
11 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

RECOLA2: REcursive Computation of One-Loop Amplitudes 2

Published version:

DOI:10.1016/j.cpc.2017.11.013

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1693659 since 2019-02-20T10:47:41Z

ar
X

iv
:1

71
1.

07
38

8v
2

 [
he

p-
ph

]
 8

 J
an

 2
01

8

R E C O L A 2
REcursive Computation of One-Loop Amplitudes 2 ✩

Version 2.0

Ansgar Dennera, Jean-Nicolas Langa, Sandro Ucciratib

aUniversität Würzburg, Institut für Theoretische Physik und Astrophysik,

D-97074 Würzburg, Germany
bUniversità di Torino e INFN, 10125 Torino, Italy

Abstract

We present the Fortran95 program Recola2 for the perturbative compu-
tation of next-to-leading-order transition amplitudes in the Standard Model
of particle physics and extended Higgs sectors. New theories are imple-
mented via model files in the ’t Hooft–Feynman gauge in the conventional
formulation of quantum field theory and in the Background-Field method.
The present version includes model files for the Two-Higgs-Doublet Model
and the Higgs-Singlet Extension of the Standard Model. We support stan-
dard renormalization schemes for the Standard Model as well as many com-
monly used renormalization schemes in extended Higgs sectors. Within
these models the computation of next-to-leading-order polarized amplitudes
and squared amplitudes, optionally summed over spin and colour, is fully
automated for any process. Recola2 allows the computation of colour-
and spin-correlated leading-order squared amplitudes that are needed in the
dipole subtraction formalism. Recola2 is publicly available for download
at http://recola.hepforge.org.

Keywords: NLO computations; one-loop amplitudes; Beyond Standard
Model; higher orders; theories beyond the Standard Model

✩The program is available from http://recola.hepforge.org.
Email addresses: ansgar.denner@physik.uni-wuerzburg.de (Ansgar Denner),

jlang@physik.uni-wuerzburg.de (Jean-Nicolas Lang), uccirati@to.infn.it
(Sandro Uccirati)

January 10, 2018

http://arxiv.org/abs/1711.07388v2
http://recola.hepforge.org
http://recola.hepforge.org/

1. Introduction

In the era after the Higgs-boson discovery the focus in elementary parti-
cle physics is on the precise validation of the Standard Model (SM) and the
search for possible extensions thereof a.k.a. Beyond Standard Model (BSM)
theories. Nowadays we are able to perform precision predictions in the SM for
a vast number of observables as a result of the automation of one-loop QCD
[1–9] and electroweak (EW) [1, 10–14] corrections. In the future, amplitude
providers need to be able to calculate one-loop QCD and EW corrections
in general weakly interacting theories. However, the automation of one-loop
EW corrections for BSM theories is more involved as several intermediate
steps are required. The first step consists in the definition of new models in
terms of a Lagrangian and a subsequent determination of the Feynman rules.
This can be done by means of Feynrules [15, 16] and Sarah [17]. Then, the
renormalization needs to be addressed which raises many questions for BSM
theories as parameters cannot be necessarily linked to physical observables.
Thus, many different renormalization schemes need to be investigated which
in turn requires a systematic and flexible approach. Steps towards the au-
tomation of the renormalization for BSM theories have been undertaken in
the FeynRules/FeynArts approach in Ref. [18]. Finally, the renormal-
ized model file needs to be interfaced to a generic one-loop matrix-element
generator. In Ref. [19] we proposed a complementary strategy to Ref. [18]
combining the second and third step which requires a small set of external
tools (FORM [20, 21] and REPT1L [19]). Our approach makes use of tree-
level Universal FeynRules Output (UFO) model files [22] and results
in renormalized one-loop model files for Recola2, a generalized version of
Recola, allowing anyone to compute any process in the underlying theory
at the one-loop level, with the only restriction being available memory and
CPU power. Much effort has been spent on the validation of our system, and
for this purpose the alternative formulation of quantum field theory (QFT) in
the Background-Field method (BFM) has been implemented. In this report
we describe the Recola2 library and the Recola2 model files for the com-
putation of tree and one-loop amplitudes in the SM, the Two-Higgs-Doublet
Model (2HDM) and the Higgs-Singlet Extension of the SM (HSESM).

This article is organized as follows: In Section 2 we summarize the new
features ofRecola2 compared to the prior versionRecola [14]. In Section 3
the installation instructions for the Recola2 library and the model files are
given. In Section 4 we describe the usage of Recola2 and comment on all

2

new subroutines related to models with extended Higgs sectors that can be
called by the user. Finally, we conclude in Section 5 and list validation efforts
in Appendix A.

2. New features in Recola2

Recola2 is an upgraded version of the Fortran95 code Recola [14]
for the computation of tree-level and one-loop scattering amplitudes for gen-
eral QFT, based on recursion relations [10]. At tree level the algorithm
computes amplitudes using Dyson–Schwinger equations [23–25]. At one-loop
order the recursion relies on the decomposition of one-loop amplitudes in
terms of tensor integrals, computed by means of the Collier library [26],
and tensor coefficients computed by Recola2, within the framework of di-
mensional regularization. The extension to BSM concerns, in particular, the
computation of tensor coefficients as they are process- and theory-dependent.
The Recola2 library can generate arbitrary processes in BSM theories and
allows for the computation of tensor coefficients involving new structures
compared to the usual formulation of the SM.

In Ref. [19] we have presented our algorithm for a fully automated renor-
malization and computation of one-loop amplitudes. The intermediate re-
sults of this approach are Recola2-specific renormalized model files which
are derived from nothing but tree-level UFO format [22] by means of the
tool REPT1L. For the 2HDM and HSESM we specify in Section 2.1.1 and
Section 2.1.2 the modified Higgs potentials and Yukawa sector, respectively.
The tree-level UFO model files have been derived using Feynrules [15, 16].
With extended Higgs sectors the parameter space grows and requires renor-
malization of additional parameters. In Section 2.1.3 we list all implemented
renormalization schemes available in the model files. In Section 2.2 we give
details on the implementation of dimensional regularization and specify con-
ventions used in MS renormalization schemes. In Section 2.3 we comment
on the formulation of model files in the BFM and, finally, in Section 2.4 we
list our conventions for the new fields used to define processes.

2.1. Extended Higgs sectors and their renormalization

2.1.1. Scalar potentials

Currently we support the 2HDM and HSESM as presented in Ref. [19]
and summarized in the following. The models with extended Higgs sec-
tor are distinguished from the SM by modified scalar potentials and Yukawa

3

couplings. We derived the models for CP-conserving Z2-symmetric renormal-
izable potentials. Under these constraints the most general scalar potential
in the 2HDM reads [27]

VTHDM = m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −m2

12

(

Φ†
1Φ2 + Φ†

2Φ1

)

+
λ1

2

(

Φ†
1Φ1

)2

+
λ2

2

(

Φ†
2Φ2

)2

+ λ3

(

Φ†
1Φ1

)(

Φ†
2Φ2

)

+ λ4

(

Φ†
1Φ2

)(

Φ†
2Φ1

)

+
λ5

2

[

(

Φ†
1Φ2

)2

+
(

Φ†
2Φ1

)2
]

, (1)

with Φ1,Φ2 being Higgs doublets. The five couplings λ1 . . . λ5 and the two
mass parameters m2

1 and m2
2 are chosen to be real. Further, we allow for soft-

breaking of the Z2 symmetry which is parametrized by the real parameter
m2

12.
Before spontaneous symmetry breaking (SSB) the parameters are ex-

pressed in the symmetric, defining basis and by the EW gauge couplings
g and g′ in the gauge eigenbasis. Recola2 operates in the physical basis
expressed by masses, mixing angles and electromagnetic coupling. For the
2HDM this results in the following identification of physical parameters:

basis V2HDM LGauge

before SSB m1, m2, m12, λ1, λ2, λ3, λ4, λ5 g, g′

after SSB MHl
,MHh

,MHa
,MH± , cαβ, tβ,Msb,MW e,MZ

The masses are uniquely defined as the eigenvalues of the canonically nor-
malized mass matrices. Here, MHl

and MHh
denote the light and heavy neu-

tral Higgs-boson masses, respectively, MHa
denotes the pseudo-scalar Higgs-

boson mass and MH± the charged Higgs-boson mass. Besides being positive
definite the neutral ones are constraint to MHl

< MHh
. The angles α and

β are introduced to identify mass eigenstates and Goldstone-boson degrees
of freedom. We follow the conventions in Ref. [27] where the dependence on
the angles is parametrized as

α, β → cαβ := cos(α− β), tβ := tanβ, (2)

which is a natural choice for studying aligned scenarios. Here, tβ is defined
as tβ = vev2/vev1, i.e. the ratio of the vevs associated to Φ2 and Φ1 [19, 28].
Below we give a selection of Feynman rules which can be used to fix the
conventions. The angle α is defined in the window [−π/2, π/2], whereas

4

the angle β is defined in the window [0, π/2]. This implies cα := cosα =
√

1− sin2 α, cβ := cos β =
√

1− sin2 β and tβ > 0. Finally, we define the
soft-breaking scale Msb as

M2
sb =

m2
12

cβsβ
. (3)

We support two alternative sets of input parameters for mixing angles, namely:

parameter choice domain

cαβ
tβ

[−1, 1]
(0,∞)

sα
cβ

[−1, 1]
(0, 1)

For the HSESM the most general CP-conserving Z2-symmetric renormal-
izable scalar potential reads

VHSESM = m2
1Φ

†Φ +m2
2S

2 +
λ1

2

(

Φ†Φ
)2

+
λ2

2
S4 + λ3Φ

†ΦS2, (4)

with Φ being a Higgs doublet and S being a singlet field, and all parameters
are real. We choose the following set of physical parameters:

basis VHSESM LGauge

before SSB m1, m2, λ1, λ2, λ3 g, g′

after SSB MHl
,MHh

, sα, tβ,MW e,MZ

The angle α is defined in the same way as in the 2HDM and tβ is defined as
tβ = vevs/vev, i.e. the ratio of the vevs associated to S and Φ [19]. Again,
Recola2 operates in the physical basis expressed by masses, mixing angles
and electromagnetic coupling.

For comparison of phase conventions we list key couplings of type VVS
(gµν omitted) and SSS in Table 1. The SM limit is reached for sαβ = −1 and
sα = −1 in the 2HDM and HSESM, respectively.

2.1.2. Yukawa sector

While for the HSESM the fermionic sector is the same as in the SM,
the 2HDM allows for a richer structure with both doublet fields Φ1 and Φ2

coupling to fermions. Imposing a diagonal CKM matrix and the Z2 sym-
metry, which is essential for suppressing flavour-changing neutral currents at

5

model vertex coupling

2HDM ZZHl −isαβ
eMZ

cwsw

ZZHh +icαβ
eMZ

cwsw

HaHaHl +i e
2MWsw

(

(

2
(

M2

Ha
−M2

sb

)

+M2

Hl

)

sαβ −
(

M2

Hl
−M2

sb

)

cαβ
1−t2β
tβ

)

HaHaHh −i e
2MWsw

(

(

2
(

M2

Ha
−M2

sb

)

+M2

Hh

)

cαβ +
(

M2

Hh
−M2

sb

)

sαβ
1−t2β
tβ

)

HSESM ZZHl −isα
eMZ

cwsw

ZZHh +icα
eMZ

cwsw

HlHlHh −icαsα
e

2MWswtβ

(

M2
Hh

+ 2M2
Hl

)

(cα + sαtβ)

HlHhHh −icαsα
e

2MWswtβ

(

M2
Hl

+ 2M2
Hh

)

(sα − cαtβ)

Table 1: Some key couplings in the 2HDM and HSESM.

tree level, leads to the natural flavour-conserving models. The full Yukawa
Lagrangian with all possible types reads

LY =− ΓdQL (h1,dΦ1 + h2,dΦ2) dR

− ΓuQL

(

h1,uΦ̃1 + h2,uΦ̃2

)

uR

− ΓlLL (h1,lΦ1 + h2,lΦ2) lR + h.c., (5)

with Φ̃i being the charge conjugation of Φi, and Γd, Γu, Γl generically denote
the up-type quark, down-type quark and lepton Yukawa couplings. The
QL, LL and dR, uR, lR denote the SM fermion doublet and singlet fields,
respectively. The parameters hi,F trigger the desired Yukawa type as follows:

type h1,d h2,d h1,u h2,u h1,l h2,l

I 0 1 0 1 0 1
II 1 0 0 1 1 0
X 0 1 0 1 1 0
Y 1 0 0 1 0 1

In this convention, the Yukawa couplings are generically given by

vertex coupling

HlFF −i mF e
2MWswtβ

(h2,F (cαβ − sαβtβ)− h1,F tβ (sαβ + cαβtβ))

HhFF −i mF e
2MWswtβ

(h2,F (sαβ + cαβtβ) + h1,F tβ (cαβ − sαβtβ))

6

with hi,F representing either hi,d, hi,u or hi,l depending on the fermion type
F .

Note that the user can select the Yukawa type directly via
set Z2 thdm yukawa type rcl (Section 4.1.4), without having to worry
about the values of hi,F .

2.1.3. Renormalization schemes

The renormalization of the SM gauge couplings is performed as explained
in Ref. [19]. We support the renormalization of α in the Thomson limit (α0)
or on the Z-pole (αZ). Furthermore, α can be renormalized in the GF scheme,
neglecting the muon mass in vertex and box contributions.

In the extended Higgs sectors the renormalization of mixing angles and
new couplings needs to be addressed. We support various renormalization
schemes inspired by Refs. [28–36]. For all model files, except for the SM
ones,1 the tadpoles are by default renormalized in the FJ Tadpole Scheme [28,
35, 38] which, roughly speaking, affects all parameters depending on the vev.
In particular, all counterterms to physical parameters are gauge-parameter
independent. Nevertheless we support other tadpole-counterterm schemes
via appropriate shifts with respect to counterterms defined in the FJ Tadpole

Scheme. Note that the distinction of different tadpole-counterterm schemes
is only relevant for the MS renormalization of α, β and Msb, but not for on-
shell schemes or the MS renormalization of parameters of the defining basis,
i.e. λi, µi, because then the tadpoles necessarily drop out.2 In summary, we
distinguish between the following tadpole-counterterm schemes present in
the literature:

FJTS: In the Fleischer-Jegerlehner Tadpole counterterm Scheme tadpole
counterterms are introduced via field redefinitions. See Appendix A
in Ref. [38].

MDTS: In the Mass-Diagonal Tadpole counterterm Scheme no tadpole coun-
terterms emerge for two-point functions of physical fields. See the Feyn-
man rules in Ref. [37].

1For the SM model files we renormalize the tadpoles as done in Ref. [37]. On request
we can provide the model files in different tadpole schemes.

2There are subtleties for on-shell schemes defined in a particular gauge. See Appendix C
in Ref. [19] for a discussion and simple solution of this issue.

7

MTS: In the Minimal Tadpole counterterm Scheme the translation to the
physical basis is done in such a way that the tadpole counterterms only
appear in the quadratic terms of the Higgs potential. See Eq. (6) in
Ref. [39].

The masses and fields of new (scalar) fields are renormalized in the on-
shell scheme in the same way as in the SM. The only remaining parameters
requiring renormalization are mixing angles and the soft-breaking scale Msb

in the 2HDM. Since α, β and Msb are considered as independent parameters
(or are related to direct derivatives thereof, e.g. cαβ , tβ, sα, . . .) we formulate
all renormalization schemes directly for the corresponding counterterms δα,
δβ (δtβ) and δM2

sb.

• MS schemes [28, 32, 33, 36]:
We support standard MS schemes. In each of these schemes terms
proportional to ∆UV are subtracted as explained in Section 2.2. The
UV finiteness of matrix elements can be tested by varying the scale
µUV. The actual scale dependence of the scheme can be probed by
varying the scale µMS. The counterterms can be derived from suited
vertices of the theory, or from the pole part of the off-diagonal field
renormalization constants.

δαMS: In our conventions for the 2HDM and HSESM (see also Ref. [19])
we get for α in the FJTS:

δαMS
FJTS := δαMS =

δZMS
HhHl

− δZMS
HlHh

4
, (6)

which can be translated to other tadpole schemes as follows

δαMS
MDTS := δαMS +

tfinHhHl

M2
Hh

−M2
Hl

, (7)

δαMS
MTS := δαMS +

tfinHhHl
− tfinHhHl,MTS

M2
Hh

−M2
Hl

, (8)

with tHhHl
and tHhHl,MTS being the tadpole counterterms to the

neutral mixing energy in the FJTS and MTS tadpole counterterm
schemes, respectively.

8

δλMS
3 , δλMS

345: Instead of α being renormalized MS, the user can choose
between λ3 and λ345. In the 2HDM this is equivalent to define the
counterterm of α in the following ways:3

δαδλMS
345 = δαMS − cαsα

c2α − s2α
2δZfin

e +
c2β − s2β
c2α − s2α

cαsα
cβsβ

δβfin

− cαsα
c2α − s2α

[c2w − s2w
s2w

δM2,fin
W

M2
W

− c2w
s2w

δM2,fin
Z

M2
Z

+
δm2,fin

Hh
− δm2,fin

Hl

M2
Hh

−M2
Hl

]

− cβsβ
c2α − s2α

[

1

M2
Hh

−M2
Hl

[

δM2,fin
sb

+M2
sb

(

2δZfin
e +

c2w − s2w
s2w

δM2,fin
W

M2
W

− c2w
s2w

δM2,fin
Z

M2
Z

)

]

]

, (9)

δαδλMS
3 = δαδλMS

345

− cβsβ
c2α − s2α

2

M2
Hh

−M2
Hl

[

δM2,fin

H± − δM2,fin
sb

+
(

M2
H± −M2

sb

)

(

δZfin
e +

c2w − s2w
s2w

δM2,fin
W

M2
W

− c2w
s2w

δM2,fin
Z

M2
Z

)]

.

(10)

In the HSESM only the δλMS
3 scheme exists which can be defined

via δα as follows:

δαδλMS
3 = δαMS − cαsα

c2α − s2α
2δZfin

e

− cαsα
c2α − s2α

[

c2w − s2w
s2w

δM2,fin
W

M2
W

− c2w
s2w

δM2,fin
Z

M2
Z

+
δm2,fin

Hh
− δm2,fin

Hl

M2
Hh

−M2
Hl

]

.

(11)

δβMS: In the 2HDM we get for β in the FJTS:

δβMS
FJTS := δβMS =

δZMS
HaG0

− δZMS
G0Ha

4
=

δZMS
H±G± − δZMS

G±H±

4
, (12)

3See also Eqs. (4.38) and (4.39) in Ref. [36].

9

while the results in the other tadpole counterterm schemes read

δβMS
MDTS = δβMS

MTS = δβMS +

(

cαβ
δtfinHl

M2
Hl

+ sαβ
δtfinHh

M2
Hh

)

e

2MWsw
.

(13)

The MS scheme (13) corresponds to the popular DR (MS) scheme
in the Minimal Supersymmetric SM (see e.g. Ref. [32]). Note
that the finite parts of the tadpoles are, in general, gauge de-
pendent, and we fix them in the ’t Hooft–Feynman gauge. The
MS/MDTS scheme is used by default for δβ.

δtMS
β : In the HSESM we renormalize tβ in the MS scheme using the

vertex VHhHlHl
and require the pole part (P.P.) to vanish:

VHhHlHl
|
P.P.

!
= 0 ⇒ δtMS

β =: δtMS
β,FJTS. (14)

For tβ we offer the possibility to switch to the MDTS scheme which
is related to the FJTS via

δtMS
β,MDTS = δtMS

β (15)

+

(

(sα + cαtβ)
δtfinHl

M2
Hl

− (cα − sαtβ)
δtfinHh

M2
Hh

)

e

2MWsw
.

We do not support the MTS for tβ in the HSESM. The finite parts
of the tadpoles are, in general, gauge dependent, and we fix them
in the ’t Hooft–Feynman gauge. The MS/MDTS scheme is used
by default for δtβ in the HSESM.

δM2,MS
sb , δm2,MS

12 : We determine δM2,MS
sb from the vertex VHhH

±H± by
requiring that the pole part (P.P.) vanishes:

VHhH
±H± |

P.P.

!
= 0 ⇒ δM2,MS

sb =: δM2,MS
sb,FJTS. (16)

This scheme is the default. Alternatively, m2
12 can be renormalized

MS which is equivalent to define

δM
2,δm

2,MS
12

sb = δM2,MS
sb +M2

sb

s2β − c2β
cβsβ

δβfin. (17)

10

• p∗ schemes [19, 30, 31, 34, 35]:
The p∗ scheme is derived via the diagonalization of the effective mass
matrix requiring vanishing scale dependence [30, 31]. In the 2HDM,
this scheme can be used also for the renormalization of the mixing
angle β yielding the following solutions:

δαp∗:

δαp∗ =

Σ1PI,BFM
HhHl

(

M2
Hh

+M2
Hl

2

)

+ tHlHh

M2
Hh

−M2
Hl

, (18)

δβp∗1:

δβp∗1 = −
Σ1PI,BFM

HaG0

(

M2
Ha

2

)

+ tHaG0

M2
Ha

, (19)

δβp∗2:

δβp∗2 = −
Σ1PI,BFM

H±G±

(

M2

H±

2

)

+ tH±G±

M2
H±

. (20)

Here, ΣHhHl
, ΣHaG0

and ΣH±G± denote the neutral, pseudo-scalar, and
charged scalar mixing-energy, respectively, and tHlHh

, tHaG0
, tH±G± are

the corresponding tadpole counterterms. The schemes are formulated
via the BFM in the ’t Hooft–Feynman gauge, i.e. for the quantum
gauge parameter ξQ = 1 [40]. The scheme δαp∗ is valid in the 2HDM
and HSESM, whereas the schemes δβp∗1 and δβp∗2 can only be used in
the 2HDM.

• on-shell schemes [19, 29, 35]:
In these schemes, the counterterms for the mixing angles are defined
via on-shell mixing field-renormalization constants in the ξQ = 1 gauge
in the BFM. We express the counterterms in terms of mixing energies
as follows

δαOS:

δαOS =
Σ1PI,BFM

HhHl

(

M2
Hh

)

+ Σ1PI,BFM
HlHh

(

M2
Hl

)

+ 2tHlHh

2
(

M2
Hh

−M2
Hl

) , (21)

11

δβOS1:

δβOS1 = −
Σ1PI,BFM

HaG0
(0) + Σ1PI,BFM

HaG0

(

M2
Ha

)

+ 2tHaG0

2M2
Ha

, (22)

δβOS2:

δβOS2 = −Σ1PI,BFM

H±G± (0) + Σ1PI,BFM

H±G±

(

M2
H±

)

+ 2tH±G±

2M2
H±

. (23)

The scheme δαOS is valid in the 2HDM and HSESM, whereas the
schemes δβOS1 and δβOS2 can only be used in the 2HDM.

2.2. MS renormalization and scale dependence

Recola2 distinguishes between poles in ǫ of infrared (IR) and ultraviolet
(UV) origin by introducing the parameters µUV, ǫUV and µIR, ǫIR in all tensor
integrals and counterterms, together with

∆UV =
(4π)ǫUV Γ(1 + ǫUV)

ǫUV

,

∆IR =
(4π)ǫIR Γ(1 + ǫIR)

ǫIR
, ∆IR2 =

(4π)ǫIR Γ(1 + ǫIR)

ǫ2
IR

. (24)

Following the conventions of Collier [26, 41] and Ref. [42], the parameters
∆UV, ∆IR and ∆IR2 that contain the poles in ǫ absorb a normalization factor
of the form 1 +O(ǫ). In terms of these parameters, the one-loop amplitude
A1 takes the general form

A1 = ∆UV AUV

1 +∆IR2 AIR2

1 +∆IR AIR

1 (µIR) +Afin
1 (µUV, µIR). (25)

The term AUV

1 vanishes after (UV) renormalization. The a priori unphysical
scale µUV should either cancel between the tensor integrals and the counter-
terms, or it should receive a physical interpretation as for example when it
is identified with the renormalization scale µMS in the MS scheme4 for the
strong coupling constant gs. In Recola2, the MS renormalization scale µMS

4In the original Recola version as well in the literature the scale µMS is called Q.

12

is introduced as a new independent scale by a modified MS renormalization
where instead of ∆UV the term

∆UV + ln
µ2

UV

µ2
MS

(26)

is subtracted in MS schemes. As a consequence, the renormalized one-loop
amplitude becomes

A1 = ∆IR2 AIR2

1 +∆IR AIR

1 (µIR) +Afin
1 (µMS, µIR) (27)

which is independent of µUV but can depend on µMS when parameters are
renormalized MS. Note that in the extended Higgs sectors besides the strong
coupling constant gs additional sources of scale dependence emerge. The nu-
merical evaluation of the renormalized amplitude involves parts which depend
on ∆UV and µUV at intermediate steps. The independence of A1 on ∆UV and
µUV can be verified numerically by varying these parameters.

2.2.1. Soft and collinear singularities

In Recola2 collinear singularities are regularized as in Recola accord-
ing to the input fermion masses which are forwarded to Collier, while soft
singularities are always regularized dimensionally.5 In the case of massless
fermions dimensional regularization is used, and the scale dependence of reg-
ularized integrals is parametrized by the IR scale µIR. If, on the other hand,
the fermion has been assigned a regulator mass, its collinear singularities are
regularized by this mass parameter. In this case, the parameter µIR can be
interpreted as a photon-mass regulator.

2.3. Background-Field Method

Recola2 supports the Background-Field Method (BFM) as a comple-
mentary method to the usual formulation of QFT. The implementation is
realised for each individual model as a separate model file. Whether a model
file is formulated in the BFM is printed in the Gauge entry in the initialisation
of the model. For example, the SM BFM initialisation reads:

5In Recola the regularization of soft singularities is steered by the parameter
reg soft. Associated input routines can still be called in Recola2, but are deprecated
and have no effect.

13

xxx

_ _ _ _ _ _

|) |_ | | | | |_| _|

| \ |_ |_ |_| |_ | | |_

REcursive Computation of One Loop Amplitudes

Version 2.0.0

by A.Denner, J.-N.Lang, S.Uccirati

xxx

Active model: SM

Gauge: ’t Hooft-Feynman BFM

Model generation: Tue Aug 29 18:58:55 2017

The BFM and the usual formulation of QFT are treated on equal footing,
and, from the user perspective, models formulated in the BFM can be used
as any other model since the same conventions for background fields in the
BFM and the usual fields (Section 2.4) were chosen. The BFM comes with
additional fields, so-called quantum fields, which cannot be selected as exter-
nal states of matrix elements because they only appear inside loops. When
drawing the currents to one-loop scattering processes the quantum fields can
be seen at intermediate steps. For instance, the propagation of a gluon quan-
tum field gQ along the loop line (the line distinguished by the cross at the
beginning and end) is visualized in Fig. 1. Note that for all model files for-
mulated in the BFM the fermion fields take the role of both, quantum and
background field and no explicit distinction is made [19].

All renormalization schemes available in the usual formulation are also
available in the BFM allowing for powerful cross checks. There are, how-
ever, (higher-order) differences for mass counterterms due to the expansion
performed within the complex-mass scheme (see Ref. [19]). For a precise nu-
merical comparison of both methods it is recommended to set the widths of all
particles to zero where these differences disappear. In practical calculations
the BFM formulation is 10−15% faster than the conventional formulation
which is due to the need of less current structures. On the other hand, the
generation of processes takes ∼ 50% longer in the BFM.

14

32 gQ

1 Z

2 u

4 ū

gQ

8 g

16 g

g

gQ

Incoming Colour Structures:

39 δi32j2 δij32δ
i4
j

24 δi8j16δ
i
j8δ

i16
j

Outgoing Colour Structure:

δi16j2 δi4j8δ
i8
j16

Figure 1: Visualization of a branch with a quantum field.

2.4. Conventions

Recola2 uses the same conventions for particle identifiers (of type
character) as Recola [14] with the exception of the Goldstone bosons:

Scalars in the HSESM: ’Hl’, ’Hh’

Scalars in the THDM: ’Hl’, ’Hh’, ’Ha’, ’H+’, ’H-’

Goldstone bosons: ’G0’, ’G+’, ’G-’ .

Other SM fields as well as conventions for polarizations and the normalization
of the cross section are given in Ref. [14].

3. Installation

Recola2 uses the Collier library and Recola2-specific model files.
In order to facilitate building Recola2 we provide the following two options:

• Recola2-Collier package (Section 3.1):
The configuration and compilation ofRecola2, Collier, and a model
file is performed at once, using a CMake script which resolves all
dependencies automatically.

• Recola2-stand-alone package (Section 3.2):
A stand-alone version which requires the user to resolve the dependence
to Collier and model files by hand.

15

The Recola2 library and model files are available from the web site
http://recola.hepforge.org. The compilation requires the CMake build
system.

3.1. The Recola2-Collier package

The package recola2-collier-X.Y.Z contains the version X.Y.Z of the
Recola2 library together with all model files. After downloading the file
recola2-collier-X.Y.Z.tar.gz, extract the tarball in the current working
directory with the shell command:

tar -zxvf recola2-collier-X.Y.Z.tar.gz

This operation creates the directory recola2-collier-X.Y.Z containing the
following files and folders:

• CMakeLists.txt, build:
CMake configuration for the compilation of the Recola2, Collier

and model-file libraries in the proper order. The build directory, where
CMake puts all necessary files for the creation of the library;

• recola2-X.Y.Z:
main directory of the Recola2 package recola2-X.Y.Z (see
Section 3.2 for details);

• model-files-X.Y.Z:
directory containing the Recola2 model files:

– SM X.Y.Z, SM BFM X.Y.Z

– HS X.Y.Z, HS BFM X.Y.Z

– THDM X.Y.Z, THDM BFM X.Y.Z

Each model carries the same version as the Recola2 library;

• project cmake:
a test configuration which demonstrates how to link Recola2 to an
external project using CMake; this is discussed in Section 3.1.2.

By running

cd recola2-collier-X.Y.Z/build

cmake [options] .. -Dmodel=<model>

make [options]

16

http://recola.hepforge.org

the Recola2 library is compiled and linked with the model <model> and
the Collier library. Note that .. is the relative path pointing from the
build directory one level higher to where the top-level CMakeLists.txt of
the recola2-collier package is located. A predefined version of the Collier

library is automatically downloaded6 and extracted next to the Recola2

sources upon invoking the make command. The variable <model> can be
one of the model ids SM, SM BFM, HS, HS BFM, THDM, THDM BFM, or it can be
an absolute or relative path pointing to the model-file sources. Selecting a
different model file requires to rerun the CMake configuration and compi-
lation with a different value for model. The [options] for the configuration
(cmake) and compilation (make) are explained in Section 3.2 and summarized
in Table 2. It is recommended to run the compilation parallelised with the
Makefile option -j. Once the compilation of Recola2 is finished the demo
files (see Section 3.1.1) can be run.

3.1.1. The Recola2 demo files

The Recola2 demo files are located in recola2-X.Y.Z/demos. In order
to compile and run executables for the demo programs the command

./run <demofile>

can be executed with <demofile> being either demo0 rcl, demo1 rcl,
demo2 rcl, demo3 rcl, demo4 rcl, or demo5 rcl. Alternatively, the user
can execute

make <demofile>

in the build directory recola2-X.Y.Z/build to compile the respective exe-
cutable.

The demo programs exemplify the usage of Recola2 for various pur-
poses:

• demo0 rcl:
Basic usage of Recola2.

• demo1 rcl:
Usage of Recola2 for more than one process simultaneously, with ex-
plicit modification of input parameters and with selection of specific

6 Collier is downloaded from http://collier.hepforge.org If the Collier source is
already present no download step is performed.

17

http://collier.hepforge.org/

CMake option Value Short description

collier path Path Absolute or relative path to the
Collier library.

modelfile path Path Absolute or relative path to the
Recola2 model file. Only available in

Recola2 CMakeLists.txt.
static On/Off Compile the library as a shared

or static library.
with python3 On/Off Choose Python 3.x over Python 2.7

to compile pyrecola. Only available in
Recola2 CMakeLists.txt.

with smtests On/Off Run tests against Pole and OpenLoops.
Only available in Recola2

CMakeLists.txt.
CMAKE BUILD TYPE Debug/Release Set the compiler flags. By default

Release flags (optimized) are used.
CMAKE Fortran COMPILER Path/Name Set the Fortran compiler either

via executable name or the absolute
path to executable.

CMAKE INSTALL PREFIX Path Set the installation prefix.

Makefile option Value Short description

-j Integer Number of threads for compilation.
VERBOSE True/False Enable verbose compilation. In this

mode all compilation flags are
visible to the user.

Table 2: Summary of the CMake and Makefile options.

helicities for the external particles and of certain powers of the strong
coupling constant. In addition, files with LATEX source code for dia-
grams are generated.

• demo2 rcl:
Usage of Recola2 for the selection of resonant contributions and pole
approximation.

• demo3 rcl:
Usage of Recola2 for the computation of colour- and/or spin-
correlation.

• demo4 rcl:
Usage of Recola2 for the computation of decay widths using the ex-

18

ample of light and heavy neutral Higgs decays into Higgs and gauge
bosons:

– Hh → HlHl,

– Hh/Hl → ZZ, Hh/Hl → Zγ, Hh/Hl → γγ,

– Hh/Hl → gg.

Moreover, the use of different renormalization schemes in the extended
Higgs sector is demonstrated.

• demo5 rcl:
Usage of Recola2 for the selection of powers of coupling types in the
new system at the example of a vector-boson-fusion partonic channel.

Note that the demo files demo0 rcl, demo1 rcl, demo2 rcl, demo3 rcl are
identical to the ones in Recola, but can be used with any current Recola2

model file.
For each <demofile> corresponding C++ (cdemo) and Python (pydemo)

demo files are available. The C++ demo files are compiled in the same way,
substituting <demofile> by the precise cdemo file name. The C++ interface is
described in Section 4.5. The Python demo file can be run directly without
compilation. See Section 4.6 for more details on the Python interface.

The demos directory also contains the shell script draw-tex which com-
piles all LATEX files of the form process *.tex present in the folder and
creates the corresponding .pdf files. It can be run by invoking

./draw-tex

in the demos directory. Recola2 provides the same functionally for drawing
currents as Recola and we refer to Ref. [14] for details.

3.1.2. A minimal executable with CMake

The purpose of this section is to demonstrate how to link Recola2 to a
custom program using the CMake build system. The Recola2-Collier

package comes with a Fortran95 and C++ test program in the directory
project cmake. We discuss the Fortran95 version, program.f90, which
merely contains the lines of code:

program main

use recola

end program

19

That is, the program includes Recola2 and can be extended by the user
at will. For the compilation the essential part is the CMake configure file
CMakeLists.txt. A template CMakeLists.txt is provided:

cmake_minimum_required(VERSION 2.8)

project(example Fortran C CXX)

add_executable(program program.f90)

find_package(recola

"X.Y.Z" EXACT REQUIRED

HINTS "../install")

target_link_libraries(program ${RECOLA_LIBRARY_PATH})

The first two lines define a new project and declare Fortran as the main
language.7 The third statement adds a new executable named program

which is compiled from the source program.f90. Since the program uses
Recola2 it needs to be linked against it. This is achieved in two steps. In
the first step, theRecola2 package is searched for via theCMake command
find package. The version requirement exact can be relaxed by removing
it and omitting the minor/patch version. On success, this command fills the
CMake variables

• RECOLA LIBRARY DIR:
directory containing the Recola2 library;

• RECOLA INCLUDE DIR:
directory containing the Recola2 header files, i.e. the Fortran mod-
ules *.mod, the C header file recola.h, and the C++ header file
recola.hpp;

• RECOLA LIBRARY PATH:
the absolute path to the Recola2 library file librecola.so (or
librecola.a, librecola.dynlib).

7Change the compiler language to C via project(example C). Multiple languages at
the same time are allowed, e.g. project(example Fortran C CXX). CMake automati-
cally decides which compiler to take based on the suffix of files.

20

On failure, the configuration stops printing an error. After successfully find-
ing theRecola2 package the executable is linked with the Recola2 library.

Note this script works independent of whether Recola2 is compiled as
shared or static library, whether the underlying program is Fortran, C or
C++ based, and independent of the underlying operating system or compilers.
For further tuning we refer to https://cmake.org/Wiki/CMake.

3.2. The Recola2 stand-alone package

In this section we discuss the compilation of the stand-alone Recola2

library, the compilation of the model files, and all available compiler options.
We assume the user has acquired a local copy of Collier8 and that he/she
followed the Collier compilation instructions.

The archives

• recola2-X.Y.Z.tar.gz

• SM X.Y.Z.tar.gz, SM BFM X.Y.Z.tar.gz

• THDM X.Y.Z.tar.gz, THDM BFM X.Y.Z.tar.gz

• HS X.Y.Z.tar.gz, HS BFM X.Y.Z.tar.gz

are available at http://recola.hepforge.org and represent the Recola2

library and model files in the version X.Y.Z.

3.2.1. The Recola2 model-file compilation

In the current version of Recola2 the model files are a dependency at
compile time,9 thus, the desired model needs to be compiled first. To this
end, extract one of the model-file tarballs with the shell command:

tar -zxvf modelfile-X.Y.Z.tar.gz

This operation creates the directory modelfile-X.Y.Z containing the following
files and folders:

• CMakeLists.txt, config, build:
CMake configure files required for the generation of the Recola2

model file Makefile. The build directory is where CMake puts all
necessary files for the creation of the library;

8Collier can be downloaded from http://collier.hepforge.org.
9Dynamic loading of model files at run-time is not supported.

21

https://cmake.org/Wiki/CMake
http://recola.hepforge.org
http://collier.hepforge.org/

• src:
model-file source directory;

• include:
all Fortran module files *.mod are placed inside this folder.

The compilation of the model file proceeds by changing to the build

directory10 and executing there the shell command "cmake [options] .."

(creating a Makefile in modelfile-X.Y.Z/build), followed by make:

cd modelfile-X.Y.Z/build

cmake [options] ..

make [options]

Note that .. is the relative path pointing from the build directory one level
higher to where the top-level CMakeLists.txt of the model file is located. By
default, the configuration will search for the Collier library in directories
next to the model-file directory. It is possible to force the use of a particular
Collier version by providing a path. The CMake variable collier path

can be used to pass the (absolute/relative) path to the directory containing
the Collier library:

-Dcollier_path=<PATH_TO_COLLIER>

By using this option it is assumed that the Collier module files are located
inside the path:

<PATH_TO_COLLIER>/modules

As a third alternative the environment variables COLLIER INCLUDE DIR

and COLLIER LIBRARY DIR can be set to the directories including the Col-

lier modules and Collier library, respectively. In this case the complete
sequence of calls reads:

cd modelfile-X.Y.Z/build

export COLLIER_LIBRARY_DIR=<PATH_TO_COLLIER_LIBRARY>

export COLLIER_INCLUDE_DIR=<PATH_TO_COLLIER_MODULES>

cmake [options] ..

make [options]

10Changing to the build directory is optional but recommended. CMake populates the
working directory with many configuration and object files. With a build directory those
files can be cleaned easily by removing the contents of the build folder.

22

We stress that the library paths should not point to the precise Collier

library file, but only to the directory containing the library.
If no other options are specified, CMake automatically searches for in-

stalled Fortran compilers and chooses a suited one. The user can force
CMake to use a specific compiler by appending to the cmake command the
option

-DCMAKE_Fortran_COMPILER=<comp>

where <comp> can be gfortran, ifort, pgf95, ... or the full path to a
compiler.

By default, the installation sequence generates the model file as a shared
library libmodelfile.so(/.dynlib) in the directory modelfile-X.Y.Z, with
the corresponding module files placed in the include subdirectory. The
option

-Dstatic=ON

causes CMake to create the static library instead of the shared one.
After the configuration the compilation can be run parallelised which is

recommended as the model files contain plenty of independent source files.
Parallelised compilation is performed via

make -j <THREADS>

where <THREADS> is the number of parallel compilation units. The CMake

Makefile allows the compilation command to be run in verbose mode via:

make VERBOSE=True

If desired, the model file can be installed into the system via the command:

make install

A default install prefix is set automatically by CMake,11 but can be altered
by configuring the Makefile via

-DCMAKE_INSTALL_PREFIX=<INSTALLATION_PATH>

with <INSTALLATION PATH> being a custom installation path, e.g. $HOME.

11The default installation path is set to inside the root system and requires root rights.

23

3.2.2. The Recola2 library compilation

The configuration and compilation ofRecola2 proceeds in the very same
way as for model files, with the exception that, in addition, a specific model-
file path has to be set.

In the first step, extract the Recola2 tarball with the shell command:

tar -zxvf recola2-X.Y.Z.tar.gz

This operation creates the directory recola2-X.Y.Z containing the following
files and folders:

• CMakeLists.txt, config, build:
CMake configure files required for the generation of the Recola2

Makefile. The build directory is where CMake puts all necessary files
for the creation of the library;

• src:
Recola2 source directory;

• demos:
directory with demo programs illustrating the use of Recola2, includ-
ing shell scripts for their compilation and execution;

• include:
directory with C and C++ header files; all Fortran module files *.mod
are placed inside this folder;

The standard sequence for the compilation reads

cd recola2-X.Y.Z/build

cmake [options] .. -Dmodelfile_path=<PATH_TO_MODELFILE>

-Dcollier_path=<PATH_TO_COLLIER>

make [options]

where <PATH TO MODELFILE> and <PATH TO COLLIER> is the path to the di-
rectory containing the compiled model-file and Collier library, respectively.
By using this option for Collier it is assumed that the Collier module
files are located inside the path:

<PATH_TO_COLLIER>/modules

24

Alternatively, the environment variable MODELFILE PATH can be set to the
directory including the model file CMake configure files12 or the model-file
library. In this case the sequence of calls reads:

cd recola2-X.Y.Z/build

export MODELFILE_PATH=<PATH_TO_MODELFILE_CONFIG>

cmake [options] .. -Dcollier_path=<PATH_TO_COLLIER>

make [options]

We support the same [options] for configuration and compilation of
Recola2 as for the model files. Note also that the paths to the Collier

library and module files can be set via environment variables as described in
Section 3.2.1.

Starting with Recola2 we support a Python interface. By default, the
CMake configuration will search for the Python 2.7 library, header and
executable and will, on success, build the library pyrecola (see Section 4.6).
We support Python 3.x which can be enabled in the configuration via

-Dwith_python3=On

and, evidently, requires the Python 3.x library, header and executable to
be present in the system. We note that the Recola2 build is not affected
if the Python dependencies are not fulfilled.

Finally, Recola2 is equipped with a few test routines allowing to check
the proper integration of Recola2 into the system. In order to be able to
compile the tests the configuration needs to be run with:

-Dwith_smtests=On

Then, after building Recola2, the tests can be run via

make test

or by invoking

ctest

in the directory recola2-X.Y.Z/build. Note that the tests should only be
run with a SM model file, otherwise the tests will fail.

12CMake generates configure files for built or installed model files. They are named
modelfileConfig.cmake and modelfileConfigVersion.cmake and are required for link-
ing to the Recola2 library.

25

4. Usage of Recola2 in extended Higgs sectors

In order to use Recola2 in a Fortran program its modules have to be
loaded by including the line

use recola

in the preamble of the respective code, and the library librecola.so,
librecola.dynlib or librecola.a has to be supplied to the linker. This
gives access to the public functions and subroutines of the Recola2 library
described in the following subsections. The names of all these routines end
with the suffix “ rcl”. This name convention is supposed to avoid conflicts
with routine names present in the master program and increases readabil-
ity by allowing for an easy identification of command lines referring to the
Recola2 library.

Typically, an application of Recola2 involves the following five steps:

• Step 1: Setting input parameters (optional)

The input needed for the computation of processes can be set by calling
dedicated subroutines as provided by Recola2. See Section 4.2 for
the additional set of methods related to extended Higgs sectors. Since
Recola2 provides default values for all input parameters, this first
step is optional.

• Step 2: Defining the processes

Before Recola2 can be employed to calculate matrix elements for
one or more processes, each process must be declared and labelled
with a unique identifier. This is done by calling the subroutine
define process rcl for every process, as described in Ref. [14]. The
functionality of the process definition has been extended which is doc-
umented in Section 4.3 for subroutines that are concerned.

• Step 3: Generating the processes

In the next step the subroutine generate processes rcl is called
which triggers the initialisation of the complete list of processes de-
fined in step 2. As a result, all relevant building blocks for the recur-
sive computation of off-shell currents are generated (see Ref. [14] for
details).

26

• Step 4: Computing the processes

The computation of the amplitude and of the squared amplitude is per-
formed by means of the subroutine compute process rcl, which uses
the process-dependent information on the recursive procedure derived
in step 3. The subroutine compute process rcl is called with the mo-
menta of the external particles provided by the user. In a Monte Carlo
integration, the call of compute process rcl is repeated many times
for different phase-space points.

Detailed information on the subroutines that can be employed in step 4
can be found in Ref. [14]. The functionality of the process computation
has been extended which is documented in Section 4.4 for subroutines
that are concerned.

• Step 5: resetting Recola2

Finally, by calling the subroutine reset recola rcl, the process-
dependent information generated in steps 2–4 is deleted and the corre-
sponding memory is deallocated. The input variables keep their values
defined in step 1 before.

Note that these steps have to be followed in the order given above. In par-
ticular, after step 3 no new process can be defined unless Recola2 is reset
(step 5). After step 5 the user can restart with step 1 or step 2. More
information on the allowed sequence of calls can be found in Ref. [14].

Examples are found in the directory demos and are described in
Section 3.1.1.

4.1. Input subroutines for parameters of extended Higgs sectors

The following input subroutines are complementary subroutines to the
original ones in Recola and can be used to set input parameters and renor-
malization schemes in extended Higgs sectors. Note that these subroutines
can only be called if supported by the selected model file, otherwise Recola2

prints an error message and stops.

4.1.1. set pole mass hl hh rcl (ml,gl,mh,gh)

This subroutine sets the pole masses and widths (in GeV) of the light
(Hl) and heavy (Hh) Higgs bosons to ml, gl and mh, gh, respectively (ml, gl,
mh and gh are of type real(dp)). The pole masses must fulfil the condition
ml< mh. Note that the degenerate mass scenario is not supported.

27

Model support: 2HDM HSESM

4.1.2. set pole mass ha rcl (m,g)

This subroutine sets the pole mass and width (in GeV) of the pseudo
scalar Higgs boson (Ha) to m and g, respectively (m and g are of type
real(dp)).

Model support: 2HDM

4.1.3. set pole mass hc rcl (m,g)

This subroutine sets the pole mass and width (in GeV) of the charged
Higgs boson (H±) to m and g, respectively (m and g are of type real(dp)).

Model support: 2HDM

4.1.4. set Z2 thdm yukawa type rcl (ytype)

This subroutine sets the Yukawa type in the softly-broken Z2 symmetric
2HDM to ytype. The variable ytype is of type integer and accepts the
following values:

ytype label zero parameters

1 Type-I h1u=h1d=h1l=0
2 Type-II h1u=h2d=h2l=0
3 Type-X h1u=h1d=h2l=0
4 Type-Y h1u=h2d=h1l=0

See Section 2.1.2 for more information.

Model support: 2HDM

4.1.5. set tb cab rcl (tb,cab)

This subroutine sets the value of tβ to tb, and cαβ to cab [tb
and cab are of type real(dp)]. The value of tb is strictly greater
than zero and the value of cab must fulfil −1 ≤ cab ≤ 1. If
these conditions are violated an error is raised. The renormalization for
cαβ and tβ is fixed via the renormalization of α and β which can be
set using the subroutines use mixing alpha rs scheme rcl (Section 4.1.6)
and use mixing beta rs scheme rcl (Section 4.1.7), respectively. See
Section 2.1.3 for more details.

Model support: 2HDM

28

4.1.6. use mixing alpha rs scheme rcl (s)

These subroutines (rs=msbar,onshell) set the renormalization scheme
for the mixing angle α or a derivative thereof to s (of type character). The
following MS and on-shell schemes are supported:

rs s renormalization-scheme description

msbar ’FJTS’ α renormalized MS, FJ tadpole scheme (6)
msbar ’MDTS’ α renormalized MS, MD tadpole scheme (7)
msbar ’MTS’ α renormalized MS, minimal tadpole scheme (8)
msbar ’l3’ λ3 renormalized MS (10),(11)
msbar ’l345’ λ345 renormalized MS (9)

onshell ’ps’ δα defined in the p∗ scheme (18)
onshell ’os’ δα defined in the on-shell scheme (21)

Note that only one of the schemes can be used at a time. The MS scheme
’l345’ can only be used with the 2HDM. For more information on the
schemes consider Section 2.1.3.

Model support: 2HDM HSESM

4.1.7. use mixing beta rs scheme rcl (s)

These subroutines (rs=msbar,onshell) set the renormalization scheme
for the mixing angle β to s (of type character). The following MS and
on-shell schemes are supported:

rs s renormalization-scheme description

msbar ’FJTS’ β is renormalized MS, FJ tadpole scheme (12)

msbar ’MDTS’ β is renormalized MS, MD tadpole scheme (13)

onshell ’ps1’ δβ defined in p∗ scheme via mixing HaG0 (19)
onshell ’ps2’ δβ defined in p∗ scheme via mixing H±G± (20)
onshell ’os1’ δβ defined in on-shell scheme via mixing HaG0 (22)
onshell ’os2’ δβ defined in on-shell scheme via mixing H±G± (23)

Note that only one of the schemes can be used at a time. For more informa-
tion on the schemes consider Section 2.1.3.

Model support: 2HDM

29

4.1.8. set msb rcl (msb)

This subroutine sets the value of the soft-Z2-breaking scale Msb to msb

(msb is of type real(dp)). The renormalization scheme for Msb is set with
use msb rs scheme rcl (Section 4.1.9). See Section 2.1.1 for more details.

Model support: 2HDM

4.1.9. use msb msbar scheme rcl(s)

This subroutine sets the renormalization scheme for soft-Z2-breaking scale
Msb or the soft-Z2-breaking parameter m12 to s (of type character). The
following schemes are supported:

s renormalization-scheme description

’MSB’ Msb is renormalized MS (16)
’m12’ m12 is renormalized MS (17)

Note that only one of the schemes can be used at a time. The input value
of Msb is set with set msb rcl (Section 4.1.8). See Section 2.1.3 for more
details.

Model support: 2HDM

4.1.10. set sa rcl (sa)

This subroutine sets the value of sα to sa [sa is of type real(dp)]. The
input value of sa must fulfil −1 ≤ sa ≤ 1, otherwise an error is raised.
The renormalization scheme for sα is fixed via the renormalization of α
which can be set with use mixing alpha rs scheme rcl (Section 4.1.6). See
Section 2.1.1 for more details.

Model support: HSESM

4.1.11. set tb rcl (tb)

This subroutine sets the value of tβ to tb [tb is of type real(dp)]. The
passed value of tb must fulfil tb > 0, otherwise an error is raised. The renor-
malization scheme for tβ is set with use tb rs scheme rcl (Section 4.1.12).
See Section 2.1.1 for more details.

Model support: HSESM

30

4.1.12. use tb msbar scheme rcl (s)

This subroutine sets the renormalization scheme for tβ to s (of type
character). The following schemes are supported:

s renormalization-scheme description

’FJTS’ tβ is renormalized MS, FJ tadpole scheme (14)
’MDTS’ tβ is renormalized MS, MD tadpole scheme (15)

Note that only one of the schemes can be used at a time. The input value of
tβ is set with set tb rcl (4.1.11). See Section 2.1.3 for more details.

Model support: HSESM

4.2. Compatibility with Recola input subroutines

In this section we list new subroutines, original ones with modified be-
haviour, and no longer supported ones that are kept for backward compat-
ibility. We stress that all subroutines existing in Recola can be called in
Recola2.

4.2.1. use gfermi scheme rcl (g,a)

△! This subroutine (see Section 4.2.18 in Ref. [14]) has a different be-
haviour when being used in combination with the optional argument g which
represents the Fermi constant GF. Internally, g is translated to α according
to

α =

√
2gM2

W

π

(

1− M2
W

M2
Z

)

, (28)

with the currently active values for the (real) vector-boson masses MW,MZ.
Therefore, the vector-boson masses should be set before calling this subrou-
tine.

4.2.2. set parameter rcl(param,value)

This subroutine sets the value of param (of type character) to value

(of type complex(dp)). Note that only independent couplings, masses and
widths can be set via this subroutine, without any consistency checks being
performed. An imaginary part of value can lead to undefined behaviour,
and value should be real even though it is of type complex(dp). The al-
lowed values for param depend on the model file and can be looked up in

31

the subroutine set parameter mdl defined in class particles.f90 of the
respective model file. For example, setting the light Higgs-boson mass MHl

to 125GeV in the 2HDM or HSESM is achieved as follows:

call set_parameter_rcl("MHL", complex(125d0, 0d0))

For extended Higgs sectors the dedicated subroutines in Section 4.1 should
be used to set input parameters. When calling set parameter mdl with
arguments that are incompatible with the selected model file, a warning is
printed. The program does not stop, and the call has no effect.

4.2.3. set renoscheme rcl(ctparam,renoscheme)

This subroutine sets the renormalization scheme for the parameter with
name param (of type character) to renoscheme (of type character).
The allowed values for ctparam and renoscheme depend on the model file
and can be looked up in the subroutine set renoscheme mdl defined in
fill ctparameters.f90 of the respective model file. For example, setting
the renormalization scheme of the mixing angle α to the p∗ scheme (18) in
the 2HDM or HSESM is achieved as follows:

call set_renoscheme_rcl("da_QED2", "ps_bfm")

For extended Higgs sectors the dedicated subroutines in Section 4.1 should
be used to set renormalization schemes. When calling set renoscheme mdl

with arguments that are incompatible with the selected model file, a warning
is printed. The program does not stop, and the call has no effect.

4.2.4. use dim reg soft rcl,

use mass reg soft rcl (m),

set mass reg soft rcl (m)

△! These subroutines are deprecated and calling any of them has no
effect. The regularization of light fermions is determined automatically. See
Section 2.2.1 for details.

4.2.5. set complex mass scheme rcl,

set on shell scheme rcl

△! These subroutines are deprecated and calling any of them has no
effect. Note that the model files are all derived in the complex-mass scheme.

32

4.2.6. set dynamic settings rcl (n)

△! This subroutine is not supported yet and calling it has no effect.

4.2.7. set print level parameters rcl (n)

This subroutine, which can be called before the process generation but
also during the process computation, sets internal variables governing the
output of input, derived and counterterms parameters:

• n = 0: No parameters are printed.

• n = 1: Input parameters are printed.

• n = 2: Input and derived parameters are printed.

• n = 3: Input, derived and counterterm parameters are printed.

By default, only input parameters are printed.

4.2.8. set print level RAM rcl (n)

△! This subroutine is not supported yet and calling it has no effect.

4.2.9. scale coupling3 rcl (fac,pa1,pa2,pa3),

scale coupling4 rcl (fac,pa1,pa2,pa3,pa4),

switchoff coupling3 rcl (pa1,pa2,pa3),

switchoff coupling4 rcl (pa1,pa2,pa3,pa4)

△! These subroutines are not supported yet and calling them has no
effect.

4.2.10. set collier output dir rcl (dir)

This subroutine, which can be called before the process generation, sets
the Collier output directory to dir (dir is of type character), with dir

being a relative or absolute path. The default Collier output directory can
be enforced by passing dir = ’default’.

4.3. Updates on process definition

In this section we describe the new treatment of powers of types of funda-
mental couplings in Recola2. In theories with a SM gauge group structure
amplitudes are proportional to gns

s en−ns , where gs and e represent the strong
and electroweak gauge couplings. For a given process and power ns in gs the
power n is unambiguously determined. For this special case of theories we

33

support the original Recola methods select gs power * where only the
powers in gs are selected,13 but for more general theories the user has to
employ the new general selection methods given in Sections 4.3.1 and 4.3.2,
exclusively available in Recola2.

The treatment of different coupling types is kept general and uses the
information on coupling powers as defined by model files in the UFO format.
For all model files we choose the powers in the strong and EW gauge couplings
as follows:

coupling type position coupling constant

’QCD’ 1 gs
’QED’ 2 e

The position is relevant only when calling a subroutine which requires the
couplings powers as an array of integers, e.g. the subroutines in Section 4.4.
For the selection of powers a string identifier is used as described in the
following.

4.3.1. select power BornAmpl rcl (npr,cid,power),

unselect power BornAmpl rcl (npr,cid,power)

This pair of subroutines allows to select/unselect the contribution to the
Born amplitude proportional to general powers in coupling types cnid of the
underlying theory. Here, cid is set to cid (of type character), n is given
by the integer argument power, and npr is the process identifier (of type
integer). The variable cid accepts the following values:

’QCD’: power in gs,
’QED’: power in e.

All other contributions to the Born amplitude keep their status (se-
lected or unselected), according to previous calls of selection subroutines.
The selection of the contributions to the loop amplitude remains unaffected
as well. New values for cid will be introduced in the future for theories
with additional types of couplings (as appear, for instance, in theories with
new gauge couplings or in effective field theories). For SM-like theories
with the only two fundamental coupling types ’QCD’ and ’QED’ the meth-
ods select gs power BornAmpl rcl and unselect gs power BornAmpl rcl

(see Ref. [14]) can be used instead.

13See Sections 4.3.2–4.3.6 in Ref. [14].

34

4.3.2. select power LoopAmpl rcl (npr,cid,power),

unselect power LoopAmpl rcl (npr,cid,power)

This pair of subroutines allows to select/unselect the contribution to the
loop amplitude proportional to general powers in coupling types cnid of the
underlying theory. Here, cid is set to cid (of type character), n is given
by the integer argument power, and npr is the process identifier (of type
integer). The variable cid accepts the following values:

’QCD’: power in gs,
’QED’: power in e.

All other contributions to the loop amplitude keep their status (selected or
unselected), according to previous calls of selection subroutines. The se-
lection of contributions to the Born amplitude remains unaffected as well.
New values for cid will be introduced in the future for theories with ad-
ditional (gauge) couplings or in effective field theory. For SM-like theories
with the only two fundamental coupling types ’QCD’ and ’QED’ the meth-
ods select gs power LoopAmpl rcl and unselect gs power LoopAmpl rcl

(see Ref. [14]) can be used instead.

4.3.3. select all gs powers BornAmpl rcl (npr),

unselect all gs powers BornAmpl rcl (npr),

select all powers BornAmpl rcl (npr),

unselect all powers BornAmpl rcl (npr)

These subroutines allow to select/unselect all contributions to the Born
amplitude (with any power of gs or general order) for the process with identi-
fier npr (of type integer). The selection of contributions to the loop ampli-
tude remains unaffected. The methods with gs in their name have the same
effect and are only kept for backward compatibility. In fact, all methods
(un-)select all contributions.

4.3.4. select all gs powers LoopAmpl rcl (npr),

unselect all gs powers LoopAmpl rcl (npr),

select all powers LoopAmpl rcl (npr),

unselect all powers LoopAmpl rcl (npr)

This pair of subroutines allows to select/unselect all contributions to the
loop amplitude (with any power of gs or general order) for the process with
identifier npr (of type integer). The selection of contributions to the Born
amplitude remains unaffected. The methods with gs in their name have the

35

same effect and are only kept for backward compatibility. In fact, all methods
(un-)select all contributions.

4.4. Updates for process computation

The methods get * amplitude rcl have been extended to support the
generalized treatment of fundamental types of couplings. The following
methods are concerned

• get amplitude rcl (npr,pow,order,colour,hel,A)

pow is an overloaded argument and can be either an integer specifying
the power in gs, or an array of integer values specifying general
powers in types of couplings:

pow=n: selects the contribution gns to the amplitude;
pow=[n,m,. . .]: selects the contribution [gns , e

m, . . .] to the
amplitude.

• get squared amplitude rcl (npr,pow,order,A2),
get polarized squared amplitude rcl

(npr,pow,order,hel,A2h),
get colour correlation rcl (npr,pow,i1,i2,A2cc),
get spin correlation rcl (npr,pow,A2sc),
get spin colour correlation rcl (npr,pow,i1,i2,A2scc)

pow is an overloaded argument and can be either an integer specifying
the power in αs, or an array of integer values, specifying general
powers in in types of couplings:

pow=n: selects the contribution αn
s to the amplitude

squared;
pow=[n,m,. . .]: selects the contribution [gns , e

m, . . .] to the
amplitude squared.

4.5. C++ interface

The Recola2 package includes a C++ interface14 with the same naming
conventions for the subroutines as given in Sections 4.2–4.6 in Ref. [14] and

14This interface is also used to link the original Recola version to Sherpa.

36

the new subroutines in Sections 4.1, 4.2, and 4.3. The basic usage is identical
to the one in Fortran95 and follows the computation flow presented at the
beginning of Section 4. In order to use Recola2 in a C++ program the
Recola2 header file needs to be included as follows:

#include "recola.hpp"

This gives access to the Recola namespace. The functions are called in the
typical C++ syntax, e.g.:

Recola::define_process_rcl(1, "u u -> u u", "NLO");

The namespace identifier “Recola::” can be omitted by importing Recola

as follows:

#include "recola.hpp"

using namespace Recola

The Fortran95 subroutines translate to functions in C++ with the argu-
ment types being identified according to:

Fortran95 C++

integer int
integer, dimension(:) int[]

logical bool
real(dp) double

real(dp), dimension(:) double[]
complex(dp) std::complex〈double〉

character(len=*) std::string

For multi-dimensional arrays, such as the momenta p, the conventions for
the order of the indices is the same as in Fortran95, and any necessary
transposition is performed within the interface. The complex numbers are
the only additional C++ Standard Library dependency used in the interface.

Return values are handled by call-by-reference, thus, all C++ functions
are declared as void functions. Optional arguments are implemented via
function overloading, i.e. missing arguments are replaced by default values.
For instance, the call

Recola::use_alphaZ_scheme_rcl ();

37

enables the use of the α(MZ) scheme (see Section 4.2.2 in Ref. [14]), using
the default value for α(MZ) which is hard-coded in Recola. Providing an
explicit argument via

Recola::use_alphaZ_scheme_rcl (0.0078125);

allows to use a different value for α(MZ) than the default in the running
session.

The original Fortran95 demo files are available as C++ demo files.
The compilation of the C++ demo files follows the same steps as given in
Section 3.1.1, i.e. by either running

make <demofile>

in the build folder or directly via the run script

./run <demofile>

in the demo folder, with <demofile> taking the values cdemo0 rcl,
cdemo1 rcl, cdemo2 rcl, cdemo3 rcl, cdemo4 rcl, or cdemo5 rcl. The
content of each cdemo file is identical to the content of the corresponding
(Fortran95) demo file.

A few C++ functions differ from the usage and naming convention of
the Fortran95 subroutines owing to the conceptual difference of optional
arguments and arrays in Fortran95 and C++. Thus, the functions

• use gfermi scheme rcl (Section 4.2.18 in Ref. [14]),

• set gs power rcl (Section 4.3.2 in Ref. [14]),

are replaced by the following ones:

4.5.1. use gfermi scheme rcl

This C++ function takes no arguments and calls the subroutine
use gfermi scheme rcl(g,a) (Fortran95) neither setting a value for g

nor a. This corresponds to selecting theGF scheme as renormalization scheme
for the EW coupling and using the default value for the Fermi constant GF

which is hard-coded in Recola.

4.5.2. use gfermi scheme and set gfermi rcl(g)

This C++ function calls the subroutine use gfermi scheme rcl(g,a)

(Fortran95), passing the value g of type double.

38

4.5.3. use gfermi scheme and set alpha rcl(a)

This C++ function calls the subroutine use gfermi scheme rcl(g,a)

(Fortran95), passing the value a of type double.

4.5.4. set gs power rcl(npr,gsarray,gslen)

This C++ function calls the subroutine set gs power rcl(npr,

gsarray) (Fortran95), passing the value of npr (of type int) and gsarray

(of type int[][2]). The value gslen is the length of the first index of
gsarray which needs to be passed explicitly to Fortran95.

4.5.5. Missing subroutines

The subroutines get colour configurations rcl (Section 4.5.5 in
Ref. [14]) and get helicity configurations rcl (Section 4.5.6 in
Ref. [14]) are currently not included in the C++ interface. The authors are
willing to provide a custom solution, upon request, to include their function-
ality.

4.6. Python interface

The Recola2 package includes a Python interface with the same nam-
ing conventions for the subroutines as given in Sections 4.2–4.6 in Ref. [14]
and the new subroutines in Sections 4.1, 4.2, and 4.3. The Python interface
requires to build an additional library, called pyrecola, which is done auto-
matically alongside the Recola2 library if the Python libraries are found
on the system and if Recola2 is build as a shared library. See Section 3.1.1
for more details on building pyrecola. The basic usage is identical to the one
in Fortran95 and follows the computation flow presented at the beginning
of Section 4. In order to use Recola2 in a Python program the Recola2

library needs to be loaded as follows:

import pyrecola

This step requires the python library pyrecola.so to be present in the cur-
rent working directory, or, alternatively, by updating the environment path
PYTHONPATH as follows

export PYTHONPATH=$PYTHONPATH:<PATH_TO_PYRECOLA>

where <PATH TO PYRECOLA> is the absolute path to the directory containing
pyrecola.so. Once the Recola2 namespace is accessible the functions are
called in the typical Python syntax, e.g.:

39

pyrecola.define_process_rcl(1, ’u u -> u u’, ’NLO’)

The namespace identifier “pyrecola.” can be omitted by importing
Recola2 as follows:

from pyrecola import *

Instead of loading all methods via * specific ones can be imported, e.g.

from pyrecola import (define_process_rcl,

generate_process_rcl,

compute_process_rcl)

The Fortran95 subroutines translate to functions in Python with the
argument types being identified according to:

Fortran95 Python

integer int
integer, dimension(:) list

logical bool
real(dp) float

real(dp), dimension(:) list
complex(dp) complex

character(len=*) str

For multi-dimensional arrays, such as the momenta p, the conventions for the
order of the indices is the same as in Fortran95, and any necessary trans-
position is performed within the interface. Note that explicit type checking
is performed in the Python/C API interface (pyrecola.c).

In contrast to the Fortran95 and C++ interface, computed results are
returned by function calls. For example, the call

als = get_alphas_rcl()

returns the value of αs and stores it in the variable als. In general, the return
value is a tuple of variables. The return type of a function can be inquired
from the documentation as described below or inferred from the Python/C
API interface pyrecola.c.

Furthermore, optional arguments are not implemented by operator over-
loading, but via keyword arguments which allow most of the Python meth-
ods to be called in the same way as done in Fortran95 with a few exceptions
discussed below. For instance, the call

40

pyrecola.use_alphaZ_scheme_rcl()

enables the use of the α(MZ) scheme, using the default value for α(MZ) which
is hard-coded in Recola2. Providing an explicit argument as

pyrecola.use_alphaZ_scheme_rcl (a=0.0078125)

allows to use a different value for α(MZ) than the default in the running
session.

The Python interface comes with a built-in documentation for every
public method in Recola2 and can be accessed by calling help inside
Python on either the module pyrecola itself, or on specific methods. For
instance, calling help(use alphaZ scheme rcl) returns

>>> import pyrecola

>>> help(pyrecola.use_alphaZ_scheme_rcl)

Help on built-in function use_alphaZ_scheme_rcl in module pyrecola:

use_alphaZ_scheme_rcl(...)

use_alphaZ_scheme_rcl(a=None)

Sets the EW renormalization scheme to the alphaZ scheme.

a -> Sets value of alpha to ‘a‘

For ‘a=None‘ (DEFAULT) the hard-coded value for alpha is used.

The original Fortran95 demo files are available as Python demo files.
No compilation of the demo files is required and they can be run directly by
executing

python <demofile>

in the demo folder, with <demofile> taking the values pydemo0 rcl.py,
pydemo1 rcl.py, pydemo2 rcl.py, pydemo3 rcl.py, pydemo4 rcl.py or
pydemo5 rcl.py. The content of each pydemo file is identical to the con-
tent of the corresponding (Fortran95) demo file.

A few Python functions differ from the usage of the Fortran95 subrou-
tines owing to the conceptual difference of optional arguments in Fortran95

and Python. The following functions are concerned

• get amplitude rcl

(npr,order,colour,hel,pow=None,gs=None)

• get squared amplitude rcl

(npr,order,pow=None,als=None)

41

• get polarized squared amplitude rcl

(npr,order,hel,pow=None,als=None)

• get colour correlation rcl

(npr,i1,i2,pow=None,als=None)

• get spin correlation rcl

(npr,pow=None,als=None)

• get spin colour correlation rcl

(npr,i1,i2,pow=None,als=None)

For all of these functions the difference is due to the new treatment of powers
in Recola2 and the backward compatibility with Recola, as described in
Section 4.3. The argument pow, which is overloaded in the Fortran95

interface, is replaced in Python by the keyword arguments pow and gs (or
als).15 The functions are called in the usual way with the exception that
either pow or gs/als is passed and labelled explicitly, e.g.:

A2 = pyrecola.get_squared_amplitude_rcl(..., pow=[2,4])

A2 = pyrecola.get_squared_amplitude_rcl(..., als=1)

4.6.1. Missing subroutines

The subroutines get colour configurations rcl (Section 4.5.5 in
Ref. [14]) and get helicity configurations rcl (Section 4.5.6 in
Ref. [14]) are currently not included in the Python interface. The authors
are willing to provide a custom solution, upon request, to include their func-
tionality.

5. Conclusions

The Recola2 library computes amplitudes in the Standard Model of
particle physics including QCD and electroweak interaction and in general
quantum field theories at the tree and one-loop level with no a-priori restric-
tion on the particle multiplicities, once corresponding model files are avail-
able. Amplitudes can be obtained for specific colour structures and helicities

15We refer to the subroutines in Section (4.5) in Ref. [14] for the description of the other
arguments.

42

and squared amplitudes with or without summation/average over helicities.
We provide subroutines for the computation of colour- and spin-correlated
leading-order squared amplitudes that are required in the dipole subtraction
formalism. Furthermore, the code supports the selection of resonant con-
tributions allowing for the computation of factorizable corrections in pole
approximations.

In this first release of Recola2 we include Recola2 model files for the
computation of processes in the Two-Higgs-Doublet Model and the Higgs-
singlet extension of the Standard Model. The model files are generated in the
complex-mass scheme, and various renormalization schemes are supported for
the electromagnetic coupling, the strong coupling and additional parameters
in extended Higgs sectors.

The present version of Recola2 is restricted to theories with scalars,
Dirac fermions and vector bosons. An enhanced version with Majorana-
fermion support and further Recola2 model files, including anomalous cou-
plings, is in preparation.

6. Acknowledgements

We thank B. Biedermann, M. Chiesa, R. Feger and M. Pellen for per-
forming various checks of the code. A. D. and J.-N. L. acknowledge support
from the German Research Foundation (DFG) via grants DE 623/4-1 and
DE 623/5-1. The work of J.-N. L. is supported by the Studienstiftung des
Deutschen Volkes. The work of S. U. was supported in part by the European
Commission through the “HiggsTools” Initial Training Network PITN-GA-
2012-316704. The research of A.D. and S.U. was supported in part by the
Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster
of excellence “Origin and Structure of the Universe”.

Appendix A. Checks

Recola2 has been thoroughly tested against Recola, guaranteeing the
consistency for all checks of Appendix B in Ref. [14] for the SM.

In the 2HDM all renormalized scalar two-point functions of the extended
Higgs sector in the 2HDM have been verified off-shell against an indepen-
dent approach in QGRAF [43] and QGS, which is an extension of GraphShot
[44]. Furthermore, we have compared all partonic channels to Higgs decays

43

into four fermions against the independent calculation [36] based on Fey-

nArts/FormCalc [1, 45]. Finally, all models have been tested against the
BFM implementation [19].

References

[1] T. Hahn, Generating Feynman diagrams and amplitudes with
FeynArts 3, Comput. Phys. Commun. 140 (2001) 418–431.
arXiv:hep-ph/0012260, doi:10.1016/S0010-4655(01)00290-9.

[2] S. Agrawal, T. Hahn, E. Mirabella, FormCalc 7.5, PoS LL2012 (2012)
046. arXiv:1210.2628.

[3] C. Berger, et al., An automated implementation of on-shell methods for
one-loop amplitudes, Phys. Rev. D78 (2008) 036003. arXiv:0803.4180,
doi:10.1103/PhysRevD.78.036003.

[4] A. van Hameren, C. Papadopoulos, R. Pittau, Automated one-
loop calculations: A proof of concept, JHEP 0909 (2009) 106.
arXiv:0903.4665, doi:10.1088/1126-6708/2009/09/106.

[5] G. Cullen, et al., Automated one-loop calculations with
GoSam, Eur. Phys. J. C72 (2012) 1889. arXiv:1111.2034,
doi:10.1140/epjc/s10052-012-1889-1.

[6] S. Badger, B. Biedermann, P. Uwer, NGluon: a package to calculate
one-loop multi-gluon amplitudes, Comput. Phys. Commun. 182 (2011)
1674–1692. arXiv:1011.2900, doi:10.1016/j.cpc.2011.04.008.

[7] S. Badger, B. Biedermann, P. Uwer, V. Yundin, Numerical evalua-
tion of virtual corrections to multi-jet production in massless QCD,
Comput. Phys. Commun. 184 (2013) 1981–1998. arXiv:1209.0100,
doi:10.1016/j.cpc.2013.03.018.

[8] J. Alwall, et al., The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to par-
ton shower simulations, JHEP 07 (2014) 079. arXiv:1405.0301,
doi:10.1007/JHEP07(2014)079.

44

http://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/1210.2628
http://arxiv.org/abs/0803.4180
http://dx.doi.org/10.1103/PhysRevD.78.036003
http://arxiv.org/abs/0903.4665
http://dx.doi.org/10.1088/1126-6708/2009/09/106
http://arxiv.org/abs/1111.2034
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://arxiv.org/abs/1011.2900
http://dx.doi.org/10.1016/j.cpc.2011.04.008
http://arxiv.org/abs/1209.0100
http://dx.doi.org/10.1016/j.cpc.2013.03.018
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1007/JHEP07(2014)079

[9] F. Cascioli, P. Maierhöfer, S. Pozzorini, Scattering amplitudes with
Open Loops, Phys. Rev. Lett. 108 (2012) 111601. arXiv:1111.5206,
doi:10.1103/PhysRevLett.108.111601.

[10] S. Actis, A. Denner, L. Hofer, A. Scharf, S. Uccirati, Recursive genera-
tion of one-loop amplitudes in the Standard Model, JHEP 1304 (2013)
037. arXiv:1211.6316, doi:10.1007/JHEP04(2013)037.

[11] S. Kallweit, J. M. Lindert, P. Maierhöfer, S. Pozzorini, M. Schönherr,
NLO electroweak automation and precise predictions for W+multijet
production at the LHC, JHEP 04 (2015) 012. arXiv:1412.5157,
doi:10.1007/JHEP04(2015)012.

[12] S. Frixione, V. Hirschi, D. Pagani, H. S. Shao, M. Zaro, Elec-
troweak and QCD corrections to top-pair hadroproduction in associ-
ation with heavy bosons, JHEP 06 (2015) 184. arXiv:1504.03446,
doi:10.1007/JHEP06(2015)184.

[13] M. Chiesa, N. Greiner, F. Tramontano, Automation of electroweak
corrections for LHC processes, J. Phys. G43 (1) (2016) 013002.
arXiv:1507.08579, doi:10.1088/0954-3899/43/1/013002.

[14] S. Actis, et al., RECOLA: REcursive Computation of One-
Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140–173.
arXiv:1605.01090, doi:10.1016/j.cpc.2017.01.004.

[15] N. D. Christensen, C. Duhr, FeynRules - Feynman rules made easy,
Comput. Phys. Commun. 180 (2009) 1614–1641. arXiv:0806.4194,
doi:10.1016/j.cpc.2009.02.018.

[16] N. D. Christensen, et al., A Comprehensive approach to new physics
simulations, Eur. Phys. J. C71 (2011) 1541. arXiv:0906.2474,
doi:10.1140/epjc/s10052-011-1541-5.

[17] F. Staub, SARAH 4: A tool for (not only SUSY) model builders,
Comput. Phys. Commun. 185 (2014) 1773–1790. arXiv:1309.7223,
doi:10.1016/j.cpc.2014.02.018.

[18] C. Degrande, Automatic evaluation of UV and R2 terms for be-
yond the Standard Model Lagrangians: a proof-of-principle, Com-
put. Phys. Commun. 197 (2015) 239–262. arXiv:1406.3030,
doi:10.1016/j.cpc.2015.08.015.

45

http://arxiv.org/abs/1111.5206
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://arxiv.org/abs/1211.6316
http://dx.doi.org/10.1007/JHEP04(2013)037
http://arxiv.org/abs/1412.5157
http://dx.doi.org/10.1007/JHEP04(2015)012
http://arxiv.org/abs/1504.03446
http://dx.doi.org/10.1007/JHEP06(2015)184
http://arxiv.org/abs/1507.08579
http://dx.doi.org/10.1088/0954-3899/43/1/013002
http://arxiv.org/abs/1605.01090
http://dx.doi.org/10.1016/j.cpc.2017.01.004
http://arxiv.org/abs/0806.4194
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://arxiv.org/abs/0906.2474
http://dx.doi.org/10.1140/epjc/s10052-011-1541-5
http://arxiv.org/abs/1309.7223
http://dx.doi.org/10.1016/j.cpc.2014.02.018
http://arxiv.org/abs/1406.3030
http://dx.doi.org/10.1016/j.cpc.2015.08.015

[19] A. Denner, J.-N. Lang, S. Uccirati, NLO electroweak corrections
in extended Higgs Sectors with RECOLA2, JHEP 07 (2017) 087.
arXiv:1705.06053, doi:10.1007/JHEP07(2017)087.

[20] J. A. M. Vermaseren, New features of FORM (2000).
arXiv:math-ph/0010025.

[21] B. Ruijl, T. Ueda, J. Vermaseren, FORM version 4.2 (2017).
arXiv:1707.06453.

[22] C. Degrande, et al., UFO - The Universal FeynRules Output, Com-
put. Phys. Commun. 183 (2012) 1201–1214. arXiv:1108.2040,
doi:10.1016/j.cpc.2012.01.022.

[23] F. J. Dyson, The S matrix in quantum electrodynamics, Phys. Rev. 75
(1949) 1736–1755. doi:10.1103/PhysRev.75.1736.

[24] J. S. Schwinger, On the Green’s functions of quantized fields. 1., Proc.
Nat. Acad. Sci. 37 (1951) 452–455. doi:10.1073/pnas.37.7.452.

[25] J. S. Schwinger, On the Green’s functions of quantized fields. 2., Proc.
Nat. Acad. Sci. 37 (1951) 455–459. doi:10.1073/pnas.37.7.455.

[26] A. Denner, S. Dittmaier, L. Hofer, COLLIER: a fortran-based
Complex One-Loop LIbrary in Extended Regularizations, Com-
put. Phys. Commun. 212 (2017) 220–238. arXiv:1604.06792,
doi:10.1016/j.cpc.2016.10.013.

[27] J. F. Gunion, H. E. Haber, The CP conserving Two-Higgs-Doublet
Model: the approach to the decoupling limit, Phys. Rev. D67 (2003)
075019. arXiv:hep-ph/0207010, doi:10.1103/PhysRevD.67.075019.

[28] A. Denner, L. Jenniches, J.-N. Lang, C. Sturm, Gauge-independent MS
renormalization in the 2HDM, JHEP 09 (2016) 115. arXiv:1607.07352,
doi:10.1007/JHEP09(2016)115.

[29] A. Denner, T. Sack, Renormalization of the Quark Mixing Matrix, Nucl.
Phys. B347 (1990) 203–216. doi:10.1016/0550-3213(90)90557-T.

[30] J. R. Espinosa, I. Navarro, Scale independent mixing an-
gles, Phys. Rev. D66 (2002) 016004. arXiv:hep-ph/0109126,
doi:10.1103/PhysRevD.66.016004.

46

http://arxiv.org/abs/1705.06053
http://dx.doi.org/10.1007/JHEP07(2017)087
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/1707.06453
http://arxiv.org/abs/1108.2040
http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://dx.doi.org/10.1103/PhysRev.75.1736
http://dx.doi.org/10.1073/pnas.37.7.452
http://dx.doi.org/10.1073/pnas.37.7.455
http://arxiv.org/abs/1604.06792
http://dx.doi.org/10.1016/j.cpc.2016.10.013
http://arxiv.org/abs/hep-ph/0207010
http://dx.doi.org/10.1103/PhysRevD.67.075019
http://arxiv.org/abs/1607.07352
http://dx.doi.org/10.1007/JHEP09(2016)115
http://dx.doi.org/10.1016/0550-3213(90)90557-T
http://arxiv.org/abs/hep-ph/0109126
http://dx.doi.org/10.1103/PhysRevD.66.016004

[31] J. R. Espinosa, Y. Yamada, Scale independent and gauge indepen-
dent mixing angles for scalar particles, Phys. Rev. D67 (2003) 036003.
arXiv:hep-ph/0207351, doi:10.1103/PhysRevD.67.036003.

[32] A. Freitas, D. Stöckinger, Gauge dependence and renormaliza-
tion of tanβ in the MSSM, Phys. Rev. D66 (2002) 095014.
arXiv:hep-ph/0205281, doi:10.1103/PhysRevD.66.095014.

[33] M. Sperling, D. Stöckinger, A. Voigt, Renormalization of vacuum expec-
tation values in spontaneously broken gauge theories, JHEP 07 (2013)
132. arXiv:1305.1548, doi:10.1007/JHEP07(2013)132.

[34] F. Bojarski, G. Chalons, D. Lopez-Val, T. Robens, Heavy to
light Higgs boson decays at NLO in the Singlet Extension of
the Standard Model, JHEP 02 (2016) 147. arXiv:1511.08120,
doi:10.1007/JHEP02(2016)147.

[35] M. Krause, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche, Gauge-
independent Renormalization of the 2-Higgs-Doublet Model, JHEP 09
(2016) 143. arXiv:1605.04853, doi:10.1007/JHEP09(2016)143.

[36] L. Altenkamp, S. Dittmaier, H. Rzehak, Renormalization schemes
for the Two-Higgs-Doublet Model and applications to h →
WW/ZZ → 4 fermions, JHEP 09 (2017) 134. arXiv:1704.02645,
doi:10.1007/JHEP09(2017)134.

[37] A. Denner, Techniques for calculation of electroweak radiative
corrections at the one-loop level and results for W physics at
LEP-200, Fortsch. Phys. 41 (1993) 307–420. arXiv:0709.1075,
doi:10.1002/prop.2190410402.

[38] J. Fleischer, F. Jegerlehner, Radiative corrections to Higgs decays in
the extended Weinberg-Salam Model, Phys. Rev. D23 (1981) 2001–2026.
doi:10.1103/PhysRevD.23.2001.

[39] S. Actis, A. Ferroglia, M. Passera, G. Passarino, Two-loop
renormalization in the Standard Model. Part I: Prolegom-
ena, Nucl. Phys. B777 (2007) 1–34. arXiv:hep-ph/0612122,
doi:10.1016/j.nuclphysb.2007.04.021.

47

http://arxiv.org/abs/hep-ph/0207351
http://dx.doi.org/10.1103/PhysRevD.67.036003
http://arxiv.org/abs/hep-ph/0205281
http://dx.doi.org/10.1103/PhysRevD.66.095014
http://arxiv.org/abs/1305.1548
http://dx.doi.org/10.1007/JHEP07(2013)132
http://arxiv.org/abs/1511.08120
http://dx.doi.org/10.1007/JHEP02(2016)147
http://arxiv.org/abs/1605.04853
http://dx.doi.org/10.1007/JHEP09(2016)143
http://arxiv.org/abs/1704.02645
http://dx.doi.org/10.1007/JHEP09(2017)134
http://arxiv.org/abs/0709.1075
http://dx.doi.org/10.1002/prop.2190410402
http://dx.doi.org/10.1103/PhysRevD.23.2001
http://arxiv.org/abs/hep-ph/0612122
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.021

[40] A. Denner, G. Weiglein, S. Dittmaier, Application of the
background field method to the electroweak standard model,
Nucl. Phys. B440 (1995) 95–128. arXiv:hep-ph/9410338,
doi:10.1016/0550-3213(95)00037-S.

[41] A. Denner, S. Dittmaier, L. Hofer, COLLIER - A fortran library for
one-loop integrals, PoS LL2014 (2014) 071. arXiv:1407.0087.

[42] A. Denner, S. Dittmaier, Scalar one-loop 4-point inte-
grals, Nucl. Phys. B844 (2011) 199–242. arXiv:1005.2076,
doi:10.1016/j.nuclphysb.2010.11.002.

[43] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.
105 (1993) 279–289. doi:10.1006/jcph.1993.1074.

[44] S. Actis, A. Ferroglia, G. Passarino, M. Passera, Ch. Sturm and S.
Uccirati, GraphShot, a Form package for automatic generation and ma-
nipulation of one- and two-loop Feynman diagrams, unpublished.

[45] C. Groß, et al., New Developments in FormCalc 8.4, PoS LL2014.
arXiv:1407.0235.

48

http://arxiv.org/abs/hep-ph/9410338
http://dx.doi.org/10.1016/0550-3213(95)00037-S
http://arxiv.org/abs/1407.0087
http://arxiv.org/abs/1005.2076
http://dx.doi.org/10.1016/j.nuclphysb.2010.11.002
http://dx.doi.org/10.1006/jcph.1993.1074
http://arxiv.org/abs/1407.0235

	1 Introduction
	2 New features in Recola2
	2.1 Extended Higgs sectors and their renormalization
	2.1.1 Scalar potentials
	2.1.2 Yukawa sector
	2.1.3 Renormalization schemes

	2.2 MS renormalization and scale dependence
	2.2.1 Soft and collinear singularities

	2.3 Background-Field Method
	2.4 Conventions

	3 Installation
	3.1 The Recola2-Collier package
	3.1.1 The Recola2 demo files
	3.1.2 A minimal executable with CMake

	3.2 The Recola2 stand-alone package
	3.2.1 The Recola2 model-file compilation
	3.2.2 The Recola2 library compilation

	4 Usage of Recola2 in extended Higgs sectors
	4.1 Input subroutines for parameters of extended Higgs sectors
	4.1.1 set_pole_mass_hl_hh_rcl (ml,gl,mh,gh)
	4.1.2 set_pole_mass_ha_rcl (m,g)
	4.1.3 set_pole_mass_hc_rcl (m,g)
	4.1.4 set_Z2_thdm_yukawa_type_rcl (ytype)
	4.1.5 set_tb_cab_rcl (tb,cab)
	4.1.6 use_mixing_alpha_rs_scheme_rcl (s)
	4.1.7 use_mixing_beta_rs_scheme_rcl (s)
	4.1.8 set_msb_rcl (msb)
	4.1.9 use_msb_msbar_scheme_rcl(s)
	4.1.10 set_sa_rcl (sa)
	4.1.11 set_tb_rcl (tb)
	4.1.12 use_tb_msbar_scheme_rcl (s)

	4.2 Compatibility with Recola input subroutines
	4.2.1 use_gfermi_scheme_rcl (g,a)
	4.2.2 set_parameter_rcl(param,value)
	4.2.3 set_renoscheme_rcl(ctparam,renoscheme)
	4.2.4 use_dim_reg_soft_rcl, use_mass_reg_soft_rcl (m), set_mass_reg_soft_rcl (m)
	4.2.5 set_complex_mass_scheme_rcl, set_on_shell_scheme_rcl
	4.2.6 set_dynamic_settings_rcl (n)
	4.2.7 set_print_level_parameters_rcl (n)
	4.2.8 set_print_level_RAM_rcl (n)
	4.2.9 scale_coupling3_rcl (fac,pa1,pa2,pa3), scale_coupling4_rcl (fac,pa1,pa2,pa3,pa4), switchoff_coupling3_rcl (pa1,pa2,pa3), switchoff_coupling4_rcl (pa1,pa2,pa3,pa4)
	4.2.10 set_collier_output_dir_rcl (dir)

	4.3 Updates on process definition
	4.3.1 select_power_BornAmpl_rcl (npr,cid,power), unselect_power_BornAmpl_rcl (npr,cid,power)
	4.3.2 select_power_LoopAmpl_rcl (npr,cid,power), unselect_power_LoopAmpl_rcl (npr,cid,power)
	4.3.3 select_all_gs_powers_BornAmpl_rcl (npr), unselect_all_gs_powers_BornAmpl_rcl (npr), select_all_powers_BornAmpl_rcl (npr), unselect_all_powers_BornAmpl_rcl (npr)
	4.3.4 select_all_gs_powers_LoopAmpl_rcl (npr), unselect_all_gs_powers_LoopAmpl_rcl (npr), select_all_powers_LoopAmpl_rcl (npr), unselect_all_powers_LoopAmpl_rcl (npr)

	4.4 Updates for process computation
	4.5 C++ interface
	4.5.1 use_gfermi_scheme_rcl
	4.5.2 use_gfermi_scheme_and_set_gfermi_rcl(g)
	4.5.3 use_gfermi_scheme_and_set_alpha_rcl(a)
	4.5.4 set_gs_power_rcl(npr,gsarray,gslen)
	4.5.5 Missing subroutines

	4.6 Python interface
	4.6.1 Missing subroutines

	5 Conclusions
	6 Acknowledgements
	Appendix A Checks

