
09 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Deep Learning at Scale

Publisher:

Published version:

DOI:10.1109/EMPDP.2019.8671552

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1695211 since 2023-12-28T15:23:47Z



Deep Learning at Scale
Paolo Viviani

Noesis Solutions NV, Belgium
Computer Science Department

University of Torino, Italy
paolo.viviani@noesissolutions.com

Maurizio Drocco
Pacific Northwest National Laboratory

Richland, WA, USA
maurizio.drocco@pnnl.gov

Daniele Baccega
Iacopo Colonnelli
Marco Aldinucci

Computer Science Department
University of Torino, Italy

{baccega,aldinuc}@di.unito.it
iacopo.colonnelli@unito.it

Abstract—This work presents a novel approach to distributed
training of deep neural networks (DNNs) that aims to overcome
the issues related to mainstream approaches to data parallel
training. Established techniques for data parallel training are
discussed from both a parallel computing and deep learning
perspective, then a different approach is presented that is meant
to allow DNN training to scale while retaining good convergence
properties. Moreover, an experimental implementation is pre-
sented as well as some preliminary results.

I. INTRODUCTION

As deep learning techniques become more and more popular,
there is the need to move these applications from the data
scientist’s Jupyter notebook to reliable and efficient enterprise
solutions. This aim involves several steps to be taken, and this
work advocates the need to push the current state of the art
in parallel training in order to achieve: 1) faster end-to-end
training for large production datasets; 2) distributed training on
the edge, namely on a number of heterogeneous, low-power, and
loosely-coupled devices (i.e. for privacy constraints); 3) training
code that can be redistributed, possibly in form of binaries
(i.e. to train models at customer’s premises without exposing
sensitive Python code). To practically implement this vision, a
number of advancements are required and this work represents
a first step towards:

1) a better theoretical understanding of the different strategies
of data parallelism in deep neural networks;

2) a consistent way to compare different deployments and
strategies.

Issues related to point 1 will be presented, addressing some
of them and discussing how it is possible to push further the
model training efficiency; moreover, this paper will propose a
design for a programming framework that would address point
2.

Sec. II presents a survey of parallel techniques for deep
neural network training, the next section provides a further
exploration of some theoretical highlights that can be exploited
to improve training scalability. Sec. IV presents a design for
an upcoming data parallel training framework and, finally, sec.
V provides an outlook of the potential impact of the presented
results as well as the opportunities.

II. BACKGROUND

Performance issues in deep neural networks (DNNs) have
been extensively investigated from many point of views: in

particular it is possible to clearly discriminate between the
training stage and the inference stage. The latter is usually
characterised by smaller computational workloads that are,
however, highly constrained by time, memory, and power
consumption due to the deployment on portable devices that
need predictions almost in real-time. This paper is focused
on the former stage of deep neural network training. A
comprehensive survey of the state of the art for parallel DNN
training has been presented by Ben-Nun and Hoefler [1], it is
among the goals of this paper to review a subset of the relevant
work, providing a more critical insight.

To further define the research scope of this work, it is useful
to highlight the main categorization of parallel training: namely
data parallelism vs. model parallelism. Data parallelism focuses
on distributing partitions of training data among workers, that
cooperate to train replicas of the same model; model parallelism
involves the partition of the model computation graph among
different workers, that train different parts of the same model
instance. While the latter (including layer pipelining) has been
proved to be an efficient way to improve the performance of
DNN training [2–5] it can be argued that its capacity to scale
beyond the single machine is limited by the higher frequency of
communications with respect to data parallelism, especially if
the distributed workers are loosely coupled (i.e. cloud instances
without dedicated interconnection, edge devices). Moreover,
model parallelism can be used transparently within a distributed
data parallel set-up to improve node-level performance, hence it
represents an orthogonal direction of improvement with respect
to data parallelism. In fact, this aspect is not explored in this
work, but it can be quickly added to the data parallel strategies
discussed later as a further optimization, without impacting
the following discussion.

A. Mathematical notation
Despite the many attempts to implement different optimiza-

tions strategies [6], back-propagation [7–10] with some flavour
of gradient descent [11] is still the most popular way to train
deep neural networks, mostly due to its high efficiency on
modern architectures like GPUs [12]. This section presents
some useful notation for gradient descent-based neural network
training.

For the rest of this section it will be considered that
a dataset X = {x1, . . . ,xn}, is used to train a neural

P. Viviani, M. Drocco, D. Baccega, and M. Aldinucci. Deep learning at scale. In Proc. of 27th Euromicro Intl. 
Conference on Parallel Distributed and network-based Processing (PDP), Pavia, Italy, 2019. IEEE.



network represented here as a collection of parameters (weights)
w = {w1, . . . , wm}. Hereafter, neither the network type
and topology (i.e. convolutional, recurrent, number of hidden
layers) nor the input dimensionality and shape are considered
relevant, as the formalism is generally applied to all of
them. Mini-batch gradient descent [10, 13, 14] has quickly
became the standard, combining the faster convergence of
Stochastic (on-line) Gradient Descent (SGD) [15–17], with
the more efficient computation of batch gradient descent.
The optimization step for training can be expressed as the
following weight update, computed with respect to a mini-
batch X(i,nb) = {xi, . . . ,xi+nb�1}:

wk(t+ 1) = wk(t)�
⌘

nb

i+nb�1X

j=i

@L (w(t),xj)

@wk
(1)

where t represents the current gradient descent iteration (step),
⌘ is the so-called learning rate that defines the size of the
step to be taken in the direction of the steepest descent, and
@L(w,xj)/@wkis the partial derivative of the loss function of the
neural network with respect to the weight wk, when calculated
on the training sample xj. The partial derivative is averaged
over all the samples belonging to a given subset (the mini-
batch) of the training dataset of size nb. It is useful to recall
the definition of all the versions of gradient descent by means
of the value of nb:

• nb = 1, stochastic gradient descent
• 1 < nb ⌧ n, mini-batch gradient descent
• nb = n, batch gradient descent

Note that batch averaging, as opposite of just summing, has a
non-trivial impact on the convergence of the training [11]. It
is also useful to define the gradient for all the weights of the
model as following

rL(w,xj) =

✓
@L (w,xj)

@w1
, . . . ,

@L (w,xj)

@wm

◆
(2)

this represents the direction of steepest slope of the loss surface
calculated with respect to xj in the parameter’s space (L :
Rm ! R); it is trivial to obtain the gradient and the step with
respect to the whole mini-batch X(i,nb) as

1

nb

i+nb�1X

j=i

rL(w,xj)
def
= �L(w, X(i,nb))

w(t+ 1) = w(t)� ⌘�L(w, X(i,nb)) (3)

Equation 1 represents the simplest form of mini-batch
gradient descent. Several algorithms have been developed
to improve the convergence rate of DNN training, a good
review of them can be found in literature [18, 19]. The key
points of these evolved algorithms are: 1) variable learning
rate, ⌘ ! ⌘(t); 2) accounting for previous gradient steps (e.g.
momentum [20]); 3) defining a different learning rate for each
weight ⌘(t)! ⌘(t, wk) (e.g. ADAM [21]). These points have
an impact on parallel training implementation that will be
discussed later.

Input
xi

DNN
w

Output
y(pred)i

Loss
L(w,xi)

Labels
yi

Gradients
w w � ⌘rL(w,xi)

Fig. 1. Back-propagation diagram for on-line gradient descent.

B. Training parallelism
When considering the whole feed-forward/back-propagation

[7] training process, it is important to remark that it is, to
some extent, intrinsically sequential. Figure 1 and equation (1)
show how the gradient value depend on the present w(t)
configuration and how its application through back-propagation
produces a new configuration w(t + 1): the new weights
represent a data dependency for the feed-forward step for
sample xi+1, that must come strictly after the back-propagation,
otherwise the gradient would be calculated based on outdated
(stale) weights. In principle this prevents any kind of input
sample-based parallelism while, in fact, this is true strictly
for on-line SGD: the concept itself of batch (or mini-batch)
gradient descent involves parallelism. The gradients related
to all the samples in the (mini-)batch are computed based on
the same value of w and, possibly, at the same time. It is
worth noting that the data dependency depicted in figure 1,
is introduced by on-line training algorithm and not by the
problem itself, hence there is room to relax this dependency,
either with mini-batches or with more sophisticated techniques
that relax the dependencies between mini-batches. Figure 2
exemplifies a possible behaviour of SGD on a loss surface: it is
not necessarily true that using always the most recent gradient
leads to the best training accuracy, even the red update could
end up to good loss minimum. In this sense is important to
remember that the loss surface of DNNs is highly non-linear
and difficult to describe globally [22, 23]: a certain amount of
noise and randomness associated to the gradient descent can
be beneficial to the training outcome in terms of generalization.
The next subsections will describe how this behaviour can
be exploited to introduce some degree of parallelism into the
training process.

1) Synchronous parallelism: As stated before, mini-batch
gradient descent combines the best of both on-line and batch
training; in particular, the fact that it can be expressed as a
chain of matrix-matrix multiplication (GEMMs) [10] that allow
for a very efficient implementation on multicore CPUs and
GPUs [11], enabled a wide adoption of deep learning due to the
better training feasibility. From the parallel computing point of
view, mini-batches represent the most elementary approach to
what is called synchronous data parallel training, as a global
synchronization happens at the end of each mini-batch.

The amount of available parallelism depends on the size of
the mini-batches, that in turn affects the convergence of the
training. Apart from avoiding the extreme cases of on-line and



w(0)

w(1) = w(0) + �10
w(0) + �20

w(1) + �20w(1) + �21

Fig. 2. Gradient descent in w space. �ji = �⌘rL(w(i),xj) represents the
gradient calculated on the weights updated up to step i, based on sample (or
mini-batch) xj. Therefore, the red update based on �20 is outdated with respect
to w(1), but its impact is not necessarily detrimental to the training. The
target function is L : Rm ! R.

batch gradient descent, the choice of the right mini-batch size is
not trivial, and there is interaction with other hyper-parameters,
like the learning rate, as widely discussed in literature [23–28]
often concerning the linear scaling of ⌘. In principle, larger
mini-batches allow to process more samples per unit of time,
while the convergence can be hindered if the size is too large.

Mini-batch parallelism is usually exploited by means of
parallel GEMMs on suitable architectures [12, 29, 30]. However,
recent works [31–33] have demonstrated that it is possible
to push the mini-batch size further than previously expected
without affecting the model convergence. These works leverage
distributed GPU architectures in order to allocate and efficiently
compute such large mini-batches, while relying on an all-reduce
communication pattern to perform the global synchronization.
Ignoring the communication bottlenecks that will be discussed
in Sec. II-B4, it can be argued that this approach is problem-
specific and can not always be pushed as far as [31] suggests.
In fact, smaller mini-batches (⇠ 32) provide usually better gen-
eralization performance [10, 23, 28]. This induces a granularity
problem: smaller batches can be effectively computed only if
the size of the network and the complexity of the individual data
sample (e.g. large RGB picture vs. small array of numerical
data) are large enough to saturate the given platform even with
only few samples being processed concurrently. This issue
can heavily affect the capability of certain models to scale on
large distributed clusters. A further issue is the so-called batch
normalization (BN) [34], that introduces data dependencies
between different samples among the same mini-batch, such
that a full synchronization is required at each invocation of
BN.

Parallelism at mini-batch level proved to be effective at
node-level when implemented on GPUs, multi-core CPUs or
other dedicate hardware (e.g. Google TPUs [35]); still, the
scalability of its extension to distributed memory architectures
is subject to a suitable problem granularity, that is far from
being granted apart from specific problems.

Further parallel implementation of DNN training usually
take mini-batch parallelism for granted, at least at node-level,
considering mini-batches as atomic entities for which the data
dependency defined in Figure 1 exists. From this point of view,
mini-batches can be considered the only truly synchronous

kind of parallel training: while other strategies that will be
presented in the next sections might involve synchronizations at
certain stages, they necessarily relax the dependency between
subsequent mini-batches. Indeed, in the rest of this paper mini-
batches will be considered as atomic entities, that cannot
be further divided. Synchronous distributed parallelism at
mini-batch level will also be addresses as large mini-batch
parallelism.

2) Asynchronous parallelism: The success of momentum as
a method to accelerate the training convergence, show that the
information of previous gradients is definitely relevant even
at the current iteration. Although the idea of trading gradient
staleness for computational efficiency can be also related a
posteriori to the usage of mini-batches, as highlighted by
Masters and Luschi [28], this notion has been at first exploited
for what is defined asynchronous parallel training. As the name
suggests, this strategy involves multiple workers performing
their own gradient descent for a certain amount of iterations,
while their findings (i.e. new weights, accumulated gradients)
are shared with other workers without a global synchronization
at the mini-batch level.

There is a common categorization [1] between centralized
and de-centralized implementations, as well as based the
degree of model consistency achieved. The latter is a property
of a given implementation that measures how different are
the weights of each model replica at a certain instant of
time, while the former categorization regards the usage of
a centralized parameter server to store a “master copy” of
the model weights or, otherwise, to coordinate the exchange
of gradients without a central authority. Sec. III will further
discuss these classifications. Early notable implementations of
asynchronous parallel gradient descent are HOGWILD! [36]
and its deep learning-focused derivatives like Downpour SGD
[2, 37]; followed by some other significant works [38–44].
Apart from the DistBelief [2] and Project Adam [37] papers,
that presented results previously not achievable and moved
deep learning resolutely into the HPC domain, most of other
works, while reporting solid scalability and timing results, were
not able to provide a significant legacy. In fact, the dominating
entries from DAWNBench [45], at the time of writing, are still
relatively small-scale, synchronous implementations.

While this review is far from being conclusive, it is
possible to suggest some limitations that arguably prevented
widespread adoption of asynchronous techniques. For instance,
the added complexity of a parameter server or a sophisticated
decentralized protocol might be perceived as not necessary
since synchronous, all-reduce-based, parallelism has mostly
satisfied the quest for deep learning scalability up to this
point. Moreover, most of these works present asynchronous
implementations of naive SGD, while the state of the art is
moving to more sophisticated algorithms like ADAM [21].
Some effort in this directions exists [46], as well as a prominent
theoretical work [47] that links gradient staleness to momentum;
still, the literature is lacking a comprehensive analysis of the
asynchronous behaviour of algorithm beyond SGD. Finally,
results are usually reported as a collection of experiments on



specific use cases, lacking a generalization effort that might
help to understand the validity of the methodology. In this
sense a relevant analysis has been performed by Lian et. al
[48]: the theoretical discussion of the convergence rate for an
asynchronous, decentralized algorithm represent a good starting
point for a performance analysis. However, it can be argued
that the real life behaviour is affected by a large number of
variables (e.g. weight update protocol,communication latencies,
etc.) that prevent this model to fully describe the performance of
a given implementation. These limitations, along with the lack
of details on the code and framework used for experiments, lay
the ground for a research that aims to fill the gap between sparse
experimentation and mathematical modelling of convergence
rates.

3) Other approaches: Synchronous and asynchronous SGD
are not the only ways to exploit concurrency in DNN training.
Model averaging [49–51] allow concurrent model replicas to
perform training independently up to a certain point (i.e. from
several mini-batches to multiple epochs), then the weights are
averaged among the different replicas. Ensemble learning [52,
53] performs the whole training on different model instances,
then averages the predictions among them. As said before with
respect to model parallelism, ensemble learning represents an
orthogonal direction of improvement with respect to parallel
gradient descent, hence it will not be discussed hereafter. On the
other hand, model averaging is strictly related to the techniques
presented in Sec. II-B1 and II-B2 and, while it is out of the
scope of this paper to formally draw the connection, it will be
investigated in the near future.

4) Further parallelism issues: As said in Sec. II-B1, mini-
batch parallelism tends to be performed within a single
node, either in shared memory or distributed among multiple
GPU. The computing horsepower provided by GPUs or other
dedicated hardware is usually enough for most applications,
still, there is the need to push the capability to train DNNs
effectively beyond the single node. While large mini-batches
and asynchronous techniques can be applied also within a
single machine when the problem is small enough, representing
an interesting research domain itself, they are born to be
distributed; this raises a number of issues related to the
communication of gradient updates.

The size of the gradient set (�L(w, X(i,nb)) for a state of the
art DNN easily reaches a few hundred MB [54]. This represents
a serious bottleneck for distributed implementations and two
main techniques are used to reduce the size of the gradient set
to be transmitted: quantization and sparsification. The former
intends to reduce the precision of the gradient representation in
order to reduce its overall size and it is demonstrated that this
technique works up to 1-bit representation [39, 55]; the latter
exploits the sparsity that naturally occurs in DNN gradients,
where most of the components are zero or almost zero. In this
way the array gradient component can be represented as sparse
and compressed with well-known techniques [39]. A more
recent work [54] also includes momentum in the discussion
and presents interesting results. Also in this case, apart from
the 1-bit quantization provided by Microsoft CNTK [56], the

frameworks used are not mentioned nor the code is made
available.

More methodologies can be exploited to enhance the
performance of distributed training, like the optimization of
the all-reduce pattern required by the large mini-batch training
or the overlapping of computation and communication during
training. Even if these techniques fall more in the domain
of the implementation details than in the field of parallel
training algorithms, they play a non-negligible role in the
overall training performance: this paper highlights the need
of a general purpose framework that provides the tools to
experiment with existing techniques at different levels (i.e.
asyncronous vs. synchronous, different communication patterns,
quantization, etc.), as well as defining and testing new ones.
Sec. IV will discuss the requirements for such framework.

III. THEORETICAL DISCUSSION

Assuming that using very large mini-batches is not suitable
for any application, end-to-end training performance can be
improved at two distinct levels:

1) at node level
• by implementing tensor operations in back-propagation

even more efficiently;
• by developing new dedicated hardware that is better

suited to handle small mini-batches;
2) at distributed level

• by improving parallel gradient descent without falling
back-on large mini-batches;

• by developing a different optimization strategy that
exploits parallelism better than gradient descent.

Point 1 is being researched actively [57, 58] and it is clearly out
of the scope of this paper. Also the development of algorithms
that departs completely from gradient descent is an interesting
topic, still this work is focused on improving on parallel
gradient descent. In this sense it is possible to show that,
despite usually being treated as different approaches, all the
techniques discussed in Sec. II-B1 and II-B2 can be placed
on a spectrum of communication completeness, namely the
property of parallel implementation to distribute each gradient
update from each worker to all the other workers, regardless
of the time at which this happens. It is indeed possible to
argue that the model consistency spectrum usually proposed
[1], provides limited insight to understand what happens to
model replicas in implementations presented in previous works.
A statement can be formulated in this sense that, while being
quite naïve, it is still important to understand the behaviour of
model replicas

Statement 1: Assuming mini-batch SGD without momentum
in a distributed setting, if all the gradient updates (communica-
tions) are delivered to all the workers, regardless of the delay,
all the model replicas will be consistent.
Figure 3 presents the diagram of subsequent gradient updates
for 2 workers: using commutativity and associativity of the
vector sum that represent the gradient update, it is trivial
to prove that, if an event triggers the application of all the



w0

wA
1 = w0 + �A1 (w0)

wA
1 + �A2 (wA

1 )

Not received

wA
1 + �B1 (w0)

+�A2 (wA
1 + �B1 (w(0))

Received

Worker A

wB
1 = w0 + �B1 (w0)

wB
1 + �B2 (wB

1 )

Not received

wB
1 + �A1 (w0)

+�B2 (wB
1 + �A1 (w0))

Received

Worker B

�?�! �

time

Fig. 3. Diagram of weights update between two workers. w0 is the common starting configuration. Assuming that all the updates that are not immediatly
applied are queued somewhere, commutativity and associativity of vector sum guarantee that A and B will always be consistent once the queues are emptied.

pending updates (e.g. a global synchronization), whatever is
the state of both workers before the event, their state will be
consistent afterwards. Of course statement 1 does not hold
if, for instance, updates not yet received are simply dropped,
instead of accumulated. Moreover, it must be highlighted that
having consistent model replicas does not mean that the result
is the same as the sequential implementation, but only that all
the model replica will agree on the value of w at a certain
time. It is also important remark that consistency is not implied
at any given moment, but it is always achieved as most of
the strategies proposed either accumulate all the updates in a
parameter server or require a synchronization at each epoch
[39] or both. This leads us to the following

Statement 2: There is no need to distinguish between
centralized and de-centralized set-ups if the communication is
complete; in fact there it becomes only matter of implementa-
tion to choose the approach, while the model consistency is
granted.
In this view the centralized parameter server is only a way
to simplify the implementation as well as inducing artificially
some staleness, that can be beneficial to the training.

This discussion is relevant as our goal is to exploit more
parallelism without resorting to large mini-batch training;
however, workers in figure 3 always go through the received
branch the outcome is, not surprisingly, exactly equal to
the large mini-batch strategy. Less trivially, it is possible to
figure that this is exactly what happens in an homogeneous,
de-centralized set-up, where the load is perfectly balanced
and updates are broadcast by each worker to all the others
[39], making an asynchronous solution not different from a
synchronous one. Of course it can be argued that not enforcing
explicit synchronization can benefit scalability on very large-
scale deployment, however, most of the current implementations
are in fact still bound to a centralized parameter server.

It is useful at this point to define a new spectrum to
discriminate between strategies:

1) Synchronous communication (large mini-batches)
2) Complete communication with bound delay (stale-

synchronous [40])
3) Complete communication with unbound delay (Downpour

SGD [2])
4) Incomplete topologies ([59, 60])

It is important to remark that, when applied in an homogeneous

environment with high-bandwidth, low-latency interconnection
(i.e. any common HPC set-up), the first three points are not
significantly distinguishable in terms of training convergence,
at least from the theoretical point of view. It is true that a
centralized set-up with a parameter server forces a degree
of asynchrony since gradient updates are queued, still this is
more a limitation of the centralized implementation than a
property of this strategy, moreover the centralized approach
introduces an obvious bottleneck. Point 4 would be, instead, a
significant departure from large mini-batches, and its benefit
on the training convergence should be definitely investigated,
while its scalability can be expected to be almost linear in terms
of samples processed per unit of time, regardless of the scale
of the deployment. Moreover, this approach would significantly
benefit in loosely-coupled heterogeneous environments (e.g.
edge), where the communication is costly and unreliable.

A. Incomplete topology training
Incomplete topologies has been explored theoretically in

generic optimization context [59, 61–63], with only one deep
learning application known to the authors [64]. This last work,
while very close to what envisioned here, presents a theoretical
discussion that is not really applicable to real training, even
if sound. In fact, the authors consider a convergence criteria
that is too strict to be relevant in a training scenario where, for
instance, a sudden drop in the loss function happens after a
very long plateu. In this sense, it is hard to find a formulation
of the convergence rate that can really capture the dynamics of
the optimisation for a real training case. The most promising
direction, at the time of writing, is to draw a connection between
the work done in general-purpose distributed optimization, and
deep learning, similarly to what is done by Tatarenko et al. [63]
when highlighting how their formulation corresponds exactly
to SGD as described by Robbins and Monro [65].

It is clear that allowing partial communication definitely
gives up on model consistency, even in the long run. The
impact of this on the training must be better understood, as
well as the policy to determine which model to choose as
representative when the training ends. This last issue is also
strictly related to the possibility to terminate some workers at
any given time without impacting the overall convergence: this
matter has been already discussed [2], but only from the point
of view of fault tolerance of the training system, not in terms
of training accuracy.



Finally, it is necessary to investigate the impact of partial
communication when more sophisticated optimization algo-
rithms are used in place of naïve SGD. Momentum arises
implicitly when introducing stale gradients [47], but there is
no clear understanding of what happens in case of incomplete
communication, as well as for more sophisticated algorithms
with variable learning rates. It is reasonable to expect that the
discussion made for the synchronous case by Goyal et al. [31]
on momentum correction and aggregation of gradients subject
to momentum can be extended for asynchronous set-ups with
also implicit momentum and investigation is in progress in this
sense.

To wrap up the discussion, asynchronous gradient descent
with partial communication seems a promising alternative to
more popular methodologies. The next section will discuss
the requirements of a framework that can enable efficient
experimentation on this topic.

IV. FAST C++ FRAMEWORK

This library is currently1 under development and not yet
publicly available. In order to provide a truly general purpose
tool, as well as to exploit the peculiarities of the different
deep learning frameworks available, the proposed FAST
(Flexible (A)synchronous Scalable Training) approach intends
to decouple the intra-node execution of the training from the
parallel coordination of workers; in fact it is reasonable that
the user desires to keep using its framework of choice (e.g.
Tensorflow, PyTorch, MxNet).

The library is designed from scratch with C++ training
in mind, according to the aim of making training code
redistributable, while potentially target training in production
and keeping the overhead as low possible. However, due to
the prevalence of Python for DNN training, Python wrappers
will be provided compatible with selected frameworks.

Figure 4 presents the logical architecture of the framework.
FAST is designed to provide the user a pre-defined worker
node, that should be filled with the code worth for one iteration
of training (namely, one mini-batch). Then, the communication
of gradients between workers is completely handled by the
framework. The user is exclusively responsible for the inclusion
of gradients created by other workers and provided locally by
FAST, in the update of the local model replica.

At higher level, the global training strategy is defined by the
topology of communications that interconnect the workers. In
particular, it leverages distributed FastFlow [66, 67] to hide the
SPMD machinery to the end-user [68], who is able to simply
define a topology attaching worker nodes and channels. In a
typical deployment, workers will be logically arranged in a
2D grid with a toroidal topology with indices (i, j), where
neighbour relationships are defined with (i� 1, j), (i+ 1, j),
(i, j � 1), and (i, j + 1). This topology allows for a gradient
information to propagate quickly to all the workers, even if it is
mediated with the gradients of intermediate workers. This kind
of neighbour relationships can be encoded easily thanks to the

1Thursday 21st March, 2019

distributed FastFlow API, that also allows for non-blocking
collective communications among neighbours.

Within the nodes, multi-core FastFlow [69, 70] is used
to hide latencies related to host-device data transfer, as
well as to handle node-node transfers asynchronously with
respect to the local training. Differently from other mainstream
approaches adopting different programming models to exploit
shared-memory, GPUs, and distributed processing elements
(e.g. OpenMP+CUDA+MPI), FastFlow targets heterogenous
platforms with a singles programming model, which exploits
message-passing to model data dependencies and a globally
distributed memory to share data among processing elements.

V. CONCLUSION AND FUTURE WORK

It is very likely that the next breakthrough in training perfor-
mance will either come from new dedicated silicon architectures
or from theoretical advancements in optimizations techniques
that departs from gradient descent. However, at this stage, the
quest for training performance at scale has been met mostly
by synchronous, large mini-batch, parallelism; unfortunately
this strategy is heavily problem-dependent, moreover, it is not
suitable for other platforms than conventional HPC clusters
and tightly coupled cloud instances.

This paper, while still lacking experimental results, advo-
cates a departure from both synchronous and conventional
asynchronous training, as they both perform similarly in
terms convergence when working within a high-performance
infrastructure, with clear bottlenecks that can prevent them to
really scale over 128-256 GPU nodes. Instead, training with
incomplete communication topology is expected to introduce a
degree of randomization in the interleaving of updates coming
from different mini-batches that represents a novelty with
respect to large mini-batches and might arguably be beneficial
to the training.

This approach would require an effort on both the theoretical
and experimental side, in order to investigate the potential issues
reported in Sec. III. This work is currently taking place and
tackles the issues related to model inconsistency that derives
from partial communications, while the development of FAST
library will allow to validate theoretical results on real models
and datasets.

Acknowledgments: This research has been supported by the
Competency Center on Scientific Computing (C3S) at University
of Turin [71], by the HPC4AI project funded by the Region
Piedmont POR-FESR 2014-20 programme (INFRA-P) [72],
and the OptiBike experiment in the H2020 projects Fortissimo2
(no. 680481).

REFERENCES

[1] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Dis-
tributed Deep Learning: An In-Depth Concurrency Analysis,”
CoRR, vol. abs/1802.09941, 2018.

[2] J. Dean, G. S. Corrado, R. Monga, et al., “Large Scale
Distributed Deep Networks,” in Proceedings of the 25th
International Conference on Neural Information Processing
Systems - Volume 1, ser. NIPS’12, USA: Curran Associates
Inc., 2012, pp. 1223–1231.



Tensorflow PyTorch MxNet ...

FAST Worker node

FAST high-level Topologies

Python/C++ training code

Fig. 4. FAST logical stack.

[3] J. Ngiam, Z. Chen, D. Chia, et al., “Tiled convolutional neural
networks,” in Advances in Neural Information Processing
Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, Eds., Curran Associates, Inc.,
2010, pp. 1279–1287.

[4] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined
Back-Propagation for Context-Dependent Deep Neural Net-
works,” en-US, Microsoft Research, Sep. 2012.

[5] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for
building deep architectures,” in 2012 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Mar. 2012, pp. 2133–2136.

[6] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, no. Supplement C,
pp. 85–117, Jan. 2015.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” En,
Nature, vol. 521, no. 7553, p. 436, May 2015.

[8] P. J. Werbos, “Applications of advances in nonlinear sensitivity
analysis,” en, in System Modeling and Optimization, ser. Lecture
Notes in Control and Information Sciences, Springer, Berlin,
Heidelberg, 1982, pp. 762–770.

[9] Y. LeCun, “A theoretical framework for back-propagation,”
English (US), in Proceedings of the 1988 Connectionist Models
Summer School, CMU, Pittsburg, PA, D. Touretzky, G. Hinton,
and T. Sejnowski, Eds., Morgan Kaufmann, 1988, pp. 21–28.

[10] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
BackProp,” en, in Neural Networks: Tricks of the Trade,
ser. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 1998, pp. 9–50.

[11] Y. Bengio, “Practical Recommendations for Gradient-Based
Training of Deep Architectures,” en, in Neural Networks: Tricks
of the Trade, ser. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2012, pp. 437–478.

[12] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale Deep
Unsupervised Learning Using Graphics Processors,” in Proceed-
ings of the 26th Annual International Conference on Machine
Learning, ser. ICML ’09, Montreal, Quebec, Canada: ACM,
2009, pp. 873–880.

[13] G. B. Orr, “Removing Noise in On-Line Search using Adaptive
Batch Sizes,” in Advances in Neural Information Processing
Systems 9, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds.,
MIT Press, 1997, pp. 232–238.

[14] M. Moller, “Supervised learning on large redundant training
sets,” in Neural Networks for Signal Processing II Proceedings
of the 1992 IEEE Workshop, Aug. 1992, pp. 79–89.

[15] L. Bottou and O. Bousquet, “The Tradeoffs of Large Scale
Learning,” in Advances in Neural Information Processing Sys-
tems, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds., vol. 20,
NIPS Foundation (http://books.nips.cc), 2008, pp. 161–168.

[16] D. R. Wilson and T. R. Martinez, “The general inefficiency of
batch training for gradient descent learning,” Neural Networks,
vol. 16, no. 10, pp. 1429–1451, Dec. 2003.

[17] L. Bottou and Y. LeCun, “Large Scale Online Learning,” in
Advances in Neural Information Processing Systems 16, S.

Thrun, L. K. Saul, and B. Schölkopf, Eds., MIT Press, 2004,
pp. 217–224.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA: MIT Press, 2016.

[19] S. Ruder, “An overview of gradient descent optimization
algorithms,” CoRR, vol. abs/1609.04747, 2016.

[20] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, Jan.
1999.

[21] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” CoRR, vol. abs/1412.6980, 2014.

[22] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and
Y. LeCun, “The Loss Surfaces of Multilayer Networks,” in
Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, G. Lebanon and S. V. N.
Vishwanathan, Eds., ser. Proceedings of Machine Learning
Research, vol. 38, San Diego, California, USA: PMLR, May
2015, pp. 192–204.

[23] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,
and P. T. P. Tang, “On Large-Batch Training for Deep
Learning: Generalization Gap and Sharp Minima,” CoRR,
vol. abs/1609.04836, 2016.

[24] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimiza-
tion Methods for Large-Scale Machine Learning,” CoRR,
vol. abs/1606.04838, 2016.

[25] S. Jastrzebski, Z. Kenton, D. Arpit, et al., “Three Factors
Influencing Minima in SGD,” CoRR, vol. abs/1711.04623,
2017.

[26] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t De-
cay the Learning Rate, Increase the Batch Size,” CoRR,
vol. abs/1711.00489, 2017.

[27] J. Chen, R. Monga, S. Bengio, and R. Józefowicz, “Revisiting
Distributed Synchronous SGD,” CoRR, vol. abs/1604.00981,
2016.

[28] D. Masters and C. Luschi, “Revisiting Small Batch Training
for Deep Neural Networks,” ArXiv e-prints, 2018.

[29] J. Bergstra, F. Bastien, O. Breuleux, et al., “Theano: Deep
Learning on GPUs with Python,” in Big Learn Workshop,
NIPS’11, 2011.

[30] S. Chetlur, C. Woolley, P. Vandermersch, et al., “cuDNN: Effi-
cient Primitives for Deep Learning,” CoRR, vol. abs/1410.0759,
2014.

[31] P. Goyal, P. Dollár, R. B. Girshick, et al., “Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour,” CoRR,
vol. abs/1706.02677, 2017.

[32] M. Cho, U. Finkler, S. Kumar, et al., “PowerAI DDL,” CoRR,
vol. abs/1708.02188, 2017.

[33] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely Large
Minibatch SGD: Training ResNet-50 on ImageNet in 15
Minutes,” CoRR, vol. abs/1711.04325, 2017.

[34] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
CoRR, vol. abs/1502.03167, 2015.



[35] N. P. Jouppi, C. Young, N. Patil, et al., “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” CoRR,
vol. abs/1704.04760, 2017.

[36] F. Niu, B. Recht, C. Ré, and S. J. Wright, “HOGWILD!:
A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent,” CoRR, vol. abs/1106.5730, 2011.

[37] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project Adam: Building an Efficient and Scalable Deep
Learning Training System,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
Broomfield, CO: USENIX Association, 2014, pp. 571–582.

[38] T. Paine, H. Jin, J. Yang, Z. Lin, and T. S. Huang, “GPU
Asynchronous Stochastic Gradient Descent to Speed Up Neural
Network Training,” CoRR, vol. abs/1312.6186, 2013.

[39] N. Strom, “Scalable Distributed DNN Training Using Com-
modity GPU Cloud Computing,” Dresden, Sep. 2015.

[40] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-
aware Async-SGD for Distributed Deep Learning,” CoRR,
vol. abs/1511.05950, 2015.

[41] S. Zheng, Q. Meng, T. Wang, et al., “Asynchronous Stochastic
Gradient Descent with Delay Compensation for Distributed
Deep Learning,” CoRR, vol. abs/1609.08326, 2016.

[42] J. Keuper and F.-J. Pfreundt, “Asynchronous Parallel Stochastic
Gradient Descent - A Numeric Core for Scalable Distributed
Machine Learning Algorithms,” CoRR, vol. abs/1505.04956,
2015.

[43] J. Hermans, G. Spanakis, and R. Möckel, “Accumulated
Gradient Normalization,” CoRR, vol. abs/1710.02368, 2017.

[44] X. Lian, C. Zhang, H. Zhang, et al., “Can Decentralized
Algorithms Outperform Centralized Algorithms? A Case Study
for Decentralized Parallel Stochastic Gradient Descent,” CoRR,
vol. abs/1705.09056, 2017.

[45] C. A. Coleman, D. Narayanan, D. Kang, et al., “DAWNBench
: An End-to-End Deep Learning Benchmark and Competition,”
2017.

[46] J. Hermans, On Scalable Deep Learning and
Parallelizing Gradient Descent, it, Syntethic version:
http://joerihermans.com/ramblings/distributed-deep-learning-
part-1-an-introduction/ Code https://github.com/cerndb/dist-
keras, Aug. 2017.

[47] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony
begets Momentum, with an Application to Deep Learning,”
CoRR, vol. abs/1605.09774, 2016.

[48] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous
Decentralized Parallel Stochastic Gradient Descent,” ArXiv
e-prints, vol. 1710, arXiv:1710.06952, Oct. 2017.

[49] B. Polyak and A. Juditsky, “Acceleration of Stochastic Ap-
proximation by Averaging,” SIAM Journal on Control and
Optimization, vol. 30, no. 4, pp. 838–855, Jul. 1992.

[50] S. Zhang, A. Choromanska, and Y. LeCun, “Deep Learning
with Elastic Averaging SGD,” in Proceedings of the 28th
International Conference on Neural Information Processing
Systems - Volume 1, ser. NIPS’15, Cambridge, MA, USA: MIT
Press, 2015, pp. 685–693.

[51] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of
Deep Neural Networks with Natural Gradient and Parameter
Averaging,” CoRR, vol. abs/1410.7455, 2014.

[52] S. Lee, S. Purushwalkam, M. Cogswell, D. J. Crandall, and D.
Batra, “Why M Heads are Better than One: Training a Diverse
Ensemble of Deep Networks,” CoRR, vol. abs/1511.06314,
2015.

[53] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowl-
edge in a Neural Network,” CoRR, vol. abs/1503.02531, 2015.

[54] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gra-
dient Compression: Reducing the Communication Bandwidth
for Distributed Training,” CoRR, vol. abs/1712.01887, 2017.

[55] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-Bit Stochastic
Gradient Descent and Application to Data-Parallel Distributed
Training of Speech DNNs,” Microsoft Research, Sep. 2014.

[56] D. Yu, A. Eversole, M. Seltzer, et al., “An Introduction
to Computational Networks and the Computational Network
Toolkit,” Microsoft Research, Aug. 2014.

[57] N. Vasilache, O. Zinenko, T. Theodoridis, et al., “Tensor Com-
prehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions,” CoRR, vol. abs/1802.04730, 2018.

[58] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S.
Vetter, “NVIDIA Tensor Core Programmability, Performance
& Precision,” CoRR, vol. abs/1803.04014, 2018.

[59] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Asynchronous
gossip algorithms for stochastic optimization,” in 2009 Interna-
tional Conference on Game Theory for Networks, May 2009,
pp. 80–81.

[60] T. Hoefler, A. Barak, A. Shiloh, and Z. Drezner, “Corrected
Gossip Algorithms for Fast Reliable Broadcast on Unreliable
Systems,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2017, pp. 357–366.

[61] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat,
and A. Scaglione, “Gossip Algorithms for Distributed Sig-
nal Processing,” Proceedings of the IEEE, vol. 98, no. 11,
pp. 1847–1864, Nov. 2010.

[62] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asyn-
chronous Parallel Algorithms for Nonconvex Big-Data Opti-
mization: Model and Convergence,” CoRR, vol. abs/1607.04818,
2016.

[63] T. Tatarenko and B. Touri, “Non-Convex Distributed Optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 62, no. 8,
pp. 3744–3757, Aug. 2017.

[64] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya,
“GossipGraD: Scalable Deep Learning using Gossip Com-
munication based Asynchronous Gradient Descent,” CoRR,
vol. abs/1803.05880, 2018.

[65] H. Robbins and S. Monro, “A Stochastic Approximation
Method,” EN, The Annals of Mathematical Statistics, vol. 22,
no. 3, pp. 400–407, Sep. 1951.

[66] M. Drocco, “Parallel programming with global asynchronous
memory: Models, C++ APIs and implementations,” PhD thesis,
Computer Science Department, University of Torino, Oct. 2017.

[67] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and
M. Torquati, “Targeting distributed systems in fastflow,” in
Euro-Par 2012 Workshops, Proc. of the CoreGrid Workshop
on Grids, Clouds and P2P Computing, ser. LNCS, vol. 7640,
Springer, 2013, pp. 47–56.

[68] M. Drocco, C. Misale, and M. Aldinucci, “A cluster-as-
accelerator approach for SPMD-free data parallelism,” in Proc.
of Intl. Euromicro PDP 2016: Parallel Distributed and network-
based Processing, Crete, Greece: IEEE, 2016, pp. 350–353.

[69] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: High-level and efficient streaming on multi-core,” in
Programming Multi-core and Many-core Computing Systems,
ser. Parallel and Distributed Computing, S. Pllana and F. Xhafa,
Eds., Wiley, 2017, ch. 13.

[70] M. Aldinucci, S. Ruggieri, and M. Torquati, “Porting decision
tree algorithms to multicore using FastFlow,” in Proc. of
European Conference in Machine Learning and Knowledge
Discovery in Databases (ECML PKDD), ser. LNCS, vol. 6321,
Barcelona, Spain: Springer, Sep. 2010, pp. 7–23.

[71] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, and S.
Rabellino, “OCCAM: A flexible, multi-purpose and extendable
HPC cluster,” in Journal of Physics: Conf. Series 898 (CHEP
2016), San Francisco, USA, 2017.

[72] M. Aldinucci, S. Rabellino, M. Pironti, et al., “HPC4AI, an AI-
on-demand federated platform endeavour,” in ACM Computing
Frontiers, Ischia, Italy, May 2018.


