using Illumina MiSeq platform 22 new

full genome sequences were obtained. The success of this approach is based on the follow-

ing features: spleen is one of the main target for SRLV persistence; red pulp is a reserve of

resident macrophages, the main target for SRLV replication in vivo; RTA is a sensitive

assay for any replicating retrovirus; de novo sequencing do not require genetic knowledge

in advance.

Introduction

Small Ruminant Lentiviruses (SRLV) include, to date, 4 highly divergent viral genotypes. The

genetic differences among viral strains are related to antigenic and biological properties both

in vitro and in vivo. Historically, Visna Maedi virus (MVV) and Caprine Arthritis Encephalitis

virus (CAEV) were first isolated from sheep and goat respectively, and have been considered

for long time to be strictly associated to specific clinical features and host. While those viruses

are still considered prototypes of the widely distributed genotypes A and B, a number of sub-

genotypes, within group A and B, and new genotypes (C and E) have been recognized. Conse-

quently, SRLV are now considered host adapted but not strictly host associated. Moreover, the

differences defined in the past [1] are becoming less clear due to the increasing number of

available sequences.
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Pathogenic strains are frequently isolated from specific or suggestive gross lesions by tissue

explantation (i.e. lung, udder, synovial membrane) or co-cultured with permissive cells, typi-

cally fibroblast-like cells. Strains that achieve adaptation to fibroblastic cells, overgrow and

show the typical cytopathic effect characterized by syncitia formation. In the early nineties,

through the viral isolation method, a number of sheep and goat pathogenic strains were iso-

lated and later characterized as B2 and B1 subtype respectively [2,3]. Unfortunately this

approach may potentially fail in the detection of new genotypes (i.e. unsuccessful isolation or

unclear cytopathic effect) due to the limited capacity of some low pathogenic strains to adapt

to fibroblasts [4]. In order to overcome this problem, molecular approaches based on new

PCR protocols were developed. These tools strongly support the SRLVs characterization,

increasing the knowledge about their genetic heterogeneity [4]. This was the case of the geno-

type E: biological characterization in vitro and in vivo of the subtype E1, known as Roccaverano
strain, opened new insights into putative non-pathogenic strains, being able to grow produc-

tively only in macrophage culture and including their role in mitigating the pathogenic poten-

tial of more virulent strains [5,6].

With the advent of the Next Generation Sequencing (NGS) technology, new opportunities

became available to fully characterize SRLV isolates, even in the absence of previous knowl-

edge of genetic and biological properties.

Keeping in mind that low pathogenic SRLVs may have a restricted cell tropism and may be

difficult to isolate from standard tissue explantation, we developed a fast and effective method

for SRLV full genome characterization after cell culture isolation. Spleen explant cultures were

performed from goats and sheep sampled during slaughtering and NGS protocols from reverse

transcriptase activity positive cultures were applied. By this approach, 22 full genomes were

assembled representing two major genotypes. In addition, beside the pathogenic B1 and B2

subtypes, a large number of isolates belonging to the subtype A8 was found.

Material and methods

Sample collection and virus isolation

Blood and spleen paired samples were collected from adult ovine and caprine local breeds.

Two slaughterhouses in the Piedmont Region, Northwestern Italy, were chosen in order to

cover different geographical areas and to increase the variability of samples. Animals were col-

lected randomly during the standard slaughtering activities. (see details in Table 1)

Blood serum was used for antibody screening and genotyping using a commercially avail-

able ELISA kit (Eradikit—SRLV Starter kit, In3diagnostic, Italy); spleen was promptly deliv-

ered to the laboratory for tissue explantation. Briefly, the splenic capsule was disinfected with

70% ethanol and a 5 ml syringe with G21 needle was inserted into the splenic pulp. A negative

pressure was applied by the syringe plunger while the needle was guided in different directions

into the splenic tissue. When enough material was extracted into the nozzle, the syringe was

removed and pulp material resuspended into 5ml of DMEM supplemented with L-glutamine

1mM and 2X antibiotic/antimycotic solution (Sigma Aldrich). During the second sampling

period the described preliminary procedure was accomplished directly at the slaughterhouse.

After 4h incubation at 37˚C, medium was removed and tissue fragments were seeded on

25cm2 flasks in complete macrophage medium consisting in RPMI medium supplemented

with L-glutamine 2mM, 1% non-essential amino acids, vitamins, sodium pyruvate 1mM,

2-mercaptoethanol 17μM, gentamicin 50μg/ml and FBS 10%. Cultures were maintained at

37˚C in a humidified atmosphere containing 5% CO2 and medium was partially replaced

every 3–7 days.

NGS for SRLV characterization
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Once a week, medium was collected and reverse transcriptase activity was determined

using Lenti RT activity kit (Cavidi, Uppsala, Sweden). RT activity was tested and recorded for

each culture passage, in order to evaluate its trend. In the case of RT activity positive outcome,

all medium was collected and further processed for whole genome sequencing. The presence

of cytopathic effect in fibroblastic cells was recorded at each culture passage. In the presence of

fibroblastic overgrowth, trypsin sensitive cells were periodically removed from the original

flask.

MiSeq run

RT positive cell culture supernatants were centrifuged for 20 minutes at 600 g to eliminate cell

debris and were concentrated with Amicon-15 100 kDa centrifugal filter tubes (Millipore

Merck KGaA, Darmstadt, Germany).

Viral RNA was extracted with QiAmp Viral RNA Kit (Qiagen, Hilden, Germany) and

quantified using Nanodrop system (Thermo Fisher Scientific). Viral RNA was reverse tran-

scribed into double stranded cDNA with Maxima H Minus Double–stranded cDNA Synthesis

kit (Thermo Fisher Scientific) in accordance with manufacturer instructions and quantified

with a fluorimetric method, Qubit dsDNA kit (Life Technologies). Samples were used for

DNA library preparation using the Nextera XT DNA Library Prep Kit (Illumina, San Diego,

CA, USA), according to the manufacturer’s protocol. The quantity of DNA was assessed using

Agilent DNA High Sensitivity chip assay (Agilent Technologies) and the Qubit dsDNA kit

(Life Technologies). Paired-end libraries were sequenced using Illumina V2 chemistry and

Illumina MiSeq platform.

Table 1. Samples characterized in the present study.

Isolate

(Accession num)

Host Elisa

Screening

Elisa

Genotying

CPE RT activity

(passage)

Gag

subtype

To1_89 (MH374290) goat na na yes 1 B1

Taccone (MH374289) goat na na yes 1 B1

VdA (MH374291) goat Positive A no 1 A8

It001.2017 (MG554402) sheep Positive Indet yes 4 B2

It002.2017 (MG554403) goat Positive Indet no 1 A8

It003.2017 (MG554404) goat Positive A no 1 A8

It004.2017 (MG554405) goat Positive A no 1 A8

It005.2017 (MG554406) goat Positive Indet no 1 A8

It006.2017 (MG554407) goat Positive E yes 1 A8

It007.2017 (MG554408) goat Positive Indet no 1 A8

It009.2017 (MG554409) goat Positive A yes 1 A18 (A3-A4)

It010.2017 (MG554410) goat Positive B yes 1 B1

It014.2017 (MG554411) goat Positive Indet yes 1 B1

It016.2017 (MG554412) goat Positive B yes 1 B1

It017.2017 (MG554413) goat Positive Indet yes 1 B1

It020.2017 (MG554414) goat Positive B yes 1 B1

It024.2017 (MH374283) goat Positive A yes 3 A8

It025.2017 (MH374284) goat Positive A no 1 A8

It026.2017 (MH374285) goat Positive A no 1 A8

It032.2017 (MH374286) goat Negative Negative no 3 A8

It038.2017 (MH374287) sheep Positive A yes 3 A19 (A9-11)

It042.2017 (MH374288) sheep Positive Indet yes 3 B2

https://doi.org/10.1371/journal.pone.0212585.t001

NGS for SRLV characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0212585 February 21, 2019 3 / 12

https://doi.org/10.1371/journal.pone.0212585.t001
https://doi.org/10.1371/journal.pone.0212585


Data analysis

Reads obtained by the MiSeq runs were checked for quality (FastQC) and trimmed (Trimmo-

matic ver. 0.32). Two parallels pipelines were followed. Reads were aligned to all known refer-

ence genomes in order to identify and confirm the viral genotype (Geneious ver. 11.1.2); the

reads were further aligned to the consensus sequence obtained after the first step, in order to

confirm the genome sequence. In parallel, the reads were used for de novo assembling (Velvet

software ver. 1.2.10); the obtained contigs were compared to the consensus sequence derived

from resequencing. Annotation of the main genes was performed manually, by comparing

amino acidic sequences among new and reference genomes, as well as the LTR regions. Geno-

type was determined basing on the Gag gene sequence alignment as previously reported [1,6].

Gag gene and the complete genome sequence were used to depict phylogenetic relationships

between the newly characterized and the reference strains using a Bayesian approach imple-

mented in MrBayes package [7]. Basing on the phylogenetic tree topologies, the association

between genetic sequence features and RT activity and CPE was calculated using the algo-

rithms implemented in Bats software ver. 0.9 based on Bayesian Markov-Chain Monte Carlo

approach to the investigation of phylogeny–trait correlations [8].

Results

A total of 42 paired samples (spleen and blood serum) were collected from 16 sheep and 26

goats. Thirty-three were antibody positive and 26 were serotyped according to the reactivity

against an immunodominant linear epitope of the capsid antigen, able to discriminate among

genotype A, B, and E [2,9,10].

Twenty-six RT activity positive cultures from spleen explants were obtained (25 from sero-

positive and 1 from a seronegative animal) and further processed for whole genome sequenc-

ing. Nineteen isolates were readily available after the first collection time (about 10 days post-

culture) or after the first passage (after 17 days of culture), while additional 7 isolates showed

RT activity after 3–4 weeks of culture. Interestingly, only half (13 out of 26) of the strains

showed cytopathic effect (CPE) on overgrowing fibroblastic-like cells, characterized by typical

cell fusion.

Considering a coverage cut-off of 100x, full genome sequence were obtained from 22 iso-

lates out of 26, using the proposed method. Four samples which did not meet the coverage cri-

teria were not taken into account. Sequence analysis revealed the presence of genotypes A and

B. The heterogeneity within each genotype was quite high, confirming the circulation of sub-

types A8, B1 and B2, based on the similarity of gag genes. Moreover, one sample from sheep

(It038.2017) showed a large difference with known sequences (at least around the 24%)

belonging to the same monophyletic clade together with A9 and A11 subtypes. In the same

way, the isolate It009.2017 was genetically related to subtypes A1 and A4 but differences were

within the 25%-15%. Following the criteria published before [1], these samples suggest the

presence of new subtypes (A18 and A19) and confirm the very high heterogeneity of VMV-

like viral strains.

As reported before, genotypes A and subtype B1 were identified in samples from goats and

sheep, whereas B2 was only found in ovine samples. Sequences obtained from animals belong-

ing to the same flock clustered together, suggesting a clonal origin of the viral strain.

No differences in terms of SRLV positivity or genotyping between the two slaughterhouses

were recorded. A positive association was observed between the phylogroup A8 and the

absence of CPE in culture: the observed Monophyletic clade value mean was 5.015 (p< 0.10)

and indicated a significant correlation between in vitro features and phylogenetic relationship

among A8 new strains. The relevant data are summarized in Table 1. All but one serum sample

NGS for SRLV characterization
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were correctly classified using the serotyping ELISA according to the paired strain sequence

analysis, while a single sample (It006.2017) gave spurious results (E in serotyping vs A8 sub-

type in sequencing). Sequence analysis of the gag gene encompassing the immunodominant

epitope revealed a single non-synonymous mutation P231Q, a specific signature of genotype E

[4] (Table 2). On the other hand HV1 and HV2 regions along env gene sequence did not show

motifs that can be clearly associated to a single subtype or to low pathogenic features (Table 3).

Phylogenetic trees clearly confirmed the genotype and the subtypes clustering of the new

isolates considering both the complete genome (Fig 1) and partial gag gene sequence (Fig 2)

alignments.

Full genome sequences of newly assembled isolates are available on GenBank

(MG554402-MG554414 and MH374283-MH374291).

Discussion

In this study, a new approach was developed addressing the full genetic characterization of

SRLV isolates by NGS technologies. Since 1985, when the full genome sequence of the first iso-

late was published, a number of full genomes has been deposited, representing the prototype

strains associated to specific diseases of relevant genotypes. These first genetic data represented

a useful hallmark for SRLV diagnosis and control, opening new perspectives for recombinant

antigen technologies and development of sensitive serological tests, covering the heterogeneity

of lentiviruses in both sheep and goats. Moreover, genetic alignment has been progressively

improved (in terms of quality and quantity) allowing the design of primer sets facilitating the

amplification of at least different conserved genome regions. To date 17 subtypes of genotype

Table 2. Alignment of the immunodominant epitope within the gag gene. Reference genotype are reported in bold. Dots indicate identical residue comparing to the

reference K1514 (MVVlike A genotype).

Isolate Subtype Capsid epitope

K1514 A1 QKELIQGKLNEEAERWVRQNPPGP--NVLTVDQ

It025.2917 A8 . . . . . . . . . . . . . . . . . . . . . . . .--. . . . . . .

It007.2017 A8 . . . . . . . . . . . . . . . . . . . . . . . .--. . . . . . .

It005.2017 A8 . . . . . . . . . . . . . . . . . . . . . . . .--. . . . . . .

ItVdA.2017 A8 . . . . . . . . . . . . . . . . . . . . . . . .--. . . . . . .

It038.2017 A18 . . . . . . . . . . . . . . . . . . . . . . . .--. . . . . . .

It009.2017 A19 . . . . . . . . . . . . . . . .I. . . . . . .--. . . . . . .

It024.2017 A8 . . . . . . . . . . . . . . . . . . . . . . . .--Q. . . . . .

It026.2017 A8 . . . . . . . . . . . . . . . . . . . . . . . .--Q. . . . . .

It004.2017 A8 . . . . . . . . . . . . . . . . . . . . . . .Q--. . . . . . .

It002.2017 A8 . . . . . . . . . . . . . . . .I. . . . . . .--. . . . . . .

It003.2017 A8 . . . . . . . . . . . . . . . .M. . . . . .Q--. . . . . . .

It006.2017 A8 . . . . . . . . . . . . . . . .M. . . .Q----.A. . . . .

Cork B1 . . . . . . . . . . . . . . . .R.N . . .P.AGGG. . . . .

It016.2017 B1 . . . . . . . . . . . . . . . .R.N . . .P.AGGG. . . . .

It010.2017 B1 . . . . . . . . . . . . . . . .R.N . . .P.QGGG. . . . .

It020.2017 B1 . . . . . . . . . . . . . . . .R.N . . .PQAGGG. . . . .

It017.2017 B1 . . . . . . . . . . . . . . . .R.N . . .PQGGGG. . . .L

It014.2017 B1 . . . . . . . . . . . . . .Q.R.N . . .PQAGGA. . . . .

It001.2017 B2 . . . . . . . . . . . . . . . .R.N . . .PQAGGG. . . . .

It042.2017 B2 . . . . . . . . . . . . . . . .R.N . . .PQAGGG. . . . .

EU010124 Roccaverano E1 V . . .V.D . . .K . . .T.M. . . .QP.--GG. . . . .

https://doi.org/10.1371/journal.pone.0212585.t002
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A [11], 4 subtypes of genotype B [12], and two subtypes of genotypes C [13] and E [4,14] have

been identified using standard end point partial amplification of the LTR and gag, pol and env
genes followed by Sanger sequencing. This has led to a significant improvement of the knowl-

edge on viral epidemiology, pathogenesis, diagnosis and control.

The method developed in this study allowed the characterization of 22 SRLV full genomes

from fresh isolates, providing a fast and economically feasible tool for SRLV investigation. The

availability of full genome, along with a viral isolate, is often necessary to evaluate antigenic

and biological properties in detail. Moreover, the sequence coverage obtained with the

described procedure supports the evidence of high heterogeneity among the isolates and

within each genotype, as reported in previous studies [1,6].

According to de novo sequencing strategy potentially novel highly divergent genomes can

be virtually detected, even in the presence of mixed infections, providing the genetic bases for

the development of specific diagnostic tools. In this context, results presented in the study are

quite intriguing and can be extrapolated to other known infected regions or to unexplored

populations even if they are representative of a limited geographic area. This approach also

allowed the genetic characterization of hypervariable regions such as HV3-5 within the env
gene that may be difficult to amplify by conventional PCR due to strain specificity [15,16].

Keeping in mind the biological constraint of SRLV in the asymptomatic stage, the success

of virus isolation highly depends on the viral load present in explant cultures from the main

Table 3. Variable regions within env gene among SRLV A genotype strains. HV1 and HV2: hypervariable (HV) region; TM: transmembrane domain within env.

ENVELOPE REGIONS HV1 HV2 V5 TM

VLVLV1A K1514 VGNGTITGNCSVTNWDG NKWTCAARRK--GSRRDSLYIAG-RD QSYMEAQGENRRS ELDCWHYQHYCVTS

VLVLV1B K1514 . . . . . . . . . . . . . . . . . . . . . . . . .TGRK. .Q. . . . . . . .-. . . . . . . . . .K. . . . . . . . . . . . . . . . . .

NC 001452 kv1772 . . . . . . . . . . . . . . . . . . . . . .-----–K.Q . . .-. . . .-. . . . . . . . . . . .K. . . . . . . . . . . . . . . .

VLVGAGA_kv1772 . . . . . . . . . . . . . . . . . . . . . .-----–K.Q . . .-. . . .-. . . . . . . . . . . .K. . . . . . . . . . . . . . . .

VLVCG_Visna/Maedi . . . . . . . . . . . . . . . . . . . . . .-----–K.Q . . .-. . . .-. . . . . . .ER. . . . . . . . . . . . . . . . . . . .

VLVCGA_LV1.1 . . . . . . . . . . . . . . . . . . . . . .-----–K.Q . . .-. . . .-. . . . . . .ER. . . . . . . . . . . . . . . . . . . .

It038.2017 VGNGTITGNCSVTNWDG . . . . . .P.WGKG. .--. . . . . . .G.Q DQ.LKTNKRRK. . . . . . . . .H.F. . . .

AF479638_P1OLV . . . . .L. . . . . . .D . . . RQ . . .S. .VG--.TT. . . . . . . .-.N KA.S.KKKRQPQ- . . . . . . . . . . . . . .

OLVCG_SAOMVV . . . . . . . . . . . . .D.E. . . . . . . . .NS--KKK. . . . . . . .-. . KA.R.KNMR.K. . . . . . . . . . . . . . . .

NC_001511_Ovinelentivirus . . . . . . . . . . . . .D.E. . . . . . . . .NS--KKK. . . . . . . .-. . KA.R.KNMR.K. . . . . . . . . . . . . . . .

It009.2017 . . . . . . . . . . . . .D . . . K. . . . . . .AN--DK. . . . . . . . .-.N N. . . .KNRKKQKR Q. . . . . . . . . . . . .

KT453988_g6221 I. . . . . . . . . . . . . . . . .Q. . . . . .TA--.KK. . . . . . . .-. . . . . .QN.EK.K.A . . . . . .H. .F. . . .

KT453990_s7631 I. . . . . . . . . . . . . . . . .Q. . . . . .TA--.E. . . . . . . . .-. . . . . .QN.EK.K.A . . . . . .H. .F. . . .

KT453989_s7385 I. . . . . . . . . . . . . . . . .Q. . . . . .TA--.KK. . . . . . . .-. . . . . .QN.EK.K.A . . . . . .H. .F. . . .

HQ848062_Ov697 . . . . .V. . . . . . . . . . . .T . . .S. .K.--.-. . . . . . . . .-. . . . .I.S.EK.K. . . . . . . .H. .F. . . .

KY358788_USMARC-199906011-2 . . . . . . . . . . .A. . . . . .Q . . .K . . .S--.NKT. . . . . . .-GE . . . . .T.RRKK. . . . . . . .H. .F. . . .

KY358787_USMARC-200303013-1 . . . . . . . . . . . .K. . . . .L. . . .P. .R--.NVT. . . . . . .-GK K. .I.T.RRKK.A . . . . . .H. .F. . . .

ItVdA.2017 . . .D. . . . . . . . .D . . . .E. . . . . .QR--NDK. . . . . . . .-.N T. .VDQKRGKKKR . . . . . . . . .F. . . .

It024.2017 . . . . . . . . . . . . . . . . . . . . . . . . .KEKGKGQQ. . . . . . .-. . T. .V.QS.KSKNR . . . . . . . . .F. . . .

It026.2017 . . . . . . . . . . . . . . . . . . . . . . . . .K.--KGQQ. . . . . . .-. . T. .V.QS.K.KNR . . . . . . . . .F. . . .

It007.2017 . . . . . . . . . . . . .D . . . .M. . . . . .QS--.E. . . . . . . . .-.N TN.V.L.KRRQKR . . . . . . . . .F. . . .

It006.2017 . . . . . . . . . . . . . . . . . G. . . . . . .Q.--RDKQ. . . . . . .-.N T. .V.QN.KKKKR . . . . . . . . .F. . . .

It005.2017 . . .N. . . . . . . . .D . . . . . . . . . . .KQ--EEQW. . . . . . .-.N T. .I.Q.KGKKKR . . . . . . . . .F. . . .

It002.2017 K. . . . . . .A.N. . . . . . .R. . . . . .Q.--DG. . . . . . . . .-.N T. . . .QTRGKKKR . . . . . . . . .F. . . .

It025.2017 . . .N. . . . . . . . . . . . . D. . . . . . .QN--NEAQ. . . . . . .-.N TA.V.Q.-KRKKR . . . . . . . . .F. . . .

It003.2017 A. .N. . . . . . . . .D . . . S. . . . .E.Q.--ENKT. .V. . . .-.E T. .V.Q.TRKKKR . . . . . . . . .F. . . .

It004.2017 . . .D. . . . . . . . .D . . . RH. . . .E.QR--.NKT. .V. . . .-.E A. .V.Q.TRKK.R . . . . . . . . .F. . . .

https://doi.org/10.1371/journal.pone.0212585.t003
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sites of viral persistence. According to previous experiences, spleen tissue gave the higher rate

of success, followed by mammary gland and peripheral blood mononuclear cells (PBMC) co-

Fig 1. Bayesian tree based on the full genome sequences alignment. Newly characterized isolates are reported in bold. SRLV genotypes are reported. Posterior

probability of each node is showed above branches.

https://doi.org/10.1371/journal.pone.0212585.g001
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Fig 2. Bayesian tree based on the partial gag sequence alignment. Newly characterized isolates are reported in bold. SRLV subtypes are

reported. Posterior probability of each node is showed above branches.

https://doi.org/10.1371/journal.pone.0212585.g002
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culture [17]. Spleen ex vivo biopsy by needle aspiration produced enough red pulp fragments

with the desired size that rapidly established a culture of terminally differentiated macro-

phages, possibly derived by red pulp resident cells. This explains the high proportion of viral

strains obtained in the first passage. Contamination of fibroblastic-like culture is a normal fea-

ture in many tissue explants and spleen is not an exception. Terminally differentiated macro-

phages and dendritic cells are often replaced by overgrowing fibroblastic cells during cell

culture propagation. In many instances, this results in adaptation of SRLV isolates able to

infect fibroblasts and producing the characteristic cell fusion. However, this phenomenon is

not always observed. The prototype strain Roccaverano was firstly isolated from spleen and

mammary gland explants. Adaptation to standard foetal cells (synovial membrane, lung or

choroid plexus) was unsuccessful [18] presumably due to restricted macrophage tropism [5].

About half of the strains isolated in the present study belonging to the genotype A did not

show cell membrane fusion and a subset of them demonstrated impaired adaptation to over-

growing fibroblasts, as RT activity trended to decrease over time, as soon as infected macro-

phages died and were replaced by fibroblasts. This behavior is in agreement with a previous

study on low pathogenic SRLV strains [19]. Since viral microevolution seems to be essential to

drive tissue compartmentalization [16], we cannot exclude that viral isolation in asymptomatic

animals may be restricted to canonical cell types compared with isolation from lentivirus spe-

cific gross lesions (i.e. lung, udder, synovial membrane).

However, in the present study all strains belonging to subtype B1 in goats and B2 in sheep

were fusogenic in vitro, suggesting enhanced ability of the latter subtypes to efficiently replicate

in spleen-derived fibroblasts. The first virological survey in the same area was carried out in

the early nineties and later genetically characterized [2]. All strains were isolated from gross

lesions and belonged to genotype B and now referred as B1 in goats and B2 in sheep [1]. More

than 20 years later, the majority of goat isolates from asymptomatic animals belong to subtype

A8; this finding strongly suggests that subtype A8 may represent a low pathogenic subtype that

may have passed inadvertently causing persistent infections. Flock owners were not aware of

any of the clinical signs attributable to SRLV before the French breeds entered the population

in the early 1980s, further supporting this hypothesis. It should be noted that in the sampled

area no control measures have been ever implemented and the great number of A8 isolates is

unlikely to have emerged as a consequence of diagnostic escape, as happened for subtype A4

in Swiss goats [19,20]. In the latter experience, the poor performance of serological test in

detecting SRLV A4 subtypes, most likely favored the spread of genotype A4 in goats, although

the same test was quite effective in genotype B eradication campaigns (subtype B1).

Interestingly, the A4 subtype in Swiss goat is probably endemic in some Swiss regions but

no SRLV-induced pathology has been recorded in Switzerland in the last 15 years [20]. A simi-

lar picture could be attributable to subtype A8 in northwest Italy.

It is noteworthy to consider the amino acid sequence spanning the hypervariable regions of

the envelope protein (HV1 and HV2) which are believed to play a crucial role in cellular recep-

tor binding. Interestingly, the A8 fusogenic strain contained an insertion of 2 residues within

the HV2 motif and a greater proportion of basic amino acids, mimicking the prototype fuso-

genic strain A1 (Table 3). On the other hand, the sequence analysis of U3 region of the long

terminal repeats was similar in A8 subgroup, being the transcription factor binding sites well

conserved among isolates. These data taken together suggest that receptor binding, rather than

transcription factors, may be associated to low pathogenic potential (Table 3) [21].

A certain degree of antigenic heterogeneity was observed in some isolates of subtype A8

and this may influence the sensitivity of some diagnostic tests. Sequence analysis of the immu-

nodominant transmembrane epitope [22] revealed a non-synonymous mutation Y to F within

the loop of disulfide bond (Table 2). In addition, the above mentioned P231Q mutation within
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the major capsid antigen was sufficient to drive the serotyping reactivity versus genotype E

antigen leading to misclassification by standard ELISA tests. Since the genotype E derived anti-

gen is usually not included in commercially available antigens, this A8 variant may potentially

escape from standard serological test.

Only one goat showed an A8 virological positive outcome in the absence of serological reac-

tion. The genome analysis of this isolate did not reveal any atypical epitope signature which

may explain serological misdiagnosis. We cannot exclude a very recent infection in the win-

dow in which antibody response is not yet detectable or, instead, an impaired antibody pro-

duction in late infection steps [23].

Among the sequences described in the present study, two possible new subtypes within

genotype A were found (It009.2017 and It038.2017). Both were fusogenic in vitro (Table 1) and

showed highest reactivity against genotype A-derived antigen in the genotyping ELISA test. In

both cases, the new isolates did not show significant similarity with the available sequence data

set (similarity values lower than the 85%). The former isolate is similar to A4 and A1 subtypes,

belonging to the same monophyletic clade within the gag gene-based tree. The latter isolate is

phylogenetically related to the sheep strain It-561 isolated in Tuscany in 1995 and to the A9

SRLV subtype (Fig 2). The structure of these clades suggests that the new isolates belong to dif-

ferent evolutionary lineages compared to the reference subtypes, but their position within the

clade highlights the very high heterogeneity of SRLV, especially within the genotype A. This

result shows how the SRLV population structure is complex and its evolutionary patterns are

still largely unknown. The two different host species are characterized by different farming

management and population sizes; this may influence the animal-pathogen interactions and

consequently may drive the SRLV to evolve in different manners in different behaviors. Given

the improvement of diagnostic and viral characterization tools, these results may help to under-

stand the complexity of SRLV viral heterogeneity and should lead to consider an update in

SRLV classification, considering both genetic and in vitro properties of the new isolates.

Moreover, the pathogenic potential of these less frequent subgroups (i.e. A18 and A19) will

require additional studies since the serological tools are not fully able to differentiate the

strains within each genotype.

In conclusion the proposed approach, involving virus purification from spleen biopsy fol-

lowed by NGS, allowed the isolation and full genome characterization of 22 novel SRLV

strains. The success of this method is based on the following features: i) spleen is one of the

main target organs for SRLV persistence; ii) red pulp is a reserve of resident macrophages, the

main target for SRLV replication in vivo; iii) RT activity is a sensitive and specific assay for

revealing SRLV grown in cell culture; iv) de novo sequencing and assembling do not require

previous genetic knowledge. Even if further studies are needed in order to validate the method

and to asses its diagnostic performances we were able to detect both pathogenic and non path-

ogenic viral strains in goats and sheep, despite the limited sampling area, increasing the knowl-

edge about SRLV genetic diversity.
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1. Shah C, Böni J, Huder JB, Vogt H-R, Mühlherr J, Zanoni R, et al. Phylogenetic analysis and reclassifica-

tion of caprine and ovine lentiviruses based on 104 new isolates: evidence for regular sheep-to-goat

transmission and worldwide propagation through livestock trade. Virology. 2004; 319: 12–26. https://

doi.org/10.1016/j.virol.2003.09.047 PMID: 14967484

2. Grego E, Profiti M, Giammarioli M, Giannino L, Rutili D, Woodall C, et al. Genetic Heterogeneity of

Small Ruminant Lentiviruses Involves Immunodominant Epitope of Capsid Antigen and Affects Sensi-

tivity of Single-Strain-Based Immunoassay. Clin Vaccine Immunol. 2002; 9: 828–832. https://doi.org/

10.1128/CDLI.9.4.828–832.2002

3. Rosati S, Kwang J, Keen JE. Genome Analysis of North American Small Ruminant Lentiviruses by

Polymerase Chain Reaction and Restriction Enzyme Analysis. J Vet Diagnostic Investig. 1995; 7: 437–

443. https://doi.org/10.1177/104063879500700403 PMID: 8580162

4. Grego E, Bertolotti L, Quasso A, Profiti M, Lacerenza D, Muz D, et al. Genetic characterization of small

ruminant lentivirus in Italian mixed flocks: evidence for a novel genotype circulating in a local goat popu-

lation. J Gen Virol. 2007; 88: 3423–3427. https://doi.org/10.1099/vir.0.83292-0 PMID: 18024912

5. Juganaru M, Reina R, Bertolotti L, Stella MC, Profiti M, Armentano M, et al. In vitro properties of small

ruminant lentivirus genotype E. Virology. 2011; 410. https://doi.org/10.1016/j.virol.2010.10.031 PMID:

21094509

6. Bertolotti L, Mazzei M, Puggioni G, Carrozza ML, dei Giudici S, Muz D, et al. Characterization of new

small ruminant lentivirus subtype B3 suggests animal trade within the mediterranean basin. J Gen Virol.

2011; 92. https://doi.org/10.1099/vir.0.032334–0

7. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient
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