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A NOTE ON KILLING FIELDS AND CMC HYPERSURFACES

L. Mari1, P. Mastrolia2 and M. Rigoli3,

Abstract. In this note, we give some sufficient conditions for a CMC-hypersurface in a Riemannian

manifold N to be invariant under the 1-parameter group of isometries generated by a Killing field on N .

Our main result improves on previous ones by D. Hoffman-R. Osserman-R. Schoen and S. Fornari-J.

Ripoll, and hinges on a new, simple existence theorem for a first zero of solutions of an ODE naturally

associated to the problem. This theorem implies some classical oscillation criteria of W. Ambrose and

R. Moore. Extension to constant higher-order mean curvature hypersurfaces are also presented.

1. Introduction

In 1982 D. Hoffman, R. Osserman and R. Schoen, [13], proved that if the (spherical) Gauss map ν

of a complete, connected, oriented, constant mean curvature surface F : M → R3 has image contained

in a closed hemisphere Σ of S2, then M is a circular cylinder or a plane. The conclusion is achieved by

showing that M is invariant under a 1-parameter subgroup of translations of R3; indeed, they observe

that, when ν(M) is contained in Σ, there exists some unit vector v ∈ S2 for which the function u = 〈ν, v〉
is signed, and u ≡ 0 if and only if the vector field V of R3 obtained by translating v all over the space

is tangent to M . In this case, the surface is therefore invariant by the 1-parameter subgroup generated

by V .

This idea has been extended by S. Fornari and J. Ripoll, [10], to the case where V is any Killing

vector field of the ambient space (N, 〈 , 〉N ) and F : Mm → Nm+1 is an isometric immersion of a

connected, oriented, complete hypersurface with constant mean curvature H and unit normal vector

field ν. Hereafter, and throughout all the paper, geometric entities on the ambient space N will be

marked with a bar superscript. When m = 2, Fornari and Ripoll extend Hoffman-Osserman-Schoen

result to the following (see Corollary 2 in [10]): suppose that the function 〈ν, V 〉 has constant sign, that

(1.1) Ric ≥ −2H2 〈 , 〉N

in the sense of quadratic forms and, in case the universal covering of M is conformally the plane, assume

|V | is bounded on M . Then either M is invariant by the 1-parameter group of isometries of N generated

by V or M is umbilic and Ric(ν, ν) = 2H2 along the immersion.

The 2-dimensional case is of course special. First, and to simplify the writing, let us assume that M is

simply connected; then by the Poincaré-Köbe uniformization theorem M is conformally either the sphere,

the plane or the Poincaré disk. As we shall see below the function u = 〈ν, V 〉 satisfies the equation

(1.2) ∆u− 2Ku+
(
Ric(ν, ν) + 2K + 4H2

)
u = 0,

with K the Gaussian curvature of M and K the sectional curvature of N on the tangent plane of M

(note that (1.2) coincides with the stability equation for constant mean curvature surfaces in N). Up to
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2 KILLING FIELDS AND HYPERSURFACES

choosing ν appropriately, we can suppose that u ≥ 0. Assumption (1.1) implies Ric(ν, ν)+2K+4H2 ≥ 0,

and (1.2) yields

(1.3) ∆u− 2Ku ≤ 0,

hence, by classical results ([9, 17]) −∆ + 2K is non-negative in the spectral sense. A result of Fisher-

Colbrie and Schoen [9] rules out the case u > 0 and M conformally equivalent to the disk. In other

words, if M is conformally the disk, there exists x0 ∈M such that u(x0) = 0; by the maximum principle

u ≡ 0 and M is invariant under the 1-parameter subgroup generated by V . We underline that this is a

very special case related to dimension 2 and for which, in any case, we need the pointwise estimate (1.1).

In the remaining two case M is parabolic, and their argument is a straightforward application of this

fact based on the pointwise bound (1.1) assigning a sign to the quantity Ric(ν, ν) + 2H2 and on the

further assumption of boundedness of |V |.

Remark 1.1. Since [9], the relation between the non-negativity of operators of the type −∆ + aK + V

(a ∈ R+, V ∈ L1
loc(M)) on a surface M and the conformal type of M has been the subject of increasing

interest. A beautiful and general result appeared in [2], and we refer to this paper also for an up-to-date

account on the problem.

For the general dimension m ≥ 3, in Corollary 1 of [10] the authors prove a corresponding result, but

only under the stronger assumption that M is compact and that the pointwise bound corresponding to

(1.1), that is

(1.4) Ric ≥ −mH2 〈 , 〉N

is satisfied.

As a final observation we note that there are plenty of manifolds supporting Killing fields, so that the

above setting is really meaningful (see for instance Remark 2.3 below for some examples and observa-

tions).

From now on o ∈ M is a fixed origin, r(x) = dist (x, o) is the Riemannian distance function from o

and BR, ∂BR are respectively the geodesic ball of radius R centered at o and its boundary.

We prove the following results.

Theorem 1.2. Let Y be a Killing field on the Riemannian manifold (N, 〈 , 〉N ) and let F : Mm → Nm+1

be a complete, oriented, connected hypersurface with constant mean curvature H and unit normal ν.

Suppose u = 〈ν, Y 〉 has constant sign, 1
vol (∂BR) 6∈ L

1(+∞) and

(1.5) lim inf
R→+∞

∫
BR

[
Ric(ν, ν) +mH2

]
> 0.

Then M is invariant by the 1-parameter group of isometries of N generated by Y .

Note that the condition 1
vol (∂BR) 6∈ L

1(+∞) implies (and many times is equivalent to, for instance on

model manifolds in the sense of Greene and Wu, [12]) the parabolicity of the manifold M , and is weaker

than the more common sufficient condition

R

vol(BR)
6∈ L1(+∞),

see [21] or [20] for further details.

Companion to Theorem 1.2, we also have the following result.

Corollary 1.3. Let F : Mm → Nm+1 and Y be as in Theorem 1.2. Assume u = 〈ν, Y 〉 has constant

sign outside a compact set K ⊂M , 1
vol (∂BR) 6∈ L

1(+∞) and for some a > 0

(1.6) lim
R→+∞

∫
BR

[
Ric(ν, ν) +mH2

]
= +∞.

Then M is invariant by the 1-parameter group of isometries of N generated by Y .
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Note that in Corollary 1.3 we have compensated the relaxed request on the sign of u with assumption

(1.6), clearly stronger than (1.5).

It is also important to observe that assumptions (1.5) and (1.6) are integral conditions, so that they

allow the function

Ric(ν, ν) +mH2

to be somewhere negative, even in a neighbourhood of infinity in M , which is a clear advantage on the

pointwise conditions (1.1) or (1.4). In fact, in this case the latter trivially imply either the result or the

fact that M is totally umbilical. Indeed, if

(1.7) Ric(ν, ν) +mH2 ≥ 0,

the function u is a bounded below superharmonic function on the parabolic manifold M (this easily

follows from Proposition 2.2 below) and must therefore be constant. If u 6= 0, from equation (2.7) of

Section 2 we deduce |II|2 + Ric(ν, ν) ≡ 0, that together with (1.7) forces |II|2 = mH2 and M is then

totally umbilical (here II is the second fundamental tensor of the immersion, see the next section).

We also deal with the “non-parabolic” case 1
vol (∂BR) ∈ L1(+∞), but we need to strengthen our

assumptions requiring the average condition

(1.8) A(r)
.
=

1

vol(∂Br)

∫
∂Br

[
Ric(ν, ν) +mH2

]
≥ 0 for r ∈ [R0,+∞),

for some R0 > 0. Choose f ∈ C0(R+
0 ) satisfying

(1.9) vol (∂Br) ≤ f(r) and
1

f
∈ L1(+∞).

The search for f matching the first requirement of (1.9) can be made via the Laplacian comparison

theorem (see for instance [15, 20]) by assigning a lower bound on the Ricci tensor of M , and since

the behaviour at +∞ of a carefully chosen f can be easily detected under this assumption, the second

requirement in (1.9) turns out simple to check (we refer the reader to [4] for details). In view of (1.9),

we can define the critical curve

(1.10) χf (r) =

(
2f(r)

∫ +∞

r

ds

f(s)

)−2

=

[(
−1

2
log

∫ +∞

r

ds

f(s)

)′]2

.

The critical curve, and its relationship with Green kernels, appears in a number of geometric problems,

among them Yamabe-type equations on complete non-compact manifold (see [5, 3]). The interested

reader is suggested to consult [4] for deepening. Under the assumptions (1.9), we can state the following

result:

Theorem 1.4. Let Y be a Killing vector field on the Riemannian manifold (N, 〈 , 〉N ) and let F : Mm →
Nm+1 be a complete, connected, oriented hypersurface with constant mean curvature H and unit normal

ν. Suppose that u = 〈ν, Y 〉 has constant sign outside a compact set K ⊂ M and assume the validity of

(1.8). Let f ∈ C0
(
R+

0

)
satisfying (1.9), and define χf according to (1.10). If

(1.11) lim
R→+∞

∫ R

R0

(√
A(s)−

√
χf (s)

)
ds = +∞,

then M is invariant by the 1-parameter group of isometries of N generated by Y .

Remark 1.5. Theorem 1.4 should be compared with Theorem 5.36 of [4], where (under a condition

corresponding to (1.11)) the authors obtained a splitting and codimension reduction result very much in

the spirit of the original Hoffman-Ossserman-Schoen’s theorem.

The above results can be extended to constant higher order mean curvatures; we recall that, given

the oriented hypersurface F : Mm → Nm+1, the Weingarten operator in the direction of the normal ν
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is the symmetruc operator A : TM → TM defined via the identity

〈A(X), Y 〉 = 〈II(X,Y ), ν〉 ∀X,Y ∈ TM.

Let λ1, . . . , λm be its eigenvalues, that is, the principal curvatures of the immersion. We denote by Sj

the j-th symmetric function in λ1, . . . , λm for j = 0, . . . ,m:

S0
.
= 1, Sj =

∑
1≤i1<...<ij≤m

λi1λi2 . . . λij

The j-th mean curvature Hj is defined via the normalization

H0 = 1,

(
m

j

)
Hj = Sj , j = 1, . . . ,m.

Thus H1 is the mean curvature H, and Hm is the Gauss-Kronecker curvature of M .

Due to the complexity of formulas in the general case, let us assume that N has constant sectional

curvature. Then, corresponding to Corollary 1.3 we have

Theorem 1.6. Let Y be a Killing field on the Riemannian manifold (N, 〈 , 〉N ). Assume that N has

constant sectional curvature α ∈ R and let F : Mm → Nm+1 be a complete, oriented, connected hyper-

surface with unit normal ν, constant (j + 1)-th mean curvature Hj+1 6= 0 for some j = 0, . . . ,m − 1

and at least an elliptic point if j ≥ 1. Suppose that u = 〈ν, Y 〉 has constant sign outside a compact set

K ⊂M and that

(1.12)
1∫

∂Br
Hj
6∈ L1(+∞).

If, for some a > 0,

(1.13) lim
R→+∞

∫
BR

{
α(−1)

j
(m− j)

(
m

j

)
Hj +

(
m

j + 1

)
[mH1Hj+1 − (m− j − 1)Hj+2]

}
= +∞,

then M is invariant under the 1-parameter group of isometries of N generated by Y .

Remark 1.7. For H2 > 0 constant, the theorem holds with no requirement on the existence of an elliptic

point.

Remark 1.8. The same result holds if, instead of the existence of an elliptic point, we require Hj+1 ≡ 0

for some j = 0, . . . ,m − 1, rank (A) > j and there exists a point p ∈ M satisfying Hi(p) > 0 for each

1 ≤ i ≤ j.

Remark 1.9. In the assumptions of the theorem, Hi > 0 on M for 1 ≤ i ≤ j up to choosing ν in such

a way that the second fundamental form is positive definite at the elliptic point (see condition (i) in

Remark 2.5). Repeated applications of Newton inequalities H2
i ≥ Hi−1Hi+1 give H1Hi+1 −Hi+2 ≥ 0,

0 ≤ i ≤ j − 1. Using the latter we easily see that(
m

j + 1

)
[mH1Hj+1 − (m− j − 1)Hj+2] ≥

(
m

j + 1

)
(j + 1)HjHj+1

so that (1.13) can be replaced by the stronger requirement

(1.14) lim
R→+∞

∫
BR

{
α(−1)

j
(m− j)

(
m

j

)
Hj +

(
m

j + 1

)
(j + 1)HjHj+1

}
= +∞.

For j = 0 the above coincide with (1.6) in case N has constant sectional curvature.

2. Preliminaries

We fix the index convention 1 ≤ a, b, . . . ≤ m + 1 and 1 ≤ i, j, . . . ≤ m. Given the Riemannian

manifold
(
Nm+1, 〈 , 〉

)
, let {θa}, {θab } be a local orthonormal coframe on N with dual frame {ea} and

with corresponding Levi-Civita connection forms {θab }. A vector field Y on N is a Killing field if and

only if the Lie derivative of the metric in the direction of Y , LY 〈 , 〉, is identically null. Writing Y locally
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in the form Y = Y aea, with the usual notation for covariant differentiation the condition LY 〈 , 〉 = 0 is

equivalently expressed by

(2.1) Y ab + Y ba ≡ 0 for each a, b.

In the rest of the paper we let Rabcd denote the components of the (0, 4)-Riemann curvature tensor of

N . We have the following commutation rule:

Lemma 2.1. For a general vector field Z on N it holds

(2.2) Zabc = Zacb + ZdRdabc, for each a, b, c.

The proof is a nice exercise using the moving frame formalism and it is therefore left to the interested

reader (but for details, and for many more commutation rules, we refer to [6].

Given the oriented hypersurface f : Mm → Nm+1 with unit normal vector field ν, we can choose the

above coframe {θa} to be a Darboux frame along f , that is, ν = em+1. In other words, getting rid of

the pullback notation,

(2.3) θm+1 = 0 on M.

Differentiating (2.3), using the first structure equations dθa = −θab ∧ θb and Cartan’s lemma (see again

[15]) we have

(2.4) θm+1
i = hijθ

j , hij = hji,

where hij are the coefficients of the second fundamental tensor II of the immersion, that is

(2.5) II = hijθ
i ⊗ θj ⊗ ν.

Codazzi equations in this formalism read as

(2.6) hijk = hikj −R
m+1

ijk .

The following result was proved in a special case by H. Rosenberg, [22], and in this setting by S. Fornari

and J. Ripoll, [10]; we provide here a simple “moving frame” calculation that however will be essential

for Proposition 2.7 below.

Proposition 2.2. Let Y be a vector field on a Riemannian manifold (Nm+1, 〈 , 〉), and let f : Mm →
Nm+1 be a two-sided isometric immersion. Choose a normal unit vector field ν and let A,H be the shape

operator and the mean curvature of f in the direction of ν. Define T = LY 〈 , 〉. Then, the function

u = 〈Y, ν〉 satisfies

(2.7) ∆u+
(
|II|2 + Ric(ν, ν)

)
u = −hikTik −m 〈Y,∇H〉 − T(m+1)ii −

1

2
Tii(m+1).

In particular, if Y is conformal and letting η ∈ C∞(N) be such that LY 〈 , 〉 = η 〈 , 〉, then

(2.8) ∆u+
(
|II|2 + Ric(ν, ν)

)
u = −ηmH −m 〈Y,∇H〉 − m

2
〈∇η, ν〉.

Proof. With our choice of frames we have u = Y m+1, that is, u is the component of Y in the direction

of em+1 along f . Moreover, by its very definition, up to raising an index of T we have T ab = Y ab + Y ba .

We compute

du = dY m+1 = Y m+1
i θi − Y tθm+1

t =
(
Y m+1
i − Y thti

)
θi = uiθ

i;

therefore,

uijθ
j = dui − ukθki = d

(
Y m+1
i − Y thti

)
−
(
Y m+1
k − Y thtk

)
θki

=
(
Y m+1
ij − Y ti htj − Y tj hti − Y m+1htihtj − Y thtij

)
θj ,
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from which we determine the coefficients uij of the Hessian of u, Hess (u). Tracing with respect to i and

j we get

(2.9)
∆u = Y m+1

ii − 2htiY
t
i − u|II|

2 − Y thtii = Y m+1
ii − htiTti − u|II|2 − Y thtii

= Y m+1
ii − htiTti − u|II|2 − Y thiit + Y tR

m+1

iti

where the second equality follows by splitting ∇Y into its symmetric and skew-symmetric parts, and the

third one follows from Codazzi’s equations (2.6). Now, by (2.2),

Y m+1
ii = Tm+1

ii − Y i(m+1)i = Tm+1
ii − Y ii(m+1) − Y

jRji(m+1)i − Y m+1R(m+1)i(m+1)i

= Tm+1
ii − Y ii(m+1) − Y

jRji(m+1)i − uRic(ν, ν)

= Tm+1
ii − 1

2
T ii(m+1) − Y

jRji(m+1)i − uRic(ν, ν).

Plugging into (2.9) gives (2.7). Equality (2.8) is then immediate by noting that Tij = ηδij .

�

Remark 2.3. As mentioned in the Introduction, there are plenty of manifolds supporting a Killing

field, for instance (connected) locally symmetric Riemannian manifolds or often Riemannian manifolds

expressed as homogeneous spaces under the action of a transitive Lie group, [18]. Another class of natural

examples is that of Riemannian warped product manifolds M ×µR with metric 〈 , 〉 = 〈 , 〉M +µ2(x)dt2,

µ : M → R+ smooth, with the choice Y = ∂
∂t .

Remark 2.4. Formula (1.2) in the introduction is obtained from (2.7) for ∇H = 0 and m = 2. In this

case, by Gauss equations,

|II|2 = 4H2 − 2
(
K −K

)
with the notation explained in (1.2).

We shall obtain a formula generalizing (2.7) to the case of higher order mean curvatures. Towards

this aim we recall that the Newton operators Pj : TM → TM , j = 0, . . . ,m, are inductively defined by

(2.10) P0 = I, Pj = SjI −A ◦ Pj−1,

where I denotes the identity. To each one of them we associate a well-defined symmetric operator Lj

acting, for instance, on C2(M) by the prescription

(2.11) Lju = tr (Pj ◦ hess (u)),

where hess (u) is the (1, 1)-version of the Hessian of u. If we assume that N has constant sectional

curvature, a simple computation shows that divPj ≡ 0, and Lj can thus be written in divergence form

(2.12) Lju = div (Pj(∇u)).

Remark 2.5. In general Lj is not elliptic, but there are geometric sufficient conditions to guarantee this

fact; we will be interested in the next two (see Proposition 6.27 in [4])

(i) If M has an elliptic point and Sj+1(x) 6= 0 ∀x ∈ M , then each Lj , 1 ≤ i ≤ j is elliptic (in

particular trPi = (m− i)Si > 0 on M);

(ii) if Sj+1 ≡ 0 then Li is elliptic for each 1 ≤ i ≤ j, provided rank (A) > j and there exists apoint

p ∈M satisfying Hi(p) > 0 for each 1 ≤ i ≤ j.

In what follows we suppose that ν has been chosen in such a way that Hi > 0 on M for each 1 ≤ i ≤ j,
whenever one of the two cases of Remark 2.5 occurs.

For later use we recall the validity of the following result proved in [17] (see also [8]) generalizing [9].

Proposition 2.6. Let Ω be an open set of a Riemannian manifold (M, 〈 , 〉). Let T be a linear, sym-

metric, elliptic operator and let q ∈ C0(Ω). Define L = T + q(x); then the following facts are equivalent:
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i) there exists w ∈ C1(Ω), w > 0 solving Lw = 0 weakly on Ω;

ii) there exists w ∈ H1,2
loc (Ω), w ≥ 0, w 6≡ 0 solving Lw ≤ 0 weakly on Ω;

iii) λL1 (Ω) ≥ 0.

Here λL1 (Ω) is defined by the variational characterization

(2.13) λL1 (Ω) = inf
ϕ∈C∞

c (Ω),ϕ6≡0

∫
Ω

(
−ϕTϕ− q(x)ϕ2

)∫
Ω
ϕ2

.

Later we shall also use the fact that, in our case, L satisfies the unique continuation property (see [14]

and the appendix in [20] for the case of the Laplacian). As a consequence of this fact and of the above

definition we have

(2.14) λL1 (Ω1) ≥ λL1 (Ω2)

whenever Ω1 ⊆ Ω2, with strict inequality in case the interior of Ω2 \ Ω1 is nonempty.

Starting from Proposition 2.2 we readily generalize formula (2.7) to higher order mean curvatures.

Proposition 2.7. Let F : Mm → Nm+1 be an oriented isometrically immersed hypersurface with unit

normal vector field ν and let Y be a Killing field on N . Suppose N has constant sectional curvature α;

then the function u = 〈ν, Y 〉N satisfies

(2.15)

Lju =

{
(−1)

j−1
(m− j)

(
m

j

)
αHj −

(
m

j + 1

)
[mH1Hj+1 − (m− j − 1)Hj+2]

}
u−

(
m

j + 1

)
〈∇Hj+1, Y 〉 ,

j = 0, . . . ,m, and where the Lj’s are the operators defined in (2.12).

Proof. Using the expression for the coefficients uij of Hess (u) in Proposition 2.2, the fact that Y is

Killing and N has constant sectional curvature α we obtain

(2.16) uij = −Y im+1 − αδiju− Y ti htj − Y tj hti − hithtju− Y thijt.

To simplify the writing let us replace the Hi with the corresponding Si; in this case, formula (2.7)

becomes

L0u = −mαS0u−
(
S2

1 − 2S2

)
u− 〈∇S1, Y 〉 .

This agrees, for j = 0, with the rewriting of (2.15) in the form

(2.17) Lju =
{

(−1)
j−1

(m− j)αSj − (S1Sj+1 − (j + 2)Sj+2)
}
u− 〈∇Sj+1, Y 〉 .

To prove the general validity of the latter one may use an inductive procedure using (2.16) and the

definition of the operator Lj . �

Our second main ingredient in our investigation is the next simple analytical step.

Theorem 2.8. Let A, v ∈ L∞loc

(
R+

0

)
satisfy v > 0 on R+, v−1 ∈ L∞loc(R+). Assume that v−1 6∈ L1(+∞),

and let z be a positive solution of

(2.18)

(v(r)z′)
′
+A(r)v(r)z(r) = 0 on R+

z(0+) = z0 > 0, v(0+)z′(0+) = β ∈ R.

Then

(2.19) lim inf
r→+∞

∫ r

0

A(t)v(t)dt ≤ β

z0
.

Proof. We reason by contradiction assuming the existence of Λ > β
z0

and R > 0 sufficiently large such

that, for all r ≥ R,

(2.20)

∫ r

0

A(t)v(t)dt ≥ Λ.
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We define y = − z
′

z v so that, because of (2.18), y satisfies

(2.21)

y′ = A(r)v(r) + y2

v(r) on R+

y(0+) = − β
z0
.

Integrating the above equation on [ε, r] for some ε > 0 sufficiently small we have

y(r) = y(ε) +

∫ r

ε

y2(s)

v(s)
ds+

∫ r

ε

A(s)v(s)ds.

By the monotone convergence theorem and the initial datum in (2.21) we obtain

(2.22) y(r) = − β
z0

+

∫ r

0

y2(s)

v(s)
ds+

∫ r

0

A(s)v(s)ds.

From (2.20) we then deduce

y(r) ≥ Λ− β

z0
+

∫ r

0

y2(s)

v(s)
ds ≥ Λ− β

z0
> 0

for r ≥ R. Hence, for some C > 0 and r � 1,

y2(r)

v(r)
≥ C

v(r)
6∈ L1(+∞).

We set

(2.23) G(r) =

∫ r

0

y2(s)

v(s)
ds

so that G(r)→ +∞ as r → +∞. Using (2.22) and (2.23) for r ≥ R we obtain

y(r) ≥ Λ− β

z0
+G(r)

from which we infer the existence of R1 ≥ R such that, for all r ≥ R1,

y(r) ≥ 1

2
G(r).

Using the positivity of G(r) we square the above inequality to get

y2(r) ≥ 1

4
G2(r).

Since G′(r) = y2(r)
v(r) , we thus have(

− 1

G(r)

)′
≥ 1

4

1

v(r)
on [R1,+∞).

Integrating the latter on [R1, R2], with R2 > R1, we deduce

1

G(R1)
≥ 1

G(R1)
− 1

G(R2)
≥ 1

4

∫ R2

R1

ds

v(s)
,

and letting R2 → +∞ we obtain a contradiction, proving the validity of (2.19). �

Corollary 2.9. Let A, v be as in Theorem 2.8. Assume

(2.24) lim inf
r→+∞

∫ r

0

A(s)v(s)ds >
β

z0
, z0 6= 0.

Then any solution z of (2.18) with z0 ∈ R \ {0} has a first zero. In particular, if for some a ∈ R+
0

(2.25) lim
r→+∞

∫ r

a

A(s)v(s)ds = +∞,

then any solution z of (2.18) is oscillatory.
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Proof. The first part of the Corollary is obvious from Theorem 2.8. The second depends on the validity

of the same on [r0,+∞) for any r0 > 0 with z(r0) ∈ R \ {0} and the fact that (2.25) clearly implies

lim
r→+∞

∫ r

r0

A(s)v(s)ds = +∞

for any r0 ≥ a. �

Remark 2.10. We shall apply Corollary 2.9 by choosing v(r) = vol (∂Br), where Br is a geodesic ball

centered at o ∈ M . Due to the presence of the cut locus of o, v could possibly have some “jump”

discontinuity. However, v ∈ L∞loc(R) and v−1 ∈ L∞loc(R+) by Proposition 1.6 of [4], and this is still

enough to guarantee (when β = 0) the existence of a solution z of (2.18) with z ∈ Liploc

(
R+

0

)
([4],

Proposition 4.2). Moreover, a non-identically null solution z of the equation in (2.18) has isolated zeros

(if any) ([4], Proposition 4.6).

It is worth to observe that using Corollary 2.9 we can easily generalize two results of R. Moore [16]

and W. Ambrose [1] respectively. To do this, we let 1
v 6∈ L

1(+∞) and for some fixed a > 0 we set

(2.26) w(r) = 1 +

∫ r

a

ds

v(s)
;

finally we define

(2.27) g(r) = z(r)w−
σ
2 (r)

for some 0 ≤ σ < 1. Then the function g satisfies

((vwσ)g′)
′
+

(
A(r) +

σ(σ − 2)

4

1

(vw)
2
(r)

)
(vwσ)g = 0.

Note that, since σ < 1, ∫ r

a

ds

v(s)wσ(s)
=

1

1− σ
w1−σ(s)

∣∣∣∣r
a

→ +∞ as r → +∞.

Furthermore,

(2.28)

∫ r

a

(
A(s) +

σ(σ − 2)

4(vw)
2
(s)

)
v(s)wσ(s)ds =

σ(σ − 2)

4(σ − 1)
wσ−1(s)

∣∣∣∣r
a

+

∫ r

a

A(s)v(s)wσ(s) ds.

Since w(r)→ +∞ as r → +∞ and σ < 1,

σ(σ − 2)

4(σ − 1)
wσ−1 → 0 as r → +∞.

Hence, under the assumption ∫ r

a

A(s)v(s)wσ(s)ds→ +∞ as r → +∞

we have that the left-hand side of (2.28) diverges to +∞ as r → +∞. Applying Corollary 2.9 we have

therefore proved the following

Proposition 2.11. Let A, v satisfy the assumptions of Theorem 2.8. Suppose that for some a > 0 and

0 ≤ σ < 1

lim
r→+∞

∫ r

a

v(s)

(∫ s

a

dt

v(t)

)σ
A(s) ds = +∞.

Then any solution z of (v(r)z′)
′
+A(r)v(r)z = 0 on [a,+∞)

z(a) ∈ R \ {0}
is oscillatory.
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For v(r) ≡ 1 the above proposition recovers the result of Moore, [16], generalizing that of Ambrose,

[1].

As it is well known for the case v(r) ≡ 1, the result is false for σ = 1 by considering Euler equation

(2.29) z′′ +
1

4(1 + r)2
z = 0.

In fact, the above equation has the explicit positive solution z(r) =
√

1 + r log(1 + r), hence by classical

Sturm-Liouville theory no solution of (2.29) could be oscillatory.

3. Proof of the results

We begin with the

Proof. [of Theorem 1.2] Without loss of generality we can suppose u = 〈ν, Y 〉 ≥ 0 on M . According to

Proposition 2.2, since the hypersurface has constant mean curvature and Y is Killing, u satisfies

(3.1) ∆u+
(
|II|2 + Ric(ν, ν)

)
u = 0.

If u(x0) = 0 for some x0 ∈M , by the maximum principle (see [11], page 35) u ≡ 0, that is, Y is tangent

to M which is therefore invariant by the 1-parameter group of isometries generated by Y . Otherwise

u > 0 on M ; since |II|2 ≥ mH2, from (3.1) we deduce

(3.2) ∆u+
(
Ric(ν, ν) +mH2

)
u ≤ 0 on M.

Thus, by the aforementioned result of [9] or [17] (see also Proposition 2.6), the operator L = ∆ +

Ric(ν, ν) +mH2 is stable, in other words

(3.3) λL1 (M) ≥ 0.

We now show that this contradicts assumption (1.5). Indeed, define

(3.4) A(r) =
1

v(r)

∫
∂Br

[
Ric(ν, ν) +mH2

]
, v(r) = vol (∂Br)

and consider the corresponding Cauchy problem (2.18). Choose β = 0, z0 > 0 and let z be the corre-

sponding solution, which exists by Remark 2.10. Using the coarea formula we have∫ R

0

A(s)v(s)ds =

∫ R

0

{
1

v(s)

∫
∂Bs

[
Ric(ν, ν) +mH2

]}
v(s)ds

=

∫ R

0

∫
∂Bs

[
Ric(ν, ν) +mH2

]
ds =

∫
BR

[
Ric(ν, ν) +mH2

]
.

Assumption (1.5) yields

lim inf
R→+∞

∫ R

0

A(s)v(s)ds > 0 =
β

z0
,

that is, (2.24) of Corollary 2.9 is met. Thus z has a first zero at some R0 > 0. We define ϕ(x) =

z(r(x)) ∈ Liploc (M). Using the Rayleigh variational characterization (2.13) of λL1 (BR0
), (2.18) and the

coarea formula, we have

λL1 (BR0
) ≤

∫
BR0
|∇ϕ|2 −

[
Ric(ν, ν) +mH2

]
ϕ2∫

BR0
ϕ2

=

∫ R0

0

{
|z′(s)|2v(s)−A(s)v(s)z2(s)

}
ds∫ R0

0
z2(s)v(s)ds

= 0,

as immediately seen by multiplying the equation in (2.18) by z, integrating by parts on [0, R0] and using

v(0+) = 0 and (vz′)(0) = β = 0. Then, λL1 (BR0) ≤ 0, and by the monotonicity property of eigenvalues

we deduce λL1 (M) < 0, contradicting (3.3). This shows that necessarily u ≡ 0 and completes the proof

of the Theorem. �
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Proof. [of Corollary 1.3] Choose a > 0 sufficiently large that the compact set K ⊂ Ba and consider

the Cauchy problem, say (2.18)’, given by (2.18) with initial data in a instead of 0 and with A(r) and

v(r) defined in (3.4) (on all of R+
0 ). By assumption (1.6) and Corollary 2.9 any solution of (2.18)’ is

oscillatory. Fix two consecutive zeroes R1 and R2 of z and estimate λL1
(
BR2

\BR1

)
from above as before.

As a result we get

(3.5) λL1
(
M \Ba

)
< λL1

(
BR2

\BR1

)
≤ 0.

However, if u = 〈ν, Y 〉 is (say) positive outside K, u is a positive solution of

∆u+
(
Ric(ν, ν) +mH2

)
u ≤ 0 on M \K,

so that the operator L has finite index, equivalently (by [19, 4, 7]) it is stable at infinity. Hence, up to

have chosen a > 0 sufficiently large, λL1
(
M \Ba

)
≥ 0, contradicting (3.5). It follows that we can find

x0 ∈ M \ K such that u(x0) = 0 and, by (3.1) and the maximum principle, u ≡ 0 on the connected

component of the open set M \ K containing x0. However, u satisfies (3.1) on M , and by the unique

continuation property u ≡ 0 on all of M , completing the proof of the Corollary. �

Proof. [of Theorem 1.4] The argument is exactly the one used in the proof of Corollary 1.3, once we

observe that condition (1.11) together with (1.8) yield the validity of the oscillation result contained in

Theorem 5.6 of [4]. �

Proof. [of Theorem 1.6] If u ≡ 0 we are done. Thus let u 6≡ 0 and have a constant sign on M \ Ba. By

Proposition 2.7 u satisfies the equation

(3.6) Lju+ q(x)u = 0 on M,

where

q(x) =

{
(−1)

j
(m− j)

(
m

j

)
αHj +

(
m

j + 1

)
[mH1Hj+1 − (m− j − 1)Hj+2]

}
(3.7)

=
{

(−1)
j
(m− j)αSj + (S1Sj+1 − (j + 2)Sj+2)

}
.

Choose the normal vector ν in such a way that Hi > 0 for 1 ≤ i ≤ j. This is possible by Remark 2.5.

Moreover, up to changing the sign of u, even if ν has already been fixed we can suppose u ≥ 0 on M \Ba.

By the maximum principle, if u(x0) = 0 for some x0 ∈M \Ba then (3.6) implies u ≡ 0 on M \Ba, and

by the unique continuation property u ≡ 0 on M , which cannot be. Hence u > 0 on M \ Ba, and by

Proposition 2.6 we deduce that

(3.8) λ
Lj+q
1

(
M \Ba

)
≥ 0.

As before we shall now contradict (3.8). Towards this aim we let

(3.9) vj(r) = (m− j)
(
m

j

)∫
∂Br

Hj > 0

vj is nonnegative and positive for r > 0 by our choice of ν. We define

(3.10) A(r) =
1

vj(r)

∫
∂Br

q(x)

and we consider the Cauchy problem

(3.11)

(vj(r)z
′)
′
+A(r)vj(r)z = 0 on (a,+∞)

z(a) = za > 0.
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Since vj > 0 on [a,+∞) and vj , v
−1
j ∈ L∞loc([a,+∞)), by [4] we know the existence of a solution z ∈

Liploc ([a,+∞)); furthermore z has only isolated zeros. By the coarea formula we have

lim
R→+∞

∫ R

a

A(s)vj(s) = lim
R→+∞

∫
BR\Ba

q(x) = +∞

because of (1.13). This fact, together with (1.12) shows that the assumptions of Corollary 2.9 are

satisfied and therefore z is oscillatory. Now let R1 and R2 be two consecutive zeros of z after a and

define ψ(x) = z(r(x)) on the annulus BR2 \BR1 and zero on the complementary set. Now observe that,

by the coarea formula and definition (3.10) of A(r) we have

(3.12)

∫
M

q(x)ψ2 =

∫ R2

R1

z2(s)A(s)vj(s)ds = (m− j)
∫
M

SjA(r)ψ2.

To study the sign of λ
Lj+q
1

(
M \Ba

)
we evaluate

∫ (
−ψLjψ − q(x)ψ2

)
. Using again the coarea formula,

(3.12), integrating by parts and observing that trPj = (m− j)Sj we have∫ (
−ψLjψ − q(x)ψ2

)
=

∫
M

〈∇ψ, Pj(∇ψ)〉 − q(x)ψ2 ≤
∫
M

(trPj)|∇ψ|2 − q(x)ψ2

= (m− j)
∫
M

Sj

[
|∇ψ|2 −A(r)ψ2

]
=

∫ R2

R1

[
(z′(s))

2 −A(s)z2(s)
]
vj(s)ds

−
∫ R2

R1

[
(vj(s)z

′)
′
+A(s)vj(s)z

]
zds = 0.

Therefore by domain monotonicity λ
Lj+q
1

(
M \Ba

)
< 0, contradicting (3.8). �

For the validity of Remark 1.8 simply observe that in its assumption, by Remark 2.5 (ii), the Lj ’s are

elliptic for 1 ≤ i ≤ j and the above proof applies verbatim.

As for Remark 1.7, from H2
1 ≥ H2 > 0 we have that H1 can be chosen positive on M and L1 is elliptic,

so that the same argument applies.
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