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Abstract

Let f : M → Rm+1 be an isometrically immersed hypersurface.
In this paper, we exploit recent results due to the authors in [4] to
analyze the stability of the differential operator Lr associated with
the r-th Newton tensor of f . This appears in the Jacobi operator for
the variational problem of minimizing the r-mean curvature Hr. Two
natural applications are found. The first one ensures that, under a mild
condition on the integral of Hr over geodesic spheres, the Gauss map
meets each equator of Sm infinitely many times. The second one deals
with hypersurfaces with zero (r + 1)-mean curvature. Under similar
growth assumptions, we prove that the affine tangent spaces f∗TpM ,
p ∈M , fill the whole Rm+1.

1 Introduction

In what follows f : Mm → Rm+1 will always denote a connected, orientable,
complete, non compact hypersurface of Euclidean space. We fix an origin
o ∈ M and let r(x) = dist(x, o), x ∈ M . We set Br and ∂Br for, respec-
tively, the geodesic ball and the geodesic sphere centered at o with radius
r. Moreover, let ν be the spherical Gauss map and denote with A both the
second fundamental form and the shape operator in the orientation of ν.
Associated with A we have the principal curvatures k1, . . . , km and the set
of symmetric functions Sj :

Sj =
∑

i1<i2<...<ij

ki1 · ki2 · . . . · kij , j ∈ {1, . . . ,m}, S0 = 1.

The j-mean curvature of f is defined

H0 = 1,

(
n

j

)
Hj = Sj ,

1
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so that, for instance, H1 is the mean curvature and Hm is the Gauss-
Kronecker curvature of the hypersurface. Note that, when changing the
orientation ν, the odd curvatures change sign, while the sign of the even
curvatures is an invariant of the immersion. By Gauss equations and flat-
ness of Rm+1 it is easy to see that

H2 =

(
m

2

)−1

S2 =
1

2

(
m

2

)−1

scal,

where scal is the scalar curvature of M . The j-mean curvatures satisfy the
so-called Newton inequalities

H2
j ≥ Hj−1Hj+1,

equality holding if and only if p is an umbilical point (see [9]). We stress
that no restriction is made on the sign of the Hi’s.

Theorem 1.1. Let f : M → Rm+1 be a hypersurface such that, for some
j ∈ {0,m − 2}, Hj+1 is a non-zero constant. If j ≥ 1, assume that there
exists a point p ∈M at which the second fundamental form is definite. Set

vj(r) =

∫
∂Br

Hj , v1(r) =

∫
∂Br

H1. (1)

where integration is with respect to the (m− 1)-dimensional Hausdorff mea-
sure of ∂Br. Fix an equator E ⊂ Sm and suppose that either

(i)

∫ +∞ dr

vj(r)
= +∞ and H1 6∈ L1(M) or

(ii)

∫ +∞ dr

vj(r)
< +∞ and

lim sup
r→+∞

√
v1(r)vj(r)

∫ +∞

r

ds

vj(s)
>

1

2

[
(j + 1)

(
m+ 1

j + 2

)
Hj+1

]−1/2

.

(2)
Then, there exists a divergent sequence {xk} ⊂ M such that ν(xk) ∈ E,
where ν is the spherical Gauss map.

Remark 1.2. Up to changing the orientation of M , we can suppose that
the second fundamental form at p is positive definite. As we will see later in
more detail, this has the remarkable consequence that each Hi, 1 ≤ i ≤ n,
is strictly positive at every point of M . In particular, v1 and vj are both
strictly positive and the requirements in (2) are meaningful.

Remark 1.3. When j = 1, the existence of an elliptic point p ∈M can be
replaced by requiring H2 to be a positive constant, see [6] for details. The
case j = 0 has been considered in [4].
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We clarify the role of (i) and (ii) with some examples. First, we deal
with the case j 6= 1, and we assume that vj is of order rk (resp ekr), for some
k > 0. Then assumption (ii) requires that v1(r) is of order at least rk−2

(resp ekr). Roughly speaking, v1 has to be big enough with respect to the
other integral curvature vj . Under additional requirements on the intrinsic
curvatures of M , standard volume comparisons allow to control the volume
of ∂Br and (ii) can be read as H1 not decaying too fast at infinity. When
j = 1, things are somewhat different. Indeed, (ii) implies that v1(r) does not
grow too fast, that is, loosely speaking, it has at most exponential growth.
This shows that two opposite effects balances in condition (ii). The same
happens for (i) with j = 1, as a consequence of Cauchy-Schwartz inequality
and coarea formula(∫ r

R

ds

v1(s)

)(∫
Br\BR

H1

)
≥ (r −R)2.

Finally, we stress that (i) and (ii) are mild hypotheses as they only involve
the integral of extrinsic curvatures. In other words, no pointwise control is
required.

Up to identifying the image of the tangent space at p ∈M with an affine
hyperplane of Rm+1 in the standard way, we can also prove the following
result:

Theorem 1.4. Let f : M → Rm+1 be a hypersurface with Hj+1 ≡ 0. If
j ≥ 1, assume rank(A) > j at every point. Define v1, vj as in (1). Then,
under assumptions (2) (i) or (ii), for every compact set K ⊂M we have⋃

p∈M\K

TpM ≡ Rm+1,

that is, the tangent envelope of M\K coincides with Rm+1.

Remark 1.5. As we will see later, condition rank(A) > j implies that
Hi > 0 for every 1 ≤ i ≤ j.

2 Preliminaries

We start recalling the definition and some properties of the Newton tensors
Pj , j ∈ {0, . . . ,m}. They are inductively defined by

P0 = I, Pj = SjI −APj−1.

For future use, we state the following algebraic lemma. For a proof, see [3].
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Lemma 2.1. Let {ei} be the principal directions associated with A, Aei =
kiei, and let Sj(Ai) be the j-th symmetric function of A restricted to the
(m− 1)-dimensional space e⊥i . Then, for each 1 ≤ j ≤ m− 1,

(1) APj = PjA;

(2) Pjei = Sj(Ai)ei;

(3) Tr(Pj) =
∑

i Sj(Ai) = (m− j)Sj ;

(4) Tr(APj) =
∑

i kiSj(Ai) = (j + 1)Sj+1;

(5) Tr(A2Pj) =
∑

i k
2
i Sj(Ai) = S1Sj+1 − (j + 2)Sj+2.

It follows from (2) in the above lemma, and from the definition of Pm
that Pm = 0. Related to the j-th Newton tensor there is a well defined,
symmetric differential operator acting on C∞c (M):

Lju = Tr(PjHess(u)) = div(Pj∇u) ∀ u ∈ C∞c (M), (3)

where the last equality is due to the fact that A is a Codazzi tensor in Rm+1,
see [5], [13]. Lj naturally appears when looking for stationary points of the
curvature integral

Aj(M) =

∫
M
SjdVM ,

for compactly supported volume preserving variations. These functionals
can be viewed as a generalization of the volume functional. In fact, in [3] and
[6] the stationary points of Aj are characterized as those immersions having
constant Sj+1. In the above mentioned paper [6], M.F. Elbert computes the
second variation of Aj in more general ambient spaces and obtains in the
Euclidean setting the expression

Tj = Lj +
(
S1Sj+1 − (j + 2)Sj+2

)
for the Jacobi operator. In what follows we are interested in the case of Lj
elliptic. There are a number of different results giving sufficient conditions to
guarantee this fact, and the next two fit the situation of our main theorems.

Proposition 2.2. Let M be an m-dimensional connected, orientable hyper-
surface of some space form N . Then, Li is elliptic for every 1 ≤ i ≤ j in
each of the following cases:

(i) M contains an elliptic point, that is, a point p ∈ M at which A is
definite (positive or negative), and Sj+1 6= 0 at every point of M .
Note that, up to changing the orientation of M , we can assume Ap to
be positive definite, and by continuity Sj+1 > 0 on M .

(ii) Sj+1 ≡ 0 and rank(A) > j at every point of M .
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Moreover, in both cases, every i-mean curvature Hi is strictly positive on
M , for 1 ≤ i ≤ j.

For a proof of (i) see [3], while for (ii) see [10].
From the above proposition, the requirements on p and rank(A) in the

main theorems ensure ellipticity. As stressed in Remark 1.3, when j = 2 in
[6] it is shown that the sole requirement H2 > 0 implies the ellipticity of L1.
In the assumptions of the above proposition, we can define the j-volume of
some measurable subset K ⊂M as the integral

Aj(K) =

∫
K
SjdVM .

Hereafter, we restrict to the case Lj elliptic. Given the relatively compact
domain Ω ⊂M , Lj is bounded from below on C∞c (Ω) and, by Rellich theo-
rem, for a sufficiently large λ, (Lj − λ) is invertible with compact resolvent.
By standard spectral theory, Lj is therefore essentially self-adjoint on C∞c (Ω)
(Theorem 3.3.2 in [12]). Essential self-adjointness implies that C∞c (Ω) and
Lip0(Ω) are cores for the quadratic form associated to Lj . The first eigen-

value λ
Tj
1 (Ω), with Dirichlet boundary condition, is therefore defined by the

Rayleigh characterization

λ
Tj
1 (Ω) = inf

φ ∈ Lip0(Ω)

φ 6= 0

∫
Ω〈Pj(∇φ),∇φ〉 −

∫
Ω(S1Sj+1 − (j + 2)Sj+2)φ2∫

Ω φ
2

,

where Lip0(Ω) can be replaced with C∞c (Ω). By the monotonicity property
of eigenvalues (or, in other words, since Lj satisfies the unique continuation
property, [2]), if Ω1 is a domain with compact closure in Ω2, and Ω2\Ω1 has

nonempty interior, λ
Tj
1 (Ω1) > λ

Tj
1 (Ω2). Hence, we deduce the existence of

λ
Tj
1 (M) = lim

µ→+∞
λ
Tj
1 (Ωµ),

where {Ωµ} is any exhaustion of M by means of increasing, relatively com-
pact domains with smooth boundary. The next result is substantially an
application of the result of Moss-Piepenbrink [11], slightly modified accord-
ing to Fischer-Colbrie and Schoen [8] and Fischer-Colbrie [7] (consult also
[12], Chapter 3 and, for the case of L1, [6]).

Proposition 2.3. Let M be a Riemannian manifold and let Tj be as above.
The following statements are equivalent:

(i) λ
Tj
1 (M) ≥ 0;

(ii) there exists u ∈ C∞(M), u > 0 solution of Tju = 0 on M .
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Furthermore, there exists a compact set K ⊂M and u ∈ C∞(M\K), u > 0

solution of Tju = 0 on M\K if and only if λ
Tj
1 (M\K) ≥ 0.

Next, we shall need to consider the following Cauchy problem; here, as
usual, R+ = (0,+∞) and R+

0 = [0,+∞).{
(v(t)z′(t))′ +A(t)v(t)z(t) = 0 on R+

z′(t) = O(1) as t ↓ 0+, z(0+) = z0 > 0
(4)

where A(t) and v(t) satisfy the following conditions:

(A1) A(t) ∈ L∞loc(R
+
0 ), A(t) ≥ 0, A 6≡ 0 in L∞loc sense;

(V1) v(t) ∈ L∞loc(R
+
0 ), v(t) ≥ 0,

1

v(t)
∈ L∞loc(R

+);

(V2) there exists a ∈ R+ such that v is increasing on (0, a) and
limt→0+ v(t) = 0.

Observe that (V 2) has to be interpreted as there exists a version of v
which is increasing near 0 and whose limit as t→ 0+ is 0.

By Proposition A.1 of [4] under the above assumptions (4) has a solution
z(t) ∈ Liploc(R

+
0 ) (and condition z′(t) = O(1) as t ↓ 0+ is satisfied in an

appropriate sense). Furthermore by Proposition A.3 of [4], z(t) has only
isolated zeros. In case 1/v ∈ L1((1,+∞)), by Proposition 2.5 of [4] if, for
some T > 0,

lim sup
t→∞

∫ t
T

√
A(s)ds

−1
2 log

∫ +∞
t

ds
v(s)

> 1 (5)

then, every solution of{
(v(t)z′(t))′ +A(t)v(t)z(t) = 0 on (t0,+∞), t0 > 0

z(t0) = z0 > 0
(6)

has isolated zeros and is oscillatory. The same happens if∫ +∞ dt

v(t)
= +∞ and

∫ +∞
A(t)v(t)dt = +∞. (7)

(see Corollary 2.4 of [4]).
A final result that we shall use is the following computation. (For a proof

see [13] , [1]).

Proposition 2.4. Let f : M → Rm+1 be an isometric immersion of an
oriented hypersurface and ν : M → Sm its Gauss map. Fix a ∈ Sm. Then

Lj〈a, ν〉 = −
(
S1Sj+1 − (j + 2)Sj+2

)
〈a, ν〉 − 〈∇Sj+1, a〉;

Lj〈f, ν〉 = −(j + 1)Sj+1 −
(
S1Sj+1 − (j + 2)Sj+2

)
〈f, ν〉 − 〈∇Sj+1, f〉.

(8)
where 〈, 〉 stands for the scalar product of vectors in Sm ⊂ Rm+1.
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In particular, if Sj+1 is constant, we have Tj〈a, ν〉 = 0. Moreover, if
Sj+1 ≡ 0, Tj〈f, ν〉 ≡ 0.

3 Proof of Theorem 1.1

Fix an equator E and reason by contradiction: assume that there exists a
sufficiently large geodesic ball BR such that, outside BR, ν does not meet E.
In other words, ν(M\BR) is contained in the open spherical caps determined
by E. Indicating with a ∈ Sm one of the two focal points of E, 〈a, ν(x)〉 6= 0
on M\BR.

Let C be one of the (finitely many) connected components of M\BR; then
ν(C) is contained in only one of the open spherical caps determined by E.
Up to replacing a with −a, we can suppose u = 〈a, ν〉 > 0 on C. Proceeding
in the same way for each connected component we can construct a positive
function u on M\BR. Since Sj+1 is constant, by Proposition 2.4 we have
that u > 0 satisfies

Tju = Lju+
(
S1Sj+1 − (j + 2)Sj+2

)
u = 0

on M\BR. Thus, by Proposition 2.3, λ
Tj
1 (M\BR) ≥ 0. We shall now

show that the assumptions of the theorem contradict this fact. As already
stressed, the existence of an elliptic point forces both Hj and Hj+1 to be
positive. Fix a radius 0 < R0 < R and let Kj be a smooth positive function
on M such that

Kj(x) =

{
1 on BR0/2

(m− j)Sj on M\BR0

(9)

Next, we define

vj(t) =

∫
∂Bt

Kj (10)

Using Proposition 1.2 of [4] we see that vj(t) satisfies (V 1) with vj(t) > 0
on R+ and (V 2). Next, we define

A(t) =
1

vj(t)

∫
∂Bt

S1Sj+1 − (j + 2)Sj+2. (11)

Then, repeated applications of Newton inequalities give

H1Hj+1 −Hj+2 ≥ 0. (12)
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Thus, using (12)

S1Sj+1 − (j + 2)Sj+2 = m

(
m

j + 1

)
H1Hj+1 − (j + 2)

(
m

j + 2

)
Hj+2 =

=

(
m

j + 1

)
(mH1Hj+1 − (m− j − 1)Hj+2)

≥
(

m

j + 1

)[
m− m− j − 1

j + 2

]
H1Hj+1 = (j + 1)

(
m+ 1

j + 2

)
H1Hj+1 ≥ 0.

(13)
This implies A(t) ≥ 0, and

A(t)vj(t) ≥ (j + 1)

(
m+ 1

j + 2

)
Hj+1

∫
∂Bt

H1 = (j + 1)

(
m+ 1

j + 2

)
Hj+1v1(t).

If 1/vj 6∈ L1((1,+∞)), then under (2) (i) and by the coarea formula we
deduceAvj 6∈ L1(R+). Hence, we can apply (7) to deduce that every solution
of {

(vj(t)z
′(t))′ +A(t)vj(t)z(t) = 0 on (t0,+∞), t0 > 0

z(t0) = z0 > 0
(14)

is oscillatory. The same conclusion holds when 1/vj ∈ L1((1,+∞)). Indeed,
from (11), (13)

∫ t
T

√
A(s)ds

−1
2 log

∫ +∞
t

ds
vj(s)

≥ 2

√
(j + 1)

(
m+ 1

j + 2

)
Hj+1

∫ t
T

√
v1(s)
vj(s)ds

− log
∫ +∞
t

ds
vj(s)

. (15)

Using De l’Hopital rule and (2) (ii), (5) is met. Let now R < T1 < T2 be
two consecutive zeros of z(t) after R. Define

ψ(x) =

{
z(r(x)) on BT2\BT1

0 outside BT2\BT1 .

Note that ψ ≡ 0 on ∂(BT2\BT1), ψ ∈ Lip0(M) and∇ψ(x) = z′(r(x))∇r(x)
where defined. Furthermore, by the coarea formula and the definition of A(t)
we have∫
M

(S1Sj+1 − (j + 2)Sj+2)ψ2 =

∫ T2

T1

z2(t)

∫
∂Bt

(S1Sj+1 − (j + 2)Sj+2)dt =

=

∫ T2

T1

z2(t)A(t)vj(t)dt = (m− j)
∫
M
SjA(r)ψ2.
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Thus, using (4), the above identity and again the coarea formula∫
M
〈Pj(∇ψ),∇ψ〉 − (S1Sj+1 − (j + 2)Sj+2)ψ2

≤
∫
M

Tr(Pj)|∇ψ|2 − (S1Sj+1 − (j + 2)Sj+2)ψ2 =

=

∫
M

(m− j)Sj |∇ψ|2 − (S1Sj+1 − (j + 2)Sj+2)ψ2

= (m− j)
∫
BT2
\BT1

Sj [(z
′)2 −A(t)z2] =

= (m− j)
∫ T2

T1

[(z′)2 −A(t)z2]vj(t)dt =

= (m− j){z(t)z′(t)vj(t)
∣∣T2
T1
−
∫ T2

T1

[(vj(t)z
′(t))′ +A(t)vj(t)z(t)]z(t)dt = 0.

It follows that

λ
Tj
1 (BT2\BT1) ≤ 1∫

M ψ2

{∫
M
〈Pj(∇ψ),∇ψ〉 − (S1Sj+1 − (j + 2)Sj+2)ψ2

}
= 0.

As a consequence λ
Tj
1 (M\BR) < 0, which gives the desired contradiction.

Remark 3.1. As a matter of fact, the orientability of M is not needed. If
M is non orientable, ν is not globally defined. However, changing the sign of
ν does not change either the assumptions or the conclusion of Theorem 1.1,
since the antipodal map on Sm leaves each E fixed. If 〈a, ν〉 6= 0 on M\BR,
the normal field X = 〈a, ν〉ν is nowhere vanishing and globally defined on
M\BR. This shows that, in any case, every connected component of M\BR
is orientable.

4 Proof of Theorem 1.4

Assume that, for some K, the tangent envelope of M\K does not coincide
with Rm+1. By choosing cartesian coordinates appropriately, we can assume

0 6∈
⋃

p∈M\K

TpM.

Then, the function u = 〈f, ν〉 is nowhere vanishing and smooth on M\K.
Up to changing the orientation, u > 0 on M\K. By Proposition 2.4, Tju =
−(j + 1)Sj+1=0. Note that here the assumption Hj+1 ≡ 0 is essential. It

follows that λ
Tj
1 (M\K) ≥ 0. The rest of the proof is identical to that of

Theorem 1.1. Again, according to Remark 3.1 we can drop the orientability
assumption on M . Indeed, if the tangent envelope of M\K does not cover
Rm+1, the vector field X = 〈f, ν〉ν is a globally defined, nowhere vanishing
normal vector field on M\K, hence M\K is orientable.
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