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ABSTRACT: Several computational techniques for solid-state applications have 20 e S

recently been proposed to enlarge the scope of computer simulations of large . = ™ . ooy

molecular systems. In this contribution, we focused on two of these, namely, HF-3c 3§ 5% a e e

and PBEh-3c. They were recently proposed by the Grimme’s group, as “low-cost” ab & | g 10 R ¢4

initio-based techniques for electronic structure calculation of large systems and were é é : pod s2¢ $ t ip*

proved to be effective essentially for organic molecules. HF-3c is based on a Hartree— 38 3 PEEML S

Fock Hamiltonian with a minimal Gaussian quality basis set, whereas PBEh-3c is a @ N T siituser<o>
£ GETUEBLEEERERS

density functional theory (DFT) based method with a hybrid functional and a
medium-quality basis set. Both HF-3c and PBEh-3c account for dispersion (London) A
interactions and are free from the basis set superposition error due to limited basis set 295 5
size, through several pairwise semiempirical corrections. To the best of our
knowledge, despite the promising results on the cost-accuracy side of molecular ~*-
simulations of organic molecules, these methods have been used only in few cases for
solid-state applications. In this contribution, we studied the performance of HF-3c and PBEh-3c for predicting the properties of
inorganic crystals to enlarge the applicability of these cheap and fast methodologies. As a testing ground, we have chosen a well-
known class of material, e.g., microporous all-silica zeolites. We benchmarked geometries, formation energies, vibrational
features, and mechanical properties by comparing the results with literature data from both experiment and computer
simulation. For structures, HF-3c is extremely accurate in predicting the zeolites cell volume, albeit we do not include any
vibrational contribution, neither zero point nor thermal, on the computed volumes, which may introduce small variations in the
predicted values. For the energetic, the relative stability of the zeolites using the DFT//HF-3c approach allows predictions
within the experimental error for most of the cases taken into consideration when the experimental enthalpies were corrected
back to electronic energies by using the HF-3¢ thermodynamic contributions computed in the harmonic approximation. This
strategy is particularly convenient, as the slow step (geometry optimization) is carried out with the cheapest HF-3c method,
whereas the fast step (single point energy evaluation) is carried out with costly DFT methods. In this sense, the use of the
DFT//HF-3c approach results to be a promising one to predict the stability and structure of microporous materials. Finally, the
HF-3c method predicts the mechanical properties of the zeolite set in reasonable agreement with respect to those computed
with the state-of-the-art DFT simulations, indicating the HF-3c method as a possible technique for the mechanical stability

screenings of microporous materials.

B INTRODUCTION

In last years, we have witnessed the development of several
computational techniques for solid-state (SS) applications that
enlarged the possibility of computer simulations in this
research field. Various wave-function-based approaches, earlier
available for molecular systems only, docked on SS realm.
Nowadays, we can use the golden standard for molecular
simulation, e.g., coupled cluster with a full treatment singles
and doubles, for systems with periodic boundary conditions,
albeit with very large cost and small system size.' > Moreover,
the simulation of solids within the second-order Moller—
Plesset approximation (MP2)* can be done routinely, albeit
with serious limitations in terms of geometry optimization.>
Furthermore, recent advances in accuracy and speed-up of the
diffusion quantum Monte Carlo have appeared in recent
work.” The above method includes electron correlation in a
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formally correct manner. Therefore, they are accurate but
computationally expensive, with a narrow range of applicability
in material science, particularly as far as the system size is
concerned, limiting their applicability to complex and more
challenging systems.

For a routine simulation, a SS scientist can rely on density
functional theory (DFT), in which electron correlation is
included in the exchange and correlation potential (Uyc). In its
simpler expression, it depends linearly on the electron density,
but the accuracy of this flavor of DFT is not enough for
chemical applications. Introducing the density gradient and/or
part of exact Hartree—Fock (HF) exchange into Uy increases
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Figure 1. Set of the all-silica polymorphs studied in this work. Only the Si framework is shown.

the accuracy of DFT, and it can be applied for a variety of
problems of chemical nature.* '’ Including also the
description of dispersion forces,'" DFT simulation can reach
in some cases, with a precise choice of parameters, the
celebrated “chemical accuracy”.'?

Faster alternatives to DFT are semiempirical (SE) methods,
which are based on highly approximated HF Hamiltonians,
thus enlarging dramatically the investigable system size.
Successful examples of these methodologies are the PM6
method,"? along with the available refinements for an accurate
description of H bonding and dispersion forces (PM6-
D3H4)'* and for halogenated systems PM6-D3H4,"® as well
as the more recent PM7.'® Very recently, a semiempirical tight
binding (TB) method for the noncovalently large bonded
systems has been proposed, e.g., geometry, frequency,
noncovalent, extended TB.!” Unfortunately, to date, it is
coded for molecular system only. In general, SE methods are
not accurate enough when compared to standard DFT
simulations as, for systems outside the molecular training set,
they may experience large errors in the computed properties.

Recently, Grimme’s group proposed a “low-cost” ab initio-
based technique for electronic structure calculations that lies
between the DFT and SE methods. Called HF-3c,'® the
method is based on a Hartree—Fock (HF) calculation with a
minimal Gaussian-type basis set (MINIX). Thanks to three-
atom pairwise semiempirical corrections, it exhibits the
following features: (i) it is mainly free of basis set
superposition error,” (ii) it accounts for dispersion (London)
interactions,”’ (iii) it correctly computes the interatomic
distances, despite the adopted minimal basis set."® Later on,
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three other members joined the family of the “3¢” methods,
e.g,, PBEh-3¢,”"** HSE-3¢,”" and B97-3c.”® The PBEh-3c and
HSE-3c¢ methods are DFT-based methods with a hybrid
functional and a double zeta Gaussian-type basis set quality.
Conversely, the B97-3c is a generalised gradient approximation
(GGA) functional with a larger triple zeta with one
polarization function (TZP) basis set. To the best of our
knowledge, this promising 3c method family has only been
applied to organic molecular systems in gas phase, solution,
and solid state to date.”'®'**'~*> Qur aim is to check the
range of applicability of these methodologies up to the broad
class of inorganic and composite materials.

In this contribution, we focused on two representative
methods for this low-cost class of methods, e.g., HF-3c and
PBEh-3c, to investigate several inorganic crystalline materials.
As a benchmark for inorganic systems, a well-known class of
materials, e.g., microporous materials, was chosen. We
considered a set of pure silica zeolites recently studied by
Roman-Roman et al.*° Zeolites have found a widespread use in
the field of catalysis, gas separation, and ion exchange.”’
Therefore, being able to model their features has important
consequence in terms of applications.

We have relaxed the geometry and computed the relative
stability and the mechanical properties of a set of zeolites. Our
theoretical findings are compared with experiments and
previously published theoretical values where available. We
have also tested the dispersion-corrected density functional
theory (DFT-D)//HF-3¢-027 recipe in which the energy is
estimated at the DFT-D level on the geometry relaxed with a
revised version of the HF-3c¢ approach. This approach was

DOI: 10.1021/acsomega.8b03135
ACS Omega 2019, 4, 1838—-1846


http://dx.doi.org/10.1021/acsomega.8b03135

ACS Omega

proven to be cost-effective for computing energies and
geometries of molecular crystals® and protein conformations.”®

B RESULTS AND DISCUSSION

Zeolite is a family of crystals with a microporous structure.
Pure silica zeolites (SiO, polymorphs) can have a potential
infinity variety of tetra-coordinated open-framework arrange-
ments, with a-quartz as the thermodynamically most stable
polymorph. In this contribution, we considered 15 silica
polymorphs, e.g, a set of 14 zeolites and the a-quartz crystal,
see Figure 1.

Unit Cell Volume Analysis. We have fully relaxed the cell
and internal parameters of all sets with plain and scaled HF-3c
and PBEh-3¢ methods by exploiting in full the crystal
symmetry. As a comparison, we reported also the results of
the PBE0-D2/VTZP and B3LYP-D2/VTZP methods, taken
from ref 26. As a comparison with the hybrid DFT functionals
taken from literature, we also tested the performances of the
pure GGA PBE-D2/VTZP method.

The percentage deviation of the computed cell volumes with
respect to experiments is graphically reported in Figure 2. The

20 “¢HF-3c
#-HF-3c-027
PBEh-3c
&PBEO0-D2/VTZP
15 ©-PBE-D2/VTZP
4-B3LYP-D2/VTZP
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Figure 2. Percentage deviation from experiment of the computed
volumes at the B3LYP-D2/VTZP,*® PBE0-D2/VTZP,* PBE-D2/
VTZP, HE-3¢, HF-3¢-027, and PBEh-3c levels of theory, for the silica
polymorphs set.

HF-based methods outperform the DFT ones. Indeed, both
plain and scaled HF-3c methods are in very good agreement
with the experiments. The mean absolute percentage error
(MARE) computed for the HF-3c and the HF-3c-027 methods
is 2.1 and 1.9%, respectively (see Table 2). The standard
deviation (SD) in both cases is 2.3%. Conversely, the best-
performing DFT-based method, e.g, PBEh-3c, has only a
MARE of 4.4% with a SD of 3.9%. Interestingly, the general
trend in the volume prediction seems to correlate with the
percentage of HF exchange in the functional definition. Indeed,
the mean relative error (MRE) has the following trend
Perdew—Burke—Ernzerhof (PBE) > B3LYP > PBEO > PBEh-
3c > HF (Table 1), in line with the increment of the exchange
HF percentage, which is 0, 20, 25, 42, and 100%, respectively.

The theoretical framework (electronic energy relaxation)
used to estimate the unit cell volume does not include any
vibrational contribution, neither zero point nor thermal. The
results obtain in such away are compared to the experimental
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Table 1. Statistical Deviation (%) from the Experiments of
the Computed Unit Cell Volumes for the Silica
Polymorphs®

MRE MARE SD%
HF-3c —0.6 2.1 23
HE-3¢-027 0.1 1.9 2.3
PBEh-3c 4.1 4.4 3.9
PBE0-D2/VTZP*® 5.6 5.7 4.0
PBE-D2/VTZP 6.9 6.9 5.0
B3LYP-D2/VTZP* 6.7 6.9 4.1

“The formal definitions of the statistical function used in this table are
reported in the Supporting Information.

data collected at room temperature (RT). To have a fair
comparison between theory and experiments, one should
quantify the effect of vibrations (at RT) on the unit cell
volume size predicted by electronic energy relaxation. For that
purpose, a quasi harmonic approximation (QHA) as
implemented in CRYSTAL17 can be used. Unfortunately,
QHA simulations are extremely costly, as they consist of a
series of geometry optimizations at constant volume followed
by frequency calculations. Therefore, we explicitly run QHA
for a-quartz only using the PBE/VTZP-D2 level of theory. The
unit cell volume change is about +1.4%. For zeolites, we relied
on literature data run with force fields specifically derived for
silica materials. Gale reported a cell volume contraction at T =
200 K for zeolite-A of 0.63%, whereas Faujasite reported even
smaller value.” In a similar study, the volume variation in the
T = 50—300 K range was computed to be —0.36% for zeolite-
L, 0.39% for cancrinite, 0.31% for zeolite-X, and 0.06% (from
20 to 296 K) for experimental measurement on Al-exchanged
zeolite-X.>® As one can see, for zeolites, the expansion can also
be negative as a function of the framework. Due to the very
small absolute variation, we do not believe this effect will alter
the main conclusion of the present work, as variations in
volume as a function of adopted Hamiltonian are larger than
the thermal effect.

Thermodynamic Stability. The enthalpy of formation
(AH) of a material is the sum of three energy differences (with
respect to the reference), e.g., electronic, vibrational zero point
(ZPE), and thermal effect. Therefore, we corrected the
experimental AH (298.15 K)*"** with vibrational ZPE and
thermal energies computed at the HF-3c-027 level, thus
obtaining a “quasi-experimental electronic energies of for-
mation” directly comparable with the computed electronic
energies. We scaled the HF-3c-027 (full IR spectra are
reported in Figure S2) frequencies by 0.8707 (which affects
the ZPE only). This factor minimizes the RMSD of HF-3c-027
frequencies with respect to those computed at the B3LYP/
SVP-D* level for the a-quartz case. Interestingly, the applied
scaling factor is very similar to the one recommended (0.87) in
the original HF-3c publication.'® The HF-3¢-027 ZPE and
thermal energy sum is similar for all zeolites, e.g,, 2.3 & 0.3 kJ
mol™" per SiO, unit (ME + SD). Therefore, we propose to
subtract 2.3 kJ mol™' per SiO, unit as a simple and general
procedure to compute “quasi-experimental AE” from the
experimental AH values.

We have graphically resumed the computed energy of
formation of the zeolite set in Figure 3 and compared it with
the “quasi-experimental energy” of formations. A comprehen-
sive statistical analysis is reported in Table 2. All energetic data
are fully reported in Table S4. In contrast with the cell volume
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Figure 3. (A—D) Comparison between calculated and quasi-experimental energy of formation of zeolites with respect to a-quartz (see text for

further details). The error bar is added to the reference data.

Table 2. Statistical Deviation (with Respect to the Quasi-
Experimental Values) of the Calculated Energy of
Formations of Zeolites from @-Quartz in k] mol™" per SiO,
Unit”

ME MAE SD p
HE-3c¢ 9.8 9.8 2.4 0.9
HEF-3¢-027 59 5.9 2.5 0.8
PBEh-3c¢ 7.6 7.6 1.6 0.7
B3LYP/VTZP-D2 9.2 9.2 12 0.9
PBEO/VTZP-D2 4.9 49 12 0.9
PBE/VTZP-D2 7.5 7.5 1.7 0.7
SP-B3LYP/SVP-D345¢ 7.3 7.3 12 0.8
SP-B3LYP/SVP-D* 3.7 3.7 1.1 0.9
SP-B3LYP/VTZP-D* 0.46 0.81 0.87 0.92
SP-B3LYP/VZTP-D3A5¢ 4.1 4.1 1.1 0.9
SP-PBE/VTZP-D345¢ -0.7 1.0 1.0 0.9
SP-PBE/VZTP-D2 -1.6 1.6 1.1 0.9
SP-PBEh-3¢ 0.7 1.1 1.0 0.9

“P is the Pearson coefficient as defined in the Supporting Information.

estimation, the HF-based methods are not as good for energy
evaluation, see Figure 4A. They are not accurate nor precise,
with a large value of SD, e.g, 2.4/2.5 kJ mol™" per SiO, unit.
The compared full DFT approaches differ only for the
functional type, using the same basis set (VIZP) and
dispersion correction (D2). Among them, the most accurate
is PBEO with a mean absolute error (MAE) value of 4.9 kJ
mol™" per SiO, unit, see Figure 3B. Interestingly, all of them
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Figure 4. Correlation between dispersion energy as computed with
both D* and D3 corrections (to the B3LYP functional) and the
density of the SiO, polymorphs.
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have a small SD value of maximum 1.7 kJ mol™" per SiO, unit
(PBE method, see Table 2).

The high accuracy/cost ratio of the HF-3¢-027 method for
cell volume estimation suggests the use of HF-3¢-027 as a
substitute of DFT in the geometry optimization procedure.
Relaxing the structure is the rate-determining step in these
static simulations, and the use of the faster HF-3c¢ method
leads to a notable speed-up.” Coupling HE-3¢-027 method for
geometry relaxation and DFT for the energy estimation (DFT-
D//HF-3c-027 recipe, hereafter labeled as SP-DFT-D) is a
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Figure S. Minimum (black dots) and maximum (red dots) values for the Young’s modulus (E) and shear modulus (G) of the zeolite set. HF-3c vs
B3LYP-D2/SVP.*® Simple linear regressions (with equation and R? factor) are included in the graph.

methodology that gave excellent results for computing the
energetics of molecular crystals and protein models.””"

Unfortunately, in terms of accuracy, the SP-B3LYP-D
approach is strongly dependent on both dispersion scheme
used in the energy estimation (-D) and the basis set quality,
see Table 2 and Figure 3C,D. Regarding the dispersion
scheme, we have tested two dispersion corrections coupled
with the B3LYP functional, e.g., D* and D3"BC, see Figure 3C.
The SP-B3LYP/SVP-D* method is much more accurate, with
a MAE of 3.7 kJ] mol™" per SiO, unit. Conversely, the SP-
B3LYP/SVP-D3**¢ method gives a higher MAE of 7.3 kJ
mol™" per SiO, unit. The bad performance of the D3*%¢
scheme can be explained by the overstabilization of the denser
a-quartz phase with respect to the porous zeolites. For that
purpose, we have plotted the dispersion energy vs density of
SiO, group for the zeolite set (see Figure 4). The slope of the
regression line is almost twice as large for D3**¢ with respect
the D* one. Noticeable is the negligible contribution of the
three-body correction. As expected, the role of the dispersion
interaction is higher for denser structures, up to the maximum
for a-quartz.

Within the SP-DFT-D recipe, using a larger basis set for the
DEFT energy estimation stabilizes the zeolite with respect to the
a-quartz phase. This effect has already been seen in ref 26.
This leads to results that are in very good agreement with the
experiments. Indeed, for the SP-B3LYP/VTZP-D*, the
calculated MAE and SD are 0.81 and 0.87 kJ mol™" per SiO,
unit, see Figure 3D. This method predicts the zeolite “quasi-
experimental energy of formation” within the experimental
error in most of the cases (9 out of 14). Similar level of
accuracy is achieved using the PBEh-3c as well as the PBE/
VTZP-D3**¢ methods as DFT method for the energy
estimation (SP-PBEh-3c and SP-PBE/VTZP-D3"E methods),
see Table 2 and Figure 3D.

In the case of the SP-PBE/VTZP-D method, the simulations
corrected by the D3¢ dispersion scheme give better results
than those corrected by the D2 scheme (Table 2). By the
analysis of the dispersion energy vs density curve, see Figure
S1, we see that the slope of the regression line is similar
between the D3¢ scheme and the D2 one.

The accuracy of the energy of formation is very important
for studying the experimental feasibility of synthesis of a given
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silica framework. This has been considered through the
analysis of the MAE statistical function. Parallelly, we also
carried out the analysis of the Pearson coefficient. It indicates
the goodness of the linear correlation between experimental
and theoretical data, see Table 2. In most of the cases, the
theoretical methods employed have a good correlation with the
experimental data. This suggests the capability of the selected
method of predicting, with fair accuracy, the right stability
ranking of an all-silica zeolite set.

Mechanical Stability. To tighten the comparison between
different methods, we have predicted the second-order elastic
properties of 9 out of 14 frameworks of the zeolite set at the
HEF-3c level of theory. The mechanical properties of the chosen
zeolites have already been investigated in literature.” From the
analysis of the elastic tensor, we have calculated and analyzed
the Young’s modulus (E) and shear modulus (G) values. These
two quantities are useful for characterizing the stiffness of a
material, and, therefore, they can be related to the mechanical
stability of the zeolites. Due to the anisotropic nature of the
crystals, E and G are directional properties, thus assuming
different values depending on the direction within the crystal
with respect to their evaluation. As we are only interested in
checking the performance of HF-3c method with respect to the
DEFT reference values, we considered only the minimum and
maximum values assumed by E and G for all zeolites. The
reference values are computed by the B3LYP-D2/SVP method,
which were taken from ref 33. The comparison is reported in
Figure S, the statistical analysis is reported in Table SS, and all
explicit values are reported in Table S6.

HE-3c tends to overestimate the stiffness of the zeolites with
respect to BALYP/SVP-D2, see Figure S, with an increment of
the minimum/maximum values for E and G of ~20/30%, see
Table SS. In general, E is computed more precisely than G with
an averaged SD of 11 and 20%, respectively, with respect to the
DFT computed values. To correct the HF-3c values, we
propose a simple scaling factor to estimate E and G at the
B3LYP/SVP-D2 level starting from the HF-3c ones through a
simple linear regression of HF-3c values vs B3LYP/SVP-D2
ones (see Figure S equations).

We have also employed the HF-3c-027 method for
computing the mechanical properties. The results deviate
more from the B3LYP/SVP-D2 one than the plain HF-3c. This
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is not surprising, considering that the HF-3c-027 method
performs badly in general in terms of energy estimation.” With
the scaled method, the E and G values are usually higher with
respect to plain HF-3c, see Figure S3.

Finally, we have calculated the E and G anisotropies, which
are the difference between the maximum and the minimum
values for E and G, respectively. This quantity is usually
employed as a qualitative indicator of the mechanical stability
of microporous crystalline materials.”* > The anisotropy at
the B3LYP/SVP-D2 level spans from 1 to 4. Interestingly, the
same range of anisotropy is computed using the HEF-3c
method.

B CONCLUSIONS

In this work, we have reported the performance of two recently
presented computational methods, e.g., HF-3c and PBEh-3c.
The testing ground is the prediction of the thermodynamic and
mechanical stability of all-silica zeolites. We have carried out a
comparison with experiments (when available) and standard
DFT simulation (also taken from literature) used as reference.

The first computational step to calculate the thermodynamic
and mechanical stability of a crystalline material is the structure
relaxation. An outcome of this step is the prediction of the
crystal cell volume. In this regards, we have a clear indication
of the excellent performance of the HF-3¢ method. Indeed, it
outperforms PBEh-3¢ and standard hybrid DFT with a large
basis set (from ref 26), resulting in extremely high accuracy. In
details, the HF-3¢-027 method computes the unit cell volumes
with unsigned percentage mean error (MARE) of 1.9% with
respect to experiments. The PBEh-3¢ method has a lower
MARE of 4.4%, which is better than that of standard hybrid
DFT (MARE of 5.7% at least). Interestingly, we notice an
increasing accuracy in the volume prediction by increasing the
percentage of the HF exchange potential within the adopted
Hamiltonian. It should be stressed that due to the high cost of
the calculations, we did not include any vibrational
contribution, neither zero point nor thermal, on the computed
volumes, which may introduce small variations in the predicted
values. Nonetheless, literature data based on classical force
fields developed for all-silica materials gave variations in the
unit cell volumes for selected zeolites within 1%. Therefore, we
think this effect will not affect the main conclusions of this
work.

Regarding zeolite thermodynamic stability, we used quasi-
experimental energy of formation as reference values. These
data are obtained by correcting back the experimental
enthalpies of formation with respect to a-quartz for the
vibrational zero point and thermal energy computed at HF-3c-
027 level. We found this correction to be quite constant across
the set of zeolites (about 2.3 + 0.3 k] mol™! per SiO, unit). In
this way, we computed quasi-experimental energies of
formation spanning from 4 to 12 kJ mol™ per SiO, unit.
For the HF-3c methods, we calculate a high mean unsigned
error (MAE) of 5.9 k] mol™ per SiO, unit at least. This is not
surprising, as HF-3c is known to be inaccurate for energy
estimations.””® Conversely, PBEh-3c does better but suffers
from the relevant deviation on the unit cell volume compared
to experiments.

Mixing the HF-3c method (for geometry optimization) with
hybrid DFT (for single point energy calculation), namely, SP-
DFT-D, is an excellent recipe to predict the thermodynamic
stability of zeolites. Using the B3LYP/VTZP-D* method for
energies gives a MAE value of only 0.81 kJ mol™" per SiO, unit,
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well within the experimental error for 9 out of 14 zeolites.
Moreover, we noticed that B3LYP simulation corrected for
dispersion with the most recent DFT-D correction, e.g., D3ABC
scheme, overstabilizes the dense a-quartz phase, thus
destabilizing excessively the zeolites set. This effect is mitigated
when the PBE functional is employed. This suggests the use of
D* and D3*¥C schemes coupled with the B3LYP and PBE
functionals, respectively, for theoretical works on pure silica
zeolites.

The SP-DFT-D approach is potentially cheaper than the
standard DFT. Indeed, the computationally demanding
procedures, e.g., geometry optimization and vibrational
frequencies estimations, are computed with the faster HF-3¢
method. The slower hybrid DFT (with large basis set) is used
only for one single point energy calculation. The computa-
tional cost of a SCF cycle plus atomic gradient follows this
order: HF-3c < B3LYP/SVP < PBEh-3c < B3LYP/VTZP. The
speed-up factor of HF-3c with respect to BALYP/VTZP is up
to 1 order of magnitude with a much smaller footprint on the
requested random-access memory. The speed-up can be
dramatically improved by a careful reparameterization of the
basis set of second-row elements in the context of solid-state
application. Our group is currently working on this topic, and
preliminary results indicate that the speed-up obtained for
organic systems (HF-3c/(B3LYP/TZP) = 1:~40) is attainable
also gfg; crystals of inorganic nature with properly cured basis
sets.™

The calculation at HF-3c of the Young (E) and shear
modulus (G) gives stiffer zeolites with respect to the B3LYP-
D* prediction. The average increment on E/G values is 220/
30%. The E and G anisotropies, which give a rough estimation
of the mechanical stability of a material, are computed as the
ratio between E,,/E.,, and G,,/G., Due to errors
cancellation, HF-3c agrees with B3LYP, with predicted
anisotropies spanning from 1 to 4. This indicates HF-3¢c as a
possible method to perform mechanical stability screenings of
microporous materials.

In perspective, the combination of the cost-effective HF-3c
method with the more accurate B3LYP/VTZP-D* one may
also extend the possibility to study the adsorption of molecules
in zeolite pores.”® It can become an useful complementary tool
for experimentalists for locating metal doping®” or substitution
sites in zeolites framework. In these cases, in which usually the
crystal symmetry is reduced, having a fast method for
computing geometry and vibrational frequencies is mandatory.
The accuracy of the energy estimation, ensured by using the
DEFT, allows also to have reliable reaction barrier energies, as
we demonstrated in conformational changes of proteins.””
Another potential application, which will be the focus of future
work, will be the study of the relative stability of different sites
of protonation for Al-exchanged zeolites, which is relevant in
catalysis. The PBEh-3¢ method confirms a reasonably good
performance also of the inorganic materials. The results are in
line with large basis set hybrid DFT at a fraction of their cost.

B COMPUTATIONAL METHODS

We computed relaxed geometries, energies, and vibrational
frequencies with a development version of the CRYSTAL14
code.*® Conversely, zeolite mechanical properties are run with
the latest release of the code, e.g, CRYSTALI17.% The results
obtained with the development version of CRYSTAL14 can
now be reproduced with CRYSTAL17.
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Simulations are run employing the HE-3c'® and PBEh-3¢*
methods, which are available in the CRYSTAL code. Along
with the plain HF-3c method, we also employed a revised form
of the method, namely, HF-3¢-027.° In the HF-3c-027
approach, the dipole—quadrupole contribution of the D3
scheme is scaled by a factor of 0.27. With this refinement, HF-
3¢-027 gave excellent results in computing protein and
molecular crystal structures, see refs S and 28.

Standard DFT simulations were run using the B3LYP hybrid
functional,” corrected with a revised version of the D2
dispersion scheme, e.g, D*.*%*! B3LYP simulations are run
also with the most recent D3 scheme,” including the Axilrod—
Teller—Muto-three-body-term (D3%5€).*>** Also, pure GGA
PBE functional has been employed, being regularly applied in
plane waves based codes. The PBE functional has been
coupled with the D2 dispersion scheme (scaled by a factor of
0.75),” and to the D3*PC scheme. To estimate the volume
expansion of the a-quartz, we used the quasi-harmonic
approximation (QHA keyword) as implemented in the
CRYSTAL17 code, using default parameters beside the
parameter step and points set to 1.5 and 7, respectively, see
ref 44. Due to the small cell size of the a-quartz, the QHA
calculation has been carried out on a super (1 X 1 X 2) cell.

Atomic positions and cell vectors optimization adopted the
analytical gradient method. The Hessian was upgraded with
the Broyden—Fletcher—Goldfarb—Shanno algorithm.*~* We
set tolerances for the convergence of the maximum allowed
gradient and the maximum atomic displacement to default
values. To help the convergence of the SCF, the Fock/KS
matrix at a given cycle was mixed with percentage from 30% up
to 50% of the one of the previous cycle.”” The recently
introduced direct inversion of the iterative subspace extrap-
olator technique has been employed to speed up the SCF
convergence.""” Details on the tolerance values controlling
the Coulomb and exchange series in periodic systems"" and
the shrink factor used in the calculations are reported in details
in the Supporting Information. Regarding the shrinking factor,
a minimum shrinking factor of 2,2 was employed up to 6,6
depending on the system. The zeolite mechanical properties
were calculated employing the default setup of the
CRYSTAL17 code, besides the NUMDERIV parameter,
which is set to 5.** For the vibrational frequency calculations,
the mass-weighted force-constant matrix was computed at the
I' point by numerical derivative of the analytic nuclear
gradients. A value of 0.003 A was chosen as the displacement
of each atomic coordinate. The IR intensity of each normal
mode of vibration was computed using the Berry phase
approach.’® Tolerance (Hartree) on the energy convergence is
set to

e 107 for single point energy calculations and geometry
optimizations

e to 107® in mechanical property calculations (as default)

e to 107" in frequency calculations.

B3LYP calculations were carried out using molecular all-
electron Gaussian basis sets. A split valence basis with
polarized functions (SVP) set of 8-411G(d) was chosen for
O atoms and 88-31G(d) for Si atoms.”" Also, a more extended
VTZP basis set from Ahlrichs et al,** also employed in the
work of Roman-Roman et al,”° has been adopted here for
running B3LYP simulations. The HF-3c method is imple-
mented and parameterized only for the MINIX'® basis set,
which is a STO-3G-like quality basis set for O, whereas
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polarization functions are added for the Si atom. The PBEh-3¢
method has the def2-mSVP basis set, which is a $35-1111G(d)
and DZP set for Si and O, respectively.

To compute the quasi-experimental energy of formation,

AE .y we applied the formula
AE, ., = AH,(298) — AE(ZPE) — AE(298)

in which AE(ZPE) and AE(298) are the zero point energy and
the thermal corrections, respectively, to the experimental
enthalpy of formation AH,,(298). The graphical visualization
and structural manipulation of structures was performed with
MOLDRAW version 2.0.”° Images were rendered with
VDM.** Analysis of the elastic tensor was carried out with
the ELATE online tool.”
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