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Abstract
1 In this paper, we investigate the existence problem for positive solutions of

the Yamabe type equation

∆Hnu+ q(x)u− b(x)uσ = 0, σ > 1, (Y)

on the Heisenberg group Hn, where ∆Hn is the Kohn-Spencer sublaplacian. The
relevance of our results lies in the fact that b(x) is allowed to change sign. The
above PDE is tightly related to the CR Yamabe problem on the deformation of
contact forms. We provide existence of a new family of solutions sharing some
special asymptotic behaviour described in terms of the Koranyi distance d(x) to
the origin. Two proofs of our main Theorem, focused on different aspects, will be
given. In particular, the second one relies on a function-theoretic approach that
emphasizes the role of Green functions; such a method is suited to deal with more
general settings, notably the Yamabe equation with sign-changing nonlinearity
on non-parabolic manifolds, that will be investigated in the last part of this
paper.

Introduction

Let Hn be the Heisenberg group of real dimension 2n + 1, that is, the nilpotent Lie
group which, as a manifold, is the product Hn = Cn × R and whose group structure

1Mathematic subject classification 2010: primary 58J05, 35B40; secondary 53C21, 34C11,
35B09.

Keywords: CR-Yamabe problem, indefinite nonlinearity, monotone iteration, linear ODE, Green
function, sublaplacian.

1



2

is given by

(z, t) · (z′, t′) = (z + z′, t+ t′ + 2Im(z, z′)), ∀ (z, t), (z′, t′) ∈ Hn

where (, ) denotes the usual hermitian product in Cn. A (real) basis for the Lie algebra
of left invariant vector fields on Hn is given by

Xk = 2Re
∂

∂zk
+ 2Imzk

∂

∂t
, Yk = 2Im

∂

∂zk
− 2Rezk

∂

∂t
,
∂

∂t
(0.1)

for k = 1, . . . , n. The above basis satisfies Heisenberg’s canonical commutation rela-
tions

[Xj , Yk] = −4δjk
∂

∂t
, (0.2)

all the other commutators being zero. It follows that the vector fields Xk, Yk satisfy
Hormander’s condition and the Kohn-Spencer Laplacian defined as

∆Hn =

n∑
k=1

(X2
k + Y 2

k ) (0.3)

is hypoelliptic by Hormander’s theorem [16]. A vector field in the span of {Xk, Yk}
is called horizontal. In Hn one has a natural origin o = (0, 0) and a distinguished
homogenous norm defined for x = (z, t), by

d(x) = d(z, t) =
(
|z|4 + t2

) 1
4

, (0.4)

where | · | is the norm in Cn, which is homogenous of degree 1 with respect to the
Heisenberg dilations δR : (z, t) → (Rz,R2t), R > 0. This gives rise to the Koranyi
distance d(·, ·) via the prescription

d(x, x̂) = d(x−1 · x̂) for x, x̂ ∈ Hn.

The Koranyi ball of radius R centered at some q ∈ Hn will be denoted with BR(q) =
{p ∈ Hn : d(p, q) < R}. Defining the density function ψ with respect to o by

ψ(x) = ψ(z, t) =
|z|2

d(z, t)2
for x 6= 0, (0.5)

we observe that 0 ≤ ψ(x) ≤ 1 on Hn\{o} and that ψ is related to d by the next
remarkable formulas:

∆Hnd =
2n+ 1

d
ψ, (0.6)

|∇Hnd|2 = ψ, (0.7)

where ∇Hn , the horizontal gradient, is the operator defined by

∇Hnu =

n∑
k=1

(Xku)Xk + (Yku)Yk ∀u ∈ C1(Hn),

so that ∇Hnu is a horizontal vector field and

〈∇Hnu,∇Hnv〉 =

n∑
k=1

(Xku)(Xkv) + (Yku)(Ykv), |∇Hnu|2 =

n∑
k=1

(Xku)2 + (Yku)2.
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For the interior product on horizontal vector fields just defined and corresponding
norm, we have the validity of the Cauchy-Schwarz inequality. Furthermore, for f ∈
C1(R)

∇Hnf(u) = f ′(u)∇Hnu

Finally, the horizontal divergenge divo is defined, for horizontal vector fields W =
wkXk + w̃kYk by

divoW =

n∑
k=1

[Xk(wk) + Yk(w̃k)]

and it satisfies
divo(fW ) = fdivoW + 〈∇Hnf,W 〉

so that
∆Hnu = divo(∇Hnu)

For future use, we also note that if u is a ”radial function”, that is, u(z, t) = f(d(z, t))
for some f : R+

0 → R of class C2 then we have

∆Hnu = ψ

{
f ′′(d) +

2n+ 1

d
f ′(d)

}
(0.8)

In a previous paper, [7], we proved some existence results for positive solutions of the
Yamabe-type equation

∆Hnu+ q(x)u− b(x)uσ = 0 (0.9)

σ > 1, with b(x) ≥ 0. This was motivated by the (generalized) CR Yamabe problem;
see below for a more detailed discussion. The aim of this paper is to provide a new
family of positive solutions when the coefficient b(x) changes sign, a case that prevents
the use of any of the techniques described in [7]. We achieve the goal with the aid
of some recent results of ours, [4], on the usual (generalized) Yamabe problem on
complete, non-compact manifolds. More precisely, with the techniques developed in [4],
we shall provide sub- and supersolutions of (0.9) on Hn and then apply the monotone
iteration scheme. This latter is well known in the elliptic contest; however it also works
in the sub-elliptic case and the interested reader can find a fairly complete treatment
in the Appendix of [7]. To the best of our knowledge, in the literature still little is
known about the hypoelliptic Yamabe equation (0.9) when b(x) is allowed to change
sign, even with q(x) ≡ 0. A remarkable exception is [25], where an existence result
very close to case k = 0 of our Theorem 1 below is proved. We postpone to Remark
4 the discussion on the relationship between the two theorems. At the end of this
Introduction, we will briefly recall some further results on the existence problem for
(0.9).

In what follows we shall denote with m the homogeneous dimension of Hn, that is,
m = 2(n+ 1) (note that m ≥ 4). Our main result is the following:

Theorem 1. Assume q(x) ∈ C∞(Hn) and that

ψ(x)A1(d(x)) ≤ q(x) ≤ ψ(x)A2(d(x)) on Hn\{o}, (0.10)

for some Aj ∈ C0(R+
0 ), j = 1, 2 with A2(r) ≤ n2/r2 on R+. Suppose that, for some

k ∈ (−∞, 1], 
r log r

[
Aj(r)−

n2

r2

]
∈ L1(+∞) if k = 1;

r

[
Aj(r)− k

n2

r2

]
∈ L1(+∞) if k < 1,

(0.11)
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for j = 1, 2. Let b ∈ C∞(Hn) and assume

|b(x)| ≤ ψ(x)B(d(x)) (0.12)

on Hn, for some B ∈ C0(R+
0 ) for which, for the same k in (0.11) and some σ > 1, we

have  B(r)(log r)σr1−n(σ−1) ∈ L1(+∞) if k = 1;

B(r)r1−n(1−
√

1−k)(σ−1) ∈ L1(+∞) if k < 1.
(0.13)

Then the equation
∆Hnu+ q(x)u− b(x)uσ = 0 (0.14)

has a family of positive solutions u ∈ C∞(Hn) such that, for some positive constant
C > 0 {

C−1d(x)−n log d(x) ≤ u(x) ≤ Cd(x)−n log d(x) if k = 1;

C−1d(x)−n(1−
√

1−k) ≤ u(x) ≤ Cd(x)−n(1−
√

1−k) if k < 1
(0.15)

for d(x) >> 1. Moreover,

- if k ∈ [0, 1], ‖u‖L∞(Hn) can be chosen to be as small as we wish;

- if k < 0, for every compact set K and every ε > 0 we can find a solution u
satisfying ‖u‖L∞(K) ≤ ε.

Remark 1. Note that the non-existence result given in Theorem 2.1 of [7] shows that
assumption (0.13) is essentialy sharp.

Remark 2. It is worth to observe that for k ∈ (0, 1] the above solutions are ground
states for the equation (0.14). For k = 0 the solutions are bounded between two
positive constants and finally for k ∈ (−∞, 0) they diverge (polynomially) at infinity.
In particular, integrating the estimates in (0.15) we deduce that u 6∈ L2(Hn) for each k,
so these solutions seems to be hardly obtainable with the aid of variational techniques.

Remark 3. Via (0.6) and (0.8), we can ”radialize” the problem and apply ordinary
differential equations techniques to construct sub- and supersolutions. However, the
presence of the factor ψ(x) in (0.10) and (0.12) reflects, in some sense, the anisosotropic
nature of the Heisenberg group: since 0 ≤ ψ(x) ≤ 1 the occurence of ψ(x) as a factor
in the lower bound in (0.10) and in the upper bound in (0.10) and (0.12) is a genuine
restriction, and since ψ(x) vanishes for x = (z, 0) it forces the corresponding coefficient
to vanish along the t-axis. As a matter of fact, we note that for f ∈ C2(R+

0 ) a simple
computation yields

∆Hnf(|z|) = ∆R2nf(|z|) = f ′′(|z|) +
2n− 1

|z|
f ′(|z|) (0.16)

suggesting that one could realize the construction of the sub- and supersolutions by
performing a ”radialization” different from above, that is, for instance that suggested
by (0.16) in which, the contrary to (0.8) the term ψ(x) is not appearing. As it will
become apparent from the proof of Theorem 1, although we can, in this way, avoid
the presence of ψ(x) in the assumptions (0.10) and (0.12), the unpleasant side effect

of this procedure is that we have to strengthen the basic request A2(r) ≤ n2

r2 on R+ to

A2(r) ≤ (n− 1)2

r2
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this, in turn, implies a strenghthening of (0.11) and (0.13) where we have to substitute
n with n− 1.

Remark 4. The use of (0.16) instead of (0.8) to perform radializations has already
been observed by F. Uguzzoni in [25]. It is worth to compare his main existence
result, Theorem 1.3, to the appropriate modification of our Theorem 1 in the light
of the different radialization process described in the previous remark. Towards this
aim, we suppose that |q(z, t)| ≤ A(|z|), |b(z, t)| ≤ B(|z|), for some A,B ∈ C0(R+

0 ). By
Theorem 1.3 in [25], if∫ +∞

0

sA(s)ds < 2n− 2, rB(r) ∈ L1(+∞), (0.17)

then for every C > 0 small enough there exists a positive solution u(z, t) of (0.9) such
that

u(z, t)→ C as |z| → +∞, uniformly with respect to t. (0.18)

On the other hand, by case k = 0 of our Theorem 1 (and the observations in Remark
3) solutions bounded from below and above by positive constants are shown to exist
whenever

A(r) ≤ (n− 1)2

r2
, rA(r) ∈ L1(+∞), rB(r) ∈ L1(+∞). (0.19)

As a matter of fact, slightly refining the proof of Theorem 1 (see Theorems 3 and 11
in [4], and Remark 27 therein), it is not hard to show that (0.19) implies the validity
of the full asymptotic relation (0.18) for small enough C. Summarizing, conditions
(0.17) and (0.19) are skew.

As we were mentioning above, the study of equation (0.9) is motivated, from the
geometrical point of view, by the CR-Yamabe problem that we briefly describe. On Hn
the vector fields Zk = Xk + iYk, k = 1, ..., n span a subbundle T1,0 of the complexified
tangent bundle of Hn and give rise to its canonical CR structure with contact form Θ
determined modulo the transformation

Θ̃ = u
2
nΘ (0.20)

for some u ∈ C∞(Hn), u > 0. The choice of Θ specifies a pseudohermitian structure
on Hn and

Θ0 = dt+ i

n∑
k=1

(
zkdz̄k − z̄kdzk

)
defines the canonical structure.

A contact form Θ on a CR manifold M induces a scalar curvature, the Tanaka-
Webster (TW for short) scalar curvature [26], RΘ, which under the transformation
(0.20) of the contact form Θ, transforms according to the equation

2n+ 2

n
∆Θu+RΘu = RΘ̃u

n+2
n (0.21)

where ∆Θ is the hypoelliptic laplacian of the pseudohermitian manifold (M,Θ). The
generalized CR-Yamabe problem, also called the prescribed TW curvature problem,
consists in finding a deformation of type (0.20) of the contact form such that the new
TW scalar curvature is an assigned function. This can be viewed as a generalization
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of the CR-Yamabe problem, where we require the new TW scalar curvature to be
constant.

The TW scalar curvature of the canonical pseudohermitian structure Θ0 on Hn is
identically zero, and ∆Θ0 is the operator defined in (0.3). Therefore the equation

2n+ 2

n
∆Hnu = RΘ̃0

u
n+2
n (0.22)

is the transformation law for the TW scalar curvature of (Hn,Θ0) under the change

Θ̃ = u
2
nΘ0 of contact forms. Although the literature on the CR-Yamabe problem

is vast, very few results are known on the prescribed TW curvature problem. In
particular, existence for (0.21) with sign-changing RΘ̃ reveals to be a hard task, even
on Hn. To the best of our knowledge, results of this direction have been obtained in
[19], [27] on the CR sphere, and more generally (but restricting to the real dimension
3), in [23], [9]. The papers [19] and [27] exploit a perturbative method and variational
techniques to prove existence for (0.22) when RΘ̃0

(x) = −1 + εK(x), ε is sufficiently
small and K ∈ C∞(Hn) is a Morse function satisfying a suitable non-degeneracy and a
general index-counting formula. A different approach, based on the analysis of critical
points at infinity, is the focus point of [23], [9]. However, an index condition on RΘ̃0

is again required to guarantee the existence of positive solutions.
With the notations introduced above, as an immediate consequence of Theorem 1 and
Remark 4 we recover the next theorem in [25].

Corollary 1 ([25], Theorem 1.3). Let b(x) ∈ C∞(Hn) satisfy

|b(z, t)| ≤ B(|z|)

on Hn for some B ∈ C(R+
0 ) such that

rB(r) ∈ L1(+∞)

Then, the canonical contact form Θ0 of Hn can be conformally deformed to a new
contact form Θ with Tanaka-Webster scalar curvature b(x).

Remark 5. The equivalent of Corollary 1, in the setting of the Yamabe problem
on Rm, has been obtained in [21], see also [22]. Their sharp results are, to the best
of our knowledge, the first successful attempt to solve the Yamabe problem with a
sign-changing nonlinearity via radialization techniques and the monotone iteration
scheme. However, it should be noticed that their approach, differently from our,
strictly depends on the fact that q(x) = 0. This is one of the key motivations that
lead us to introduce the new techniques described below and in [4]. Furthermore,
in the elliptic setting and for Euclidean space Rm, interesting existence results for

∆u+ q(x)u− b(x)u
m+2
m−2 = 0 with sign-changing b have been obtained in [11] and [10]

when the potential q(x) is singular, more precisely

q(x) =
λ

r(x)2
, where r(x) = dist(x, o), λ <

(m− 2)2

4
.

This constraint on λ is required to ensure that the singular Schrödinger operator
L = −∆Hn − λ/r(x)2 be non-negative and locally positive definite in the sense of
quadratic forms, see also Subsection 0.1 below.

As a final observation, we underline that we shall give two proofs of Theorem 1
both based an a similar technical argument. However, the advantage of the second is
that it is valid in a certain general setting of manifolds and operators with a ”function
theoretic” property. We refer to Section 2 for a more detailed discussion.
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0.1 A few words on the spectral assumption A2(r) ≤ n2/r2

It is worth to explain why the assumption

A2(r) ≤ n2

r2
=

(m− 2)2

4r2
(0.23)

is a basic request. Indeed, in the proof of the theorem we shall construct a supersolution
of (0.14) by finding a solution γ of the Cauchy problem{ (

rm−1γ′
)′

+A2(r)rm−1γ = −B(r)rm−1γσ on R+,

γ(0) > 0, γ′(0) = 0.

Considering y ∈ Rm and setting |y| for its Euclidean norm, v(y) = γ(|y|) turns out to
be a positive solution of

∆Rmv +A2(r)v ≤ 0

so that, by a classical result ([2], [12], [20]), the spectral radius λL2
1 (Rm) of L2 =

−∆Rm −A2(r) acting on C∞c (Rm) satisfies

λL2
1 (Rm) ≥ 0. (0.24)

Via the classical Uncertainty Principle lemma (see also Theorem 5.2 of [3]), (0.23) is
an optimal requirement to guarantee (0.24). In the setting of hypoelliptic operators,
the result of [2], [12] and [20] is still valid and leads to the next

Proposition 1. Let q(x) ∈ C∞(Hn), and consider LHn = −∆Hn − q(x). Then, the
following assertions are equivalent:

(i) There exists w ∈ C1(Hn), w ≥ 0, w 6= 0 solving ∆Hnw + q(x)w ≤ 0 weakly on
Hn, that is, ∫

Hn
〈∇Hnw,∇Hnϕ〉 ≥

∫
Hn
q(x)wϕ ∀ϕ ∈ C1

c (Hn);

(ii) There exists u ∈ C∞(Hn), u > 0 solving ∆Hnu+ q(x)u = 0 on Hn;

(iii) λLHn
1 (Hn) ≥ 0, that is,∫

Hn
q(x)ϕ2 ≤

∫
|∇Hnϕ|2 ∀ϕ ∈ C1

c (Hn).

Remark 6. The above result is stated for elliptic operators in [12], [20] and [2] even
under fairly weaker regularity assumptions on solutions and coefficients, and the proof
carries over unchanged in a hypoelliptic setting. Indeed, the only ingredients are
uniform local elliptic estimates (ensured, among others, by [16], [1], [17], [6]), the
integration by parts formula∫

Hn
ρ∆Hnψ = −

∫
Hn
〈∇Hnρ,∇Hnψ〉 ∀ ρ ∈ C1

c (Hn), ψ ∈ C2(Hn), (0.25)

which follows immediately from Green identities, and the maximum principle (which
can be found in [5], [18]).
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Because of the above proposition, suppose that we have a positive solution u of
(0.14) with b(x) ≤ 0, a possibility which is permitted by (0.12). Then, u solves

∆Hnu+ q(x)u ≤ 0 on Hn (0.26)

and thus λLHn
1 (Hn) ≥ 0. Therefore, if we are wishing to deal with sign-changing b(x),

the requirement λLHn
1 (Hn) ≥ 0 is substantially unavoidable. On the other hand, when

λLHn
1 (Hn) < 0, solutions of (0.14) can be produced in the case b(x) ≥ 0, for example

via the technique described in Theorem 3.1 of [7]. The spectral property λLHn
1 (Hn) < 0

is guaranteed under the bound

q(x) ≥ ψ(x)A1(d(x))

provided that A1 is large enough. Indeed, for sufficiently large A1 the solution ξ of{
ξ′′ + 2n+1

t ξ +A1ξ = 0

ξ(0) = 1, ξ′(0) = 0
(0.27)

has a first zero at some T > 0, and thus v(x) = ξ(d(x)) solves{
∆Hnv + q(x)v ≥ 0 on BT (o)

v > 0 on BT (o), v = 0 on ∂BT (o)

In this case, it is easy to deduce that λLHn
1 (Hn) < 0 via a simple comparison argument.

Indeed, otherwise choose a smooth, positive solution u of ∆Hnu+ q(x)u = 0 on Hn en-
sured by Proposition 1. The function w = v/u is then a solution of u−2divo(u

2∇ow) ≥
0 on BT (o), w = 0 on ∂BT (o). By (a weighted version of) the comparison principle
(see, for instance, [18]), the maximum of w is attained on ∂BT (o), and this forces w
to be identically zero, contradiction.

According to Theorem 5.45 of [3], a sufficient condition for A1(r) to be large enough
to produce a first zero of ξ is

A1(r) ≥ − c
2

r2
, for some c > 0 and for r ≥ r0 >> 1, and (0.28)

lim sup
r→+∞

{∫ r

r0

√
A1(s) +

c2

s2
ds−

√
n2 + c2 log r

}
= +∞. (0.29)

Indeed, the combination of (0.28) and (0.29) ensure that ξ is indeed oscillatory, that
is, it has infinitely many zeroes.

Remark 7. The reader should be warned that Theorem 5.45 in [3] is stated for
Schrödinger operators in the Euclidean setting. However, as it can be seen by inspect-
ing the proof, the result depend on the oscillatory behaviour of the solution ξ of (0.27).
Up to passing from n to m = 2n+2, (0.29) is the rephrasing of condition (5.135) in [3],
which is a sufficient condition for ξ to be oscillatory. The interested reader is suggested
to read the discussion preceeding Theorem 5.45 for a more detailed explanation.

Remark 8. Note that, with the aid of the oscillation criterion in (0.28), (0.29), we
can improve Theorem 3.1 of [7] where in the proof we have been using the Hille-
Nehari criterion for oscillation (see [24]). We leave the details to the interested reader
suggesting him to consult [3], Section 5.7.
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1 Proof of Theorem 1

In order to prove Theorem 1 we need to introduce some more notation and two recent
results of ours, [4]. First of all, given v ∈ C0(R+

0 ) satisfying

v > 0 on R+, v is non-decreasing in a neighbourhood of 0,
1

v
∈ L1(+∞) (V)

we introduce, following [3], the critical curve of v, χ(r) = χv(r) ∈ C0(R+) by setting

χ(r) =

(
2v(r)

∫ +∞

r

ds

v(s)

)−2

=

[(
−1

2
log

∫ +∞

r

ds

v(s)

)′]2

on R+. (1.1)

A first integration immediately shows that√
χ(r) 6∈ L1(+∞). (1.2)

In case v(r) = rm−1, m ≥ 3, is the volume (up to constant) of the geodesic sphere of
radius r in Rm, we explicitly compute

χ(r) =
(m− 2)2

4r2
(1.3)

It is also worth to introduce the functions Hk(r), k ∈ (−∞, 1] defined by
H1(r) = −

√∫ +∞

r

ds

v(s)
log

∫ +∞

r

ds

v(s)
for k = 1;

Hk(r) =

{∫ +∞

r

ds

v(s)

} 1−
√

1−k
2

for k < 1.

(1.4)

Note that H1 is positive only for r sufficiently large. A computation shows that

1

H2
kv
∈ L1(+∞) ∀ k ∈ (−∞, 1], (1.5)

and therefore, if A ∈ L∞loc(R+
0 ) and A(r) ≤ χ(r), the solution h ∈ Liploc(R+

0 ) of the
Cauchy problem {

(vh′)′ +Avh = 0 on R+

h(0) = 1, h′(0) = 0
(1.6)

exists and it is unique, positive on R+ and satisfies

1

h2v
∈ L1(+∞). (1.7)

Indeed, existence and uniqueness follow from Corollary 3.5 in [3]. Furthermore, by
Theorem 5.2 of [3], A ≤ χ ensures the positivity of h and the lower bound h(r) ≥
CH1(r) for r >> 1 and some constant C > 0, so that

1

h2v
≤ C

H2
1v
.

The following results, Theorems 7 and 5 of [4], will be the main ingredients in the
construction of the sub- and supersolutions.
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Theorem 2 ([4], Theorem 7). Let v ∈ C0(R+
0 ) satisfying (V), and consider A ∈

L∞loc(R+
0 ) with the property that

A(r) ≤ χ(r) on R+.

Let h ∈ Liploc(R+
0 ) be the positive solution of (1.6). Let σ > 1, B ∈ L∞loc(R+

0 ) and
suppose that

B(r)h(r)σ−1√
χh2v(r)

∈ L1(+∞). (1.8)

Then, there exists a constant β > 0, depending on σ, A,B such that the following
holds: for each γ∞ ∈ (0, β), there exists 0 < γ0 ≤ γM and a positive solution γ of{

(vγ′)′ +Avγ = Bvγσ R+

γ(0) = γ0, γ′(0) = 0
(1.9)

such that

γ(r) ≤ γMh(r) on R+,
γ(r)

h(r)
→ γ∞ as r →∞. (1.10)

Moreover, γM → 0 as γ∞ → 0.

Theorem 3 ([4], Theorem 5). Let v ∈ C0(R+
0 ) satisfying (V), and consider A ∈

L∞loc(R+
0 ) with the property that A(r) ≤ χ(r) on R+. Let h ∈ Liploc(R+

0 ) be the positive
solution of (1.6). If, some k ∈ (−∞, 1], it holds

A(r)− kχ(r)√
χH2

kv
(r)

∈ L1(+∞), (1.11)

then h(r) ∼ CHk(r) as r → +∞, for some constant C > 0.

Under the further assumption (1.11) on A, by Theorem 3 condition (1.8) can be
rewritten as

B(r)Hk(r)σ−1√
χH2

kv
(r)

∈ L1(+∞) (1.12)

(see also Remark 2.1 in [4]). Hereafter, we will consider the case v(r) = rm−1, where
m = 2n + 2 is the homogeneous dimension of Hn. Observe that m ≥ 4, so that
v−1 ∈ L1(+∞) and the theorems are applicable. Via the definition of Hk(r), we
compute {

H1(r) ∼ Cr−
m−2

2 log r for k = 1;

Hk(r) ∼ Cr−
m−2

2 (1−
√

1−k) for k < 1,
(1.13)

for some constant C > 0 and for r → +∞, thus χH2
1v

(r) ∼ 1
4r2 log2 r

for k = 1;

χH2
kv

(r) ∼ (m−2)2

4r2 (1− k) for k < 1,
(1.14)

as r → +∞. It follows that conditions (1.11) and (1.12) can be respectively expressed
as 

r log r

[
A(r)− (m− 2)2

4r2

]
∈ L1(+∞) if k = 1;

r

[
A(r)− k (m− 2)2

4r2

]
∈ L1(+∞) if k < 1,

(1.15)
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and  B(r)(log r)σr1−m−2
2 (σ−1) ∈ L1(+∞) if k = 1;

B(r)r1−m−2
2 (1−

√
1−k)(σ−1) ∈ L1(+∞) if k < 1.

(1.16)

We are now ready for the

Proof of Theorem 1. First, note that B(r) > 0 on R+
0 . We let hj , j = 1, 2, be the

solutions of the linear problems{
(vh′j)

′ +Ajvhj = 0 on R+

hj(0) = 1, h′j(0) = 0
(1.17)

with v(r) = rm−1 = r2n+1. Note that, because of (0.10) and the assumption on A2

we have

A1(r) ≤ A2(r) ≤ n2

r2
=

(m− 2)2

4r2
on R+. (1.18)

Indeed, if ψ(x) 6= 0 then from (0.10) obviously A1(d(x)) ≤ A2(d(x)). For x = (z, t),
x 6= o, ψ(x) = 0 if and only if z = 0 and by continuity A1(d(x)) ≤ A2(d(x)) in such
points. The same holds at o. As we have already observed, because of (1.18) it follows
that hj are positive on R+

0 . Furthermore, condition (0.11) coincides (1.15), thus by
Theorem 3

hj(r) ∼ CjHk(r) as r → +∞ (1.19)

for some constants Cj > 0.
To construct the supersolution to (0.14) we consider the problem{

(vγ′)′ +A2vγ = −Bvγσ on R+

γ(0) = γ2,0 > 0, γ′(0) = 0.
(1.20)

To apply Theorem 2 we observe that assumption (0.13) of Theorem 1 is exactly (1.16)
which guarantees the validity of (1.12). Hence, there exists a constant β2 > 0 and
a function γ2 > 0 satisfying (1.20), for each choice of γ2,∞ ∈ (0, β2) and satisfying
0 < γ2,0 ≤ γ2,M ;

γ2(r) ≤ γ2,Mh2(r),
γ2(r)

h2(r)
→ γ2,∞ as r → +∞ (1.21)

with γ2,M → 0+ as γ2,∞ → 0+. We set u+(x) = γ2(d(x)). Then, using (0.8), the
positivity of γ2, the upper bound in (0.10) and (0.12) we have

∆Hnu+ + q(x)u+ = ψ(x)

{
γ′′2 (d(x)) +

2n+ 1

d(x)
γ′2(d(x))

}
+ q(x)γ2

=
ψ(x)

v(d)
(v(d)γ′2)′ + q(x)γ2

=
ψ(x)

v(d)
{−A2(d)v(d)γ2 −B(d)v(d)γσ2 }+ q(x)γ2

=
[
− ψ(x)A2(d) + q(x)

]
γ2 − ψ(x)B(d)γσ2

≤ −ψ(x)B(d)γσ2 ≤ b(x)uσ+,
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that is, u+(x) is a supersolution of (0.14). Furthermore, from (1.21) and (1.19) we
infer that

u+(x) ≤ γ2,Mh2(d(x)) on Hn, u+(x) ∼ γ2,∞C2Hk(d(x)) as d(x)→ +∞
(1.22)

for some constant C2 > 0.
Similarly we construct the subsolution u−(x) by considering the problem{

(vγ′)′ +A1vγ = Bvγσ on R+

γ(0) = γ1,0 > 0, γ′(0) = 0.
(1.23)

Again by assumption (0.13) of Theorem 1 we can apply Theorem 2 to find a constant
β1 > 0 and a positive solution γ1 of (1.23) for each choice of γ1,∞ ∈ (0, β1) and for
appropriate 0 < γ1,0 ≤ γ1,M , with

γ1(r) ≤ γ1,Mh1(r) on R+,
γ1(r)

h1(r)
→ γ1,∞ as r → +∞ (1.24)

and γ1,M → 0+ as γ1,∞ → 0+. We set u−(x) = γ1(d(x)) and using the assumptions
of Theorem 1 in a way similar to what we did above we obtain

∆Hnu− + q(x)u−(x) ≥ b(x)uσ− on Hn,

that is u−(x) is a subsolution of (0.14). From (1.24) we have

u−(x) ≤ γ1,Mh1(d(x)) on Hn, u−(x) ∼ γ1,∞C1Hk(d(x)) as d(x)→ +∞
(1.25)

for some constant C1 > 0. Now, for each fixed γ2,∞ ∈ (0, β2), using the second of
(1.22) and (1.25) we can choose γ1,∞ ∈ (0, β1) sufficiently small that u−(x) ≤ u+(x)
on Hn. Applying the version of the monotone iteration scheme in the Appendix of [7],
we deduce the existence of a positive solution u of (0.14) (smooth by hypoellipticity)
satisfying the property

u−(x) ≤ u(x) ≤ u+(x) ≤ γ2,Mh2(d(x)). (1.26)

on Hn. In particular, u is positive and using (1.22) and (1.25) we deduce the existence
of positive constants Γ1 ≤ Γ2 such that

Γ1Hk(d(x)) ≤ u(x) ≤ Γ2Hk(d(x))

for d(x) sufficiently large. Observe that, if k ≥ 0, we can choose A2 satisfying A2 ≥ 0,
hence a first integration of (1.17) shows that h2 is non-increasing, so that h2 ≤ 1
on R+. From the upper bound in (1.26) and since γ2,M → 0+ as γ2,∞ → 0+, up
to choosing γ2,∞ sufficiently small we can also satisfy the requirements on ‖u‖L∞(Hn)

(for k ∈ [0, 1]) and ‖u‖L∞(K) (for k < 0), respectively. This completes the proof of
Theorem 1.

2 Another proof of Theorem 1 and a general result

The aim of this section is to give a second proof of Theorem 1 based on a general
function-theoretic approach. Although the argument will reveal more involved than
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that given in Section 1, following this second proof the alert reader will realize the
validity of Theorem 5 on a general Riemannian manifold. First of all we recall that if
G(z, t) is the fundamental solution of ∆Hn with singularity at the origin, then

G(x) = G(z, t) =
C2n−2

d(x)2n
, (2.1)

for some constant C2n−2 only depending on n. This remarkable fact has been proved
by Folland, [13]. Here, without loss of generality, we assume C2n−2 = 1. The positive
function G thus verifies:

∆HnG = 0 on Hn\{o}; (2.2)

G(x)→ +∞ as x→ o; (2.3)

inf
Hn\{o}

G = 0. (2.4)

Note that a straightforward computation using (0.7) shows that

|∇Hn logG|2

4
= ψ(x)

n2

d(x)2
on Hn\{o}. (2.5)

We define

t(x) = −1

2
logG(x) (2.6)

and, for η ∈ C2(R) we set
u(x) = e−t(x)η(t(x)). (2.7)

Note that, by (2.3) and (2.4), t : R+ → R is surjective. A computation gives

∆Hnu+

(
1− η̈

η
(t(x))

)
|∇Hn logG|2

4
u =

1

2

∆HnG√
G

[η(t(x))− η̇(t(x))] (2.8)

therefore, using (2.2),

∆Hnu+

(
1− η̈

η
(t(x))

)
|∇Hn logG|2

4
u = 0 on Hn\{o}. (2.9)

We claim that assumption (0.10) of Theorem 1 is equivalent to

Â1(t(x))
|∇Hn logG|2

4
≤ q(x) ≤ Â2(t(x))

|∇Hn logG|2

4
(2.10)

with

Âj(t) =
1

n2
e

2t
n Aj

(
e
t
n

)
for j = 1, 2. (2.11)

This immediately follows from the expression of G(x) in (2.1) (with C2n−2 = 1) and
from (2.5), (2.6). Similarly, (0.12) is equivalent to

|b(x)| ≤ B̂(t(x))
|∇Hn logG|2

4
(2.12)

with

B̂(t) =
1

n2
e

2t
n B

(
e
t
n

)
. (2.13)
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From (2.9) and η > 0 we deduce

∆Hnu+ q(x)u− b(x)uσ ≥ u

η(t(x))

{[
Â1(t(x))− 1

]
η + η̈ − B̂(t(x))e(1−σ)t(x)ησ

} |∇Hn logG|2

4

∆Hnu+ q(x)u− b(x)uσ ≤ u

η(t(x))

{[
Â2(t(x))− 1

]
η + η̈ + B̂(t(x))e(1−σ)t(x)ησ

} |∇Hn logG|2

4
,

(2.14)
thus to determine positive sub- and supersolutions u− ≤ u+ of equation (0.14) on Hn
of the form given in (2.7), it will be enough to determine positive solutions η− ≤ η+

on the whole R of the differential inequalities

η̈− +
[
Â1(t)− 1

]
η− − B̂(t)e(1−σ)tησ− ≥ 0 (2.15)

η̈+ +
[
Â2(t)− 1

]
η+ + B̂(t)e(1−σ)tησ+ ≤ 0, (2.16)

in such a way that u−, u+ can be extended at least in a C1 way in o. To fix ideas, we
concentrate on (2.16), and set for convenience η = η+. We want to apply Theorem 2,
and towards this aim we suppose that η is a positive solution of (2.16) on R. For some
fixed µ ≥ 3, we define a fake distance function ρ via

t = t(ρ) = log
(√

µ− 2ρ
µ−2
2

)
, ρ ∈ R+. (2.17)

Note that, since t runs on the whole R, ρ runs on the whole R+. Moreover,

t(0+) = −∞, t(+∞) = +∞, t′(ρ) =
µ− 2

2ρ
> 0 on R+. (2.18)

We then define
z(ρ) = e−t(ρ)η(t(ρ)). (2.19)

Note the analogy between the definition of z and that of u in (2.7). We can thought
of z to be a somewhat ”radialized” version of u, as we shall explain below. From

z′(ρ) =
√
µ−2
2 ρ−

µ
2 {η̇(t(ρ))− η(t(ρ))} ;

z′′(ρ) =
√
µ−2
2 ρ−

µ
2−1

{
µ−2

2 η̈(t(ρ))− (µ− 1)η̇(t(ρ)) + µ
2 η(t(ρ))

}
,

(2.20)

since η is a solution of (2.16) we easily compute

(ρµ−1z′)′ + ρµ−1Ā2z + ρµ−1B̄zσ ≤ 0 on R+, (2.21)

where
Ā2(ρ) = Â2(t(ρ))χ(ρ), B̄(ρ) = B̂(t(ρ))χ(ρ) on R+ (2.22)

with

χ(ρ) =
(µ− 2)2

4ρ2

being the critical curve associated to v(ρ) = ρµ−1. Similarly, if η = η− solves (2.15),
then z(ρ) defined in (2.19) satisfies

(ρµ−1z′)′ + ρµ−1Ā1z − ρµ−1B̄zσ ≥ 0 on R+, (2.23)
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where
Ā1(ρ) = Â1(t(ρ))χ(ρ) on R+. (2.24)

Next, we assume that Āj , j = 1, 2 and B̄ can be extended continuously to 0 so that
Āj , B ∈ C0(R+

0 ). This is equivalent to require the existence of

lim
ρ→0+

Âj(t(ρ))

ρ2
= αj ∈ R, j = 1, 2; (2.25)

lim
ρ→0+

B̂(t(ρ))

ρ2
= θ ∈ R. (2.26)

Because of (2.17),

ρ = (µ− 2)−
1

µ−2 e
2t
µ−2

and conditions (2.25), (2.26) are respectively equivalent to

lim
t→−∞

Âj(t)e
− 4t
µ−2 = α̂j ∈ R, j = 1, 2; (2.27)

lim
t→−∞

B̂(t)e−
4t
µ−2 = θ̂ ∈ R. (2.28)

Observe that, because of (2.11) and (2.13), since Aj , B ∈ C0(R+
0 ), (2.27) and (2.28)

are satisfied for any choice of

µ ≥ 2(n+ 1) = m. (2.29)

It is now worth to pause for a moment in order to discuss the core of the procedure
that we are following. From the relation (2.7) between u and η, we can produce sub-
and supersolution of (0.14) via solutions η± of the differential inequalities (2.15) and
(2.16). These η± only depend on t, that is, on the level sets of G. The study of (2.15)
and (2.16) reveals to be quite intricate, so we fix a simple non-parabolic model manifold
(in our case Rµ), with distance function ρ and volume v(ρ) = ρµ−1 of geodesic spheres,
and we go ”backward” from t to ρ(t) and from η to a new function z. In this way, the
function ρ ◦ t behaves like a ”fake” distance function on our space, and we obtain the
ODEs corresponding to (2.21) and (2.23), which are suited to apply Theorem 2. Due
to the presence of the puncture at x = o, we shall be careful that the initial condition
of z, once transferred to u, gives rise to C1-functions, in order that u+, u− be actually
(weak) sub- and supersolutions of (0.14) on the whole Hn. This will be done in the
last part of the proof.

With the aid of the technique described above, we have succeeded in ”radializing”
the CR Yamabe problem even without referring at any step to the Koranyi distance.
Indeed, radialization is performed along the level sets of the Green function fixed at
some point. On Hn, by (2.1) level sets of G are a reparametrization of those of d, so
we simply find another approach to prove Theorem 1. However, this second approach
enables us to deal with much more general settings including every non-parabolic
Riemannian manifold, regardless either of its geodesic completeness or of the fact that
it has a pole (which is essential for the arguments in [4] to work). We thus consider
the existence of solutions of the following Cauchy problems:{

(ρµ−1γ′2)′ + ρµ−1Ā2γ2 = −ρµ−1B̄γσ2 on R+

γ2(0) = γ2,0 > 0, γ′2(0) = 0.
(2.30)
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and {
(ρµ−1γ′1)′ + ρµ−1Ā1γ1 = ρµ−1B̄γσ1 on R+

γ1(0) = γ1,0 > 0, γ′1(0) = 0
(2.31)

under the assumptions described in Theorem 1. To do so, we shall check the validity
of the requirements for the existence in Theorem 2. Let hj , j = 1, 2 be the solutions
of the linear problems{

(ρµ−1h′j)
′ + ρµ−1Ājhj = 0 on R+,

hj(0) = 1, h′j(0) = 0.
(2.32)

Note that, from (2.11) and (2.24) and the assumption A2(r) ≤ n2/r2 on R+ of Theorem
1, we deduce that

Ā1(ρ) ≤ Ā2(ρ) ≤ χ(ρ) on R+. (2.33)

Indeed, it is a simple matter to check that

Â2(t) ≤ 1 on R. (2.34)

Hence, by Theorem 5.2 of [3] the solutions hj(ρ) of (2.32) are positive on R+
0 . We

determine their asymptotic behaviour as ρ→ +∞ via Theorem 3. Towards this aim,
for k ∈ (−∞, 1], we need to compute the asymptotics for Hk(ρ) and χH2

kv
(ρ), with

v(ρ) = ρµ−1: these are given by formulas (1.13) and (1.14), simply replacing m with
µ and r with ρ: {

H1(ρ) ∼ Cρ−
µ−2
2 log ρ for k = 1;

Hk(ρ) ∼ Cρ−
µ−2
2 (1−

√
1−k) for k < 1,

(2.35)

for some constant C > 0 and for ρ→ +∞, and χH2
1v

(ρ) ∼ 1
4ρ2 log2 ρ

for k = 1;

χH2
kv

(ρ) ∼ (m−2)2

4ρ2 (1− k) for k < 1,
(2.36)

as ρ→ +∞. Assumption (1.11) of Theorem 3 then becomes
[
Āj(ρ)− (µ−2)2

4ρ2

]
ρ log ρ ∈ L1(+∞) if k = 1;[

Āj(ρ)− k (µ−2)2

4ρ2

]
ρ ∈ L1(+∞) if k < 1.

(2.37)

Using (2.24) we can easily express conditions (2.37) in terms of Âj(t) in the form{
t[Âj(t)− 1] ∈ L1(+∞) if k = 1;

Âj(t)− k ∈ L1(+∞) if k < 1.
(2.38)

Now, from (2.11) one can then write (2.38) in terms of Aj and verify that they are
exactly conditions (0.11) of Theorem 1. Hence, from Theorem 3 we have that the two
solutions hj of (2.32) satisfy

hj(ρ) ∼ CjHk(ρ) as ρ→ +∞, (2.39)

for some positive constants Cj > 0 and where Hk(ρ) has the asymptotic behaviour in
(2.35).
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We are left to check the validity of assumption (1.8) (with m = µ, B = ±B̄ and
r = ρ). Due to (2.39) and (2.35), (1.8) becomes B̄(ρ)(log ρ)σρ1−µ−2

2 (σ−1) ∈ L1(+∞) if k = 1;

B̄(ρ)ρ1−µ−2
2 (1−

√
1−k)(σ−1) ∈ L1(+∞) if k < 1,

(2.40)

(as already computed in (1.16)), which via (2.24) can be expressed as B̂(t)tσ−1et(1−σ) ∈ L1(+∞) if k = 1;

B̂(t)et(1−
√

1−k)(1−σ) ∈ L1(+∞) if k < 1,
(2.41)

and using (2.13) one can check that these are exactly condition (0.13) of Theorem 1.
Concluding, for each j = 1, 2, by Theorem 2 there exist βj > 0 such that, for each
γj,∞ ∈ (0, βj), there exist 0 < γj,0 ≤ γj,M and a positive solution γj (of (2.31) and
(2.30), respectively) such that

γj(ρ) ≤ γj,Mhj(ρ) on R+,
γj(ρ)

hj(ρ)
→ γj,∞ as ρ→ +∞.

Moreover, γj,M → 0+ as γj,∞ → 0+. In particular, γj(ρ) ∼ γj,∞CjHk(ρ) as ρ→ +∞,
for some constant Cj > 0. As in the final part of the first proof of Theorem 1, once fixed
γ2,∞, we can choose γ1,∞ small enough that γ1(ρ) ≤ γ2(ρ) on R+. Setting z− = γ1,
z+ = γ2, it holds z− ≤ z+ and they respectively solve (2.23) and (2.21). Then,

η−(t) = etz−(ρ(t)), η+(t) = etz+(ρ(t))

solve, respectively, (2.15) and (2.16) with η− ≤ η+ on R. Finally,

u−(x) = e−t(x)η−(t(x)), u+(x) = e−t(x)η+(t(x))

are respectively a sub- and a supersolution of (0.14) on Hn\{o} with u− ≤ u+. It
remains to show that u−, u+ extend to weak sub- and supersolutions to the whole Hn.
To prove this fact, it is enough to show that they extend in a C1-way at the puncture
x = o. Indeed, in this case the proof that u−, u+ are weak solutions on Hn follows
from a simple integration by parts argument. To fix ideas let us consider the case of
u−. From (2.31) we have {

z−(ρ) = γ1,0 + α
2 ρ

2 + o(ρ2)

z′−(ρ) = αρ+ o(ρ)
(2.42)

as ρ→ +∞ and with α = µ−1[B̄(0)γσ−1
1,0 − Ā1(0)]γ1,0. Consequently,

β−(t) = γ1,0e
t +

α̃

2
e
µ+2
µ−2 t + o

(
e
µ+2
µ−2 t

)
as t→ −∞,

where
α̃ = α(µ− 2)−

2
µ−2 .

Thus, using the definition of u− and that of t(x) in (2.6) we obtain

u−(x) = γ1,0 +
α̃

2
G(x)−

2
µ−2 + o

(
G(x)−

2
µ−2

)
as x→ o.
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It follows, using (2.3), that

u−(x)→ γ1,0 as x→ o. (2.43)

Next,

∇Hnu−(x) = e−t(x)
{
η̇−(t(x))− η−(t(x))

}
∇Hnt(x) =

η−(t(x))− η̇−(t(x))

2

∇HnG(x)√
G(x)

.

(2.44)
Now,

η̇−(t)− η−(t) = etz′−(ρ(t))ρ̇(t)

so that, using (2.42),

η̇−(t)− η−(t) = α(µ− 2)−2(µ−2)−1e
µ+2
µ−2 t + o

(
e
µ+2
µ−2 t

)
as t→ −∞.

Substituting this latter into (2.44) and recalling (2.3) we obtain

|∇Hnu−(x)| =
∣∣∣α(µ− 2)−2(µ−2)−1G(x)−

µ
µ−2 + o

(
G(x)−

µ
µ−2

)∣∣∣ |∇HnG(x)| as x→ o.

(2.45)
If we require that

G(x) ∼ C

d(x)µ−2
, |∇HnG(x)| ∼

C̃(µ− 2)
√
ψ(x)

d(x)µ−1
, (2.46)

for some positive constants C, C̃, then from (2.45) we would obtain

|∇Hnu−(x)| ∼ Cd(x)
√
ψ(x)→ 0 as x→ o. (2.47)

Note, by (2.1), the relations in (2.46) are satisfied for the choice µ = 2n + 2 = m,
which is admissible by (2.29). Putting together (2.43) and (2.47) we obtain the de-
sired requirements on u−, and similarly on u+. Concluding, the monotone iteration
scheme yields the solution u ∈ C∞(Hn) of (0.14) with the required properties.

Summarizing, the above reasoning gives a second proof of Theorem 1. Despite the
fact that this proof is longer and more involved than that given in Section 1, it is more
general and it applies to different ambient spaces; notably, to ambiente spaces without
special symmetries. Substituting (2.46) with

|∇HnG(x)|G(x)−
µ
µ−2 → 0 as x→ o,

for some µ ≥ 2(n+ 1) = m, which still imply the validity of |∇u−(x)| → 0+ as x→ o,
the previous proof also implies the validity of the next

Theorem 4. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3, and let
q(x), b(x) ∈ C0,α

loc (M), for some α > 0. Let o ∈ M be fixed, and suppose that there
exists a positive function G ∈ C2(M\{o} with the following properties:

(i) ∆G = 0 on M\{o},
(ii) G(x)→ +∞ as x→ o,

(iii) infM\{o}G = 0,

(iv) for some µ ≥ m, |∇G(x)|G(x)−
µ
µ−2 → 0+ as x→ o.

(2.48)
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Let t(x) = − 1
2 logG(x). Suppose that, for some Âj , B̂ ∈ C0(R), j = 1, 2 we have

Â1(t(x)) |∇ logG|2
4 ≤ q(x) ≤ Â2(t(x)) |∇ logG|2

4

|b(x)| ≤ B̂(t(x)) |∇ logG|2
4 .

Assume the existence of

lim
t→−∞

Âj(t)e
− 4t
µ−2 = α̂j ∈ R, j = 1, 2; (2.49)

lim
t→−∞

B̂(t)e−
4t
µ−2 = θ̂ ∈ R, (2.50)

and that Â2(t) ≤ 1 on R. Furthermore, for some k ∈ (−∞, 1], suppose that{
t[Âj(t)− 1] ∈ L1(+∞) if k = 1;

Âj(t)− k ∈ L1(+∞) if k < 1.
(2.51)

 B̂(t)tσ−1et(1−σ) ∈ L1(+∞) if k = 1;

B̂(t)et(1−
√

1−k)(1−σ) ∈ L1(+∞) if k < 1,
(2.52)

for some σ > 1. Then, the equation

∆u+ q(x)u− b(x)uσ = 0

has infinitely many positive solutions u ∈ C2,α
loc (M).

Of course, in the statement of Theorem 4, ∇ and ∆ are the gradient and the
Laplace-Beltrami operator with respect to the metric of M .

2.1 An alternative statement of Theorem 5

We conclude the paper with a simplified version of Theorem 4 which is, in some
sense, an alternative formulation. Indeed, as it will become apparent, assumptions
(i), . . . , (iv) in (2.48) force some rigidity on G. First, by (i), for sufficiently large
a > 0 the function Ga(x) = min{G(x), a} is a bounded, non-constant weakly super-
harmonic function, thus M is necessarily non parabolic. On the other hand, if M is
non-parabolic, an example of such a G is clearly given by G(x) = G(x, o), with G(x, y)
the minimal positive Green function. Indeed, (iii) follows from minimality, for other-
wise G − infM\{o} G would be another Green kernel strictly smaller than G, and (iv)
with µ = m is a consequence of the estimates

G(x, o) =
r(x)2−m

(m− 2)ωm−1
+ ξ(x, o), |∇xG(x, o)| = r(x)1−m

ωm−1
+ η(x, o) for m ≥ 3,

(2.53)
where r(x) = dist(x, o), η, ξ are smooth on M ×M and ωm−1 is the volume of the unit
(m− 1)-dimensional sphere (the reader can consult [14] for a proof of this fact). Next,
we note that by standard comparison techniques the singularity of G is at most of the
order of that of G(x, o). Indeed, suppose by contradiction that G(x, o) = o(G(x)) as
x → o. Then, fix a smooth, relatively compact open set Ω b M containing o, and
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let GΩ(x, o) be the Dirichlet Green function of ∆ on Ω. Then, by standard theory,
GΩ(x, o) ∼ G(x, o) as x→ o, thus w = GΩ(x, o)/G(x) would be a solution on Ω\{o} of{

div(G2∇w) = 0 on Ω\{o}
w = 0 on ∂

(
Ω\{o}

) (2.54)

The maximum principle would then imply w = 0, a contradiction. In a similar way,
the singularity of G(x) cannot be milder than that of G(x, o), for otherwise G could
extend harmonically across the puncture o (fix Ω b M , and prove that G coincides
on Ω with the solution ξ of the Dirichlet problem with boundary data G|∂Ω by using
the maximum principle on w = (G− ξ)/G). Suppose now that G(x) admits a Taylor
expansion in a neighbourhood of o as a function of r(x). Writing the first term in the
form Cr(x)2−µ, for some C > 0 and µ > 2, the above observations force µ = m, which
implies

lim
x→o

G(x)

G(x, o)
= C > 0,

for some C > 0. The function ξ(x) = G(x)− CG(x, o) is thus a harmonic function on
Ω, with a singularity milder than that of G(x, o) as x→ o, hence extends harmonically
across o to a harmonic function ξ ∈ C∞(M). Therefore,

G(x) = CG(x, o) + ξ(x) on M. (2.55)

Concluding, the structure of G satisfying (2.48) and admitting a Taylor expansion at
x = o is rigidly described by (2.55). For this reason, alternatively to (2.48) one can
refer to the minimal positive Green function on a non-parabolic manifold, which yields
to the next

Theorem 5. Let (M, 〈 , 〉) be a non-parabolic Riemannian manifold of dimension
m ≥ 3, with minimal positive Green kernel G(x, y). Let q(x), b(x) ∈ C0,α

loc (M), for
some α > 0. Fix o ∈ M and consider G(x) = G(x, o). Let t(x) = − 1

2 logG(x).

Suppose that, for some Âj , B ∈ C0(R), j = 1, 2 we have

Â1(t(x)) |∇ logG|2
4 ≤ q(x) ≤ Â2(t(x)) |∇ logG|2

4

|b(x)| ≤ B̂(t(x)) |∇ logG|2
4 .

(2.56)

Assume the existence of

lim
t→−∞

Âj(t)e
− 4t
m−2 = α̂j ∈ R, j = 1, 2; (2.57)

lim
t→−∞

B̂(t)e−
4t
m−2 = θ̂ ∈ R, (2.58)

and that Â2(t) ≤ 1 on R. Furthermore, for some k ∈ (−∞, 1], suppose that{
t[Âj(t)− 1] ∈ L1(+∞) if k = 1;

Âj(t)− k ∈ L1(+∞) if k < 1.
(2.59)

 B̂(t)tσ−1et(1−σ) ∈ L1(+∞) if k = 1;

B̂(t)et(1−
√

1−k)(1−σ) ∈ L1(+∞) if k < 1,
(2.60)
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for some σ > 1. Then, the equation

∆u+ q(x)u− b(x)uσ = 0

has infinitely many positive solutions u ∈ C2,α
loc (M).

We conclude by observing that, if the topology of M is nontrivial, by Morse Theory
the set C(G) of stationary points of G is non-empty. Conditions (2.56) necessarily
require q, b ≡ 0 on C(G). On the other hand, one has the possibility to choose o in an
arbitrary way in order for (2.56) to be met (together with the conditions on Âj , B̂).
For this reason, knowing the structure of the set C(G) is essential. As it has been
shown in [15], its size is relatively small, as we have

Hm−2(C(G) ∩K) < +∞

for every compact set K b M\{o} (a fortiori, by (2.53), for every K b M), where
Hm−2 is the (m− 2)-dimensional Hausdorff measure. In this respect, see also the very
recent [8] for a sharp generalization and a quantitative improvement.
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