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A B S T R A C T

The development of a multi-omics approach has provided a new approach to the investigation of microbial
communities allowing an integration of data, which can be used to better understand the behaviour of and
interactions between community members. Metagenomics, metatranscriptomics, metaproteomics and metabo-
lomics have the potential of producing a large amount of data in a very short time, however an important
challenge is how to exploit and interpret these data to assist risk managers in food safety and quality decisions.
This can be achieved by integrating multi-omics data in microbiological risk assessment.

In this paper we identify limitations and challenges of the multi-omics approach, underlining promising
potentials, but also identifying gaps, which should be addressed for its full exploitation. A view on how this new
way of investigation will impact the traditional microbiology schemes in the food industry is also presented.

1. Introduction

The last decades have been characterized by exciting technological
advancements in the field of analytical methods. In food microbiology
this has allowed the introduction of alternative methods to traditional
microbiology, the majority of them being based on molecular biology. A
“cultural” evolution took place from the late '90, when microbes started
to be detected in the food matrix without the need of cultivation on
synthetic microbiological media (Cocolin and Ercolini, 2015). If food-
borne pathogens are specifically taken into account, this approach dates
back to the late '80, when polymerase chain reaction (PCR) was used to
detect microorganisms from food without isolation.

Next Generation Sequencing (NGS) techniques undoubtedly re-
present a step change in the way microbiologists address ecology and
diversity in foods. While with the traditional Sanger approach se-
quencing could be performed on a unique DNA molecule (Sanger and
Coulson, 1975), with NGS it is possible to extract the nucleic acids from
a complex ecosystem and profile in detail the microbial populations
(identified as Operational Taxonomic Units, OTU) present. Moreover,
NGS allows for a gene library creation, which can be used to understand

the functions that are mostly present in a specific ecosystem. In meta-
taxonomics (or metagenetics, rRNA metagenomics or more generally
amplicon sequencing), the extracted nucleic acids are subjected to an
amplification step, thereby becoming semi-quantitative due to the po-
tential biases introduced by PCR. In metagenomics, DNA is subjected to
direct sequencing, via the creation of shotgun libraries (Ercolini, 2013)
(Fig. 1). It is clear that metagenetics is an approach that is “taxonomy”
oriented, and for this the new term metataxonomics can be coined,
while metagenomics is “function” oriented, although taxonomic com-
position of communities can also be inferred as well from a sample's
metagenome (Bokulich et al., 2016; Franzosa et al., 2015). In fact,
microbial diversity in food ecosystems can be described by extracting
and elaborating separately the rRNA sequences from the rest of the
data. In this case one essential point that should be taken into con-
sideration is the number of sequences obtained for the rRNA genes with
respect to the total (depth of the analysis). These approaches are va-
luable, without impacting the ecological description of the sample
(coverage), when a high number of reads is obtained, which is de-
pending on the complexity of the ecosystem. Inadequate sequencing
depth and coverage result in an underestimation of the diversity
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regarding microbial populations and genes. Also, metagenomics offers
the opportunity to look beyond the presence/absence of taxonomically
defined entities (i.e. specific organisms) and instead to understand the
relationships between microorganisms as well as their activities and
functionalities in a particular niche. In this context, the focus on the
presence of genes, and their transcripts, rather than the identification of
a specific organism, may be a preferred approach (Brul et al., 2012).
Moreover, the combination of data on the presence/absence of specific
pathogenic or spoilage organisms and total metagenomics community
fingerprints of specific niches may lead to the development of bench-
marked risk profiles based on only the community fingerprint. Lastly, it
becomes a very attractive possibility to sequence messenger RNA
(mRNA), through the application of metatranscriptomics, in order to
understand the behaviour of the microbial population in a defined
ecosystem.

NGS approaches have attracted much attention in the last few years,
due to their power in data generation, epidemiology, and micro-
biological risk assessment. Genomes can be generated with a speed that
was not possible to imagine in the past (within 24 h) and they can be
even reconstructed from metagenomic libraries, allowing for an accel-
eration in the process of pathogen-source attribution. Moreover, meta-
omics data (especially metatranscriptomics) can be interpreted to better
understand how a microorganism interacts with the surrounding en-
vironment (including other microorganisms) and as a consequence
design strategies to improve safety and quality of foods. It must be
underlined that the introduction of NGS in food microbiology will re-
quire new infrastructures and knowledge. Due to the high amount of
information produced, data storage, processing and interpretation will
have to be carried out properly following a trans disciplinary approach.

The greatest challenge that microbiologist are facing at the moment
is how to integrate omics data in microbiological risk assessment
(MRA). MRA is a qualitative, semi-quantitative or quantitative method,
which provides a structured framework for identifying and evaluating
various microbiological risks through the completion of four main steps
the: a) hazard identification, b) hazard characterization, c) exposure
assessment and d) risk characterization (CAC, 2014). Although methods
and interpretation of omics data are currently too complex to be readily

implemented into the current risk assessment paradigm, we envision a
framework by which risk assessment moves beyond taxonomic and
genotypic identification to a more functional approach based on the
study of microbial behaviour (i.e. expression of genes). To live up to
expectations, much will depend on whether the tools can provide the
required resolution, e.g. detect microbes or traits present in low cell
numbers and assess gene expression of such low-abundance species
(Brul et al., 2008).

The aim of this paper is to evaluate the potential of meta-omics
approaches and the obstacles, which should be overcome in order to
foresee their full exploitation in MRA, including views not only from
academia, but also from food producing companies.

2. Meta-omics approaches and their exploitation for food quality
and safety

Meta-omics approaches have explored the complex microbiota of
several environments i.e. water, soil, plants as well as human micro-
biota. One exciting and expanding area of investigation is the use of
metagenome sequencing for diagnosing infection, as the potential to
detect and identify causative organisms that are difficult to find by
conventional methods (Thoendel et al., 2016). Phylogenetic analyses of
pathogenic microbes using NGS (i.e. Whole Genome Sequencing, WGS)
are powerful epidemiological tools for examining disease origins, and
evolutionary relationships to identify transmission pathways and miti-
gate the factors affecting disease transmission (Khaledi et al., 2016;
Rantsiou et al., this issue; Stumpf et al., 2016) leading to preventing
future outbreaks and diminishing their effects.

The use of NGS approaches to investigate the microbial ecosystem of
food has dramatically increased in the last five years and has been re-
viewed recently (Ercolini, 2013, Kergourlay et al., 2015). In the case of
microbial spoilage, high-throughput sequencing (HTS) has opened up
new perspectives of characterization and control options. For most food
products, spoilage microbiota had remained poorly characterized due
to their diversity and the lack of selective culture media for their iso-
lation. With the overview of the whole ecosystem given by metage-
nomic or metagenetic approaches, a precise description of the bacterial

Fig. 1. The use of NGS in applied microbiology can be used to better understand ecology and interactions of microorganism in specific complex ecosystems. Not only diversity, but also
behaviour can be investigating targeting DNA and RNA, respectively.
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species that are present at the time of spoilage becomes available.
Pothakos et al. (2014) used HTS of 16S rRNA genes to describe the
microbial communities involved in several food spoilage cases before
the end of shelf-life to identify some spoilage-specific microorganisms.
These methods have also been used to investigate environmental con-
tamination (De Filippis et al., 2013) or effect of the process on the
microbiota (Nieminen et al., 2012). Metagenetics has also revealed the
existence of core communities sharing similarities between meat and
seafood products and evidenced that unculturable bacteria were
dominant in spoiled cod (Chaillou et al., 2015). Notably, beyond the
powerful nature of HTS, in several studies, the taxonomic identification
is limited to the genus level and no further advanced information is
provided (Kergourlay et al., 2015).

These studies have laid the basis for ecosystem characterization, but
other steps are required. The first one is to change focus from presence
to function (roles). As far as spoilage is concerned, the traditional cul-
ture-based methods or the first non-cultural methods (Denaturing
Gradient Gel Electrophoresis -DGGE, Temperature Gradient Gel
Electrophoresis -TGGE) have shown in some cases that dominant spe-
cies on microbiological plates were not the main spoilers, e.g., re-
sponsible for odors or texture degradation (Jaffrès et al., 2011; Macé
et al., 2013). Metagenetics targeted on specific metabolic activities (e.g.
acidification, protein degradation) would have thus to be considered to
better evaluate food decay. This approach has been used in the fer-
mented product Kimchi, where a specific group of genes was mon-
itored: those involved in carbohydrate fermentation, which may better
describe the bacterial communities that are linked to the fermentation
characteristics (Jung et al., 2011). This group of genes was also re-
ported to be involved during ripening of a Dutch-type cheese
(Porcellato and Skeie, 2016). Using functional annotation, Escobar-
Zepeda et al. (2016) have also evidenced the active role of the microbial
communities in the production of flavour compounds in a ripened
Mexican cheese. In the same way, Bokulich et al., (2015), have com-
bined microbial ecosystem studies with the detection of spoilage genes
to predict contamination routes in breweries.

Regarding food safety risk, the presence of foodborne pathogens
may not be evidenced using HTS technologies, due to their low number
compared to the dominant microbiota. Indeed Listeria monocytogenes,
Salmonella spp., Yersinia spp. and Brucella spp. were not detected by
metagenomics in ripened cheese (Escobar-Zepeda et al., 2016). Using
16S amplicon sequencing, low read numbers corresponding to L.
monocytogenes were detected in some fresh meat or seafood samples but
none was recorded at the spoilage time (Chaillou et al., 2015). In both
cases, the presence of these foodborne pathogens was not investigated
using traditional methods, and only global indicators such as total biota
or Enterobacteriaceae were enumerated. To improve pathogen detection
with NGS, the identification of virulence among the sequences in me-
tagenomic studies, or their use as targets for amplicon sequencing, may
be investigated. This approach was used in the metagenomic study of
Escobar-Zepeda et al. (2016) where the presence of virulence genes of
pathogenic Escherichia coli was check after amplification due to the low
bacterial number of Enterobacteriaceae family, but not detected by
metagenomics, and by Yang et al. (2016) who investigated, using
shotgun metagenomics, E. coli virulence genes throughout the beef
production chain. The evaluation antibiotic resistance of bacterial
communities using HTS has not been reported yet in food. However, in
other ecosystems like wastewater, the effect of genes bacA carried by
Bacillus and RND-related ARGs (antibiotic resistance genes) carried by
Pseudomonas was highlighted and mainly contributed to enhance the
ARGs abundance in UV treated water (Hu et al., 2016).

Another field of investigation for safety risk assessment concerns
bacterial interactions and their impact on safety. In the research studies
mentioned above (Escobar-Zepeda et al., 2016; Yang et al., 2016), high
numbers of different lactic acid bacteria (LAB) species or other main
spoilage bacteria were detected suggesting that they affected the sur-
vival and/or growth of enteric and pathogenic bacteria. The possible

mechanisms responsible for this inhibition include; organic acids, such
as the lactic acid produced by LAB, pH decrease and the presence of
bacteriocins. In metagenomic studies, the analysis of genes involved in
such inhibition could be a first assessment of the ability of a microbial
community to have an effect on the inhibition of foodborne pathogens
(Escobar-Zepeda et al., 2016). With the increase of metagenomic data
for microbial food ecosystems, the use of a novel ecological approach,
called network inference, which investigates the co-occurrence and
mutual exclusion of species inside communities and predicts microbial
interactions (Faust and Raes, 2012) becomes possible. Moreover, co-
occurrence/co-exclusion analysis was recently applied in a study of the
microbial ecology of an Italian hard type cheese, in which it was de-
monstrated that specific LAB could exclude spoilage species, re-
sponsible for significant changes in the microbial ecology during the
fermentation and ripening process (Alessandria et al., 2016).

The major barrier of those approaches is the overwhelming high
proportion of human, environmental or other microorganisms to pa-
thogen DNA in samples with low pathogen abundance. Microbial DNA
enrichment methods offer the potential to relieve this limitation by
increasing its quantity, while bioinformatic tools exist to help identify
and remove reads from other sources (Ames et al., 2013; Scholz et al.,
2016; Thoendel et al., 2016; Zhang et al., 2015). An additional chal-
lenge in such studies is to identify from which microorganisms and
genes the DNA originated, thus the choice of the tools and databases
which are available for annotating DNA sequences and can have a
significant impact on the false representation of community composi-
tion and function is crucial (Randle-Boggis et al., 2016). The effect of
DNA extraction method could not be underestimated too. In a recent
study, the authors conclude that different DNA extraction methods lead
to different results in downstream data analysis (Gerasimidis et al.,
2016; Knudsen et al., 2016).

Advanced DNA sequencing techniques are becoming increasingly
popular and economically viable, and there is a significant growth
potential for such technologies in the field of food microbiology (Gill
et al., 2006; Kergourlay et al., 2015). By enabling rapid identification of
microbial communities someone can examine and compare micro-
biomes across a vast number of hosts, habitats, and species (Stumpf
et al., 2016). In particular, the use of multi-omics approaches allows a
combinational analysis of the microbiota and metabolites, which en-
ables the better understanding of the interactions between environ-
ment, food product and microbiota (De Filippis et al., 2016). Also, in a
situation where a potential pathogen is detected at very low levels,
attention should be given to its presence due to potential implications
for consumer's health. Besides these, interaction of the pathogens with
the gut microbes during an infection process can affect the disease
outcome, which constitutes the hazard characterization part of MRA.
The relevance of multi-omics tools for hazard characterization is ad-
dressed in the paper by Nabida et al. (this issue).

3. From presence to behaviour

To fully exploit the potential of NGS in MRA it is essential that the
results obtained are correctly interpreted, taking into consideration the
biological meaning of the targeted DNA and/or RNA. Most often the
approaches used to date in food microbiology are either based on the
analysis of DNA or RNA and the outcomes obtained have to be inter-
preted knowing the physiological meaning of these two nucleic acids.
While DNA is a chemically stable molecule, which can be found a long
time after the death of a cell, RNA is more sensitive to degradation,
especially in environments, like foods, in which enzymes, such as hy-
drolases, are present. While DNA can give a good overview of what
microorganisms are or were present in a given ecosystem, it cannot
provide any information on what microbes are doing regarding meta-
bolic and spoilage activities and virulence factors expression. For this
reason, if the goal of the investigation is to get an insight on how the
microorganism is behaving, the RNA is better option (Cocolin et al.,
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2013). To get quantitative information on the real activity of micro-
organisms in their ecosystem, transcriptomic and metatranscriptomic
approaches are necessary. Specific spoilage potential activities can be
evaluated among communities such as biogenic amines production
using conserved decarboxylase genes (Diaz et al., 2016) or microbial
genes causing food discoloration (Andreani et al., 2015). Till now me-
tatranscriptomic studies have been mainly applied in fermented pro-
ducts to investigate changes in the overall gene expression during fer-
mentation of Kimchi (Jung et al., 2013) or to understand the impact of
temperature and relative humidity on the ripening dynamics of an
Italian cheese (De Filippis et al., 2016). Metatranscriptomic studies will
probably rise with the availability of whole-genome sequences of the
bacterial species identified in food ecosystems.

However, data on foodborne pathogen behaviuor are still lacking.
At the moment of the writing of this paper, this is principally due to
technical hurdles, which have to be solved to allow a better exploitation
of such analysis. Because mRNA represents the target molecule to se-
quence, nucleic acid mixtures extracted from the complex ecosystems
must be subjected to some purification steps, in which first the DNA is
degraded, then the eukaryotic RNA is digested, and finally, the bacterial
mRNA is purified. In all these steps particular attention should be given
to the prevention of the RNA degradation and the preservation of a
sufficient quantity to allow sequencing. Unfortunately the available
possibilities (ready-to-use kits) present on the market, apart from being
expensive, do not guarantee a successful purification of mRNA mole-
cules, making the metatranscriptomic approach complicated. It is ex-
pected, in the near future, that better solutions for mRNA purification
will be offered to the researchers to avoid these limitations. Moreover,
the application of metatranscriptomics in the food safety area has to
face additional challenges, such as the low number of pathogenic bac-
teria usually present in food and their physiological state. In fact,
dormant foodborne pathogens still represent a risk for human health,
however the level of expression of virulence genes is expected to be
very limited.

One possible solution to circumvent the problems above is to look
for biomarkers. Those are genes that can be correctly correlated to a
specific physiological manifestation, such as virulence or stress re-
sponse. By analyzing the trends in the expression of biomarkers, it
would be possible to predict microbial behaviour. This strategy has
been used for both spoilage and pathogenic bacteria (Desriac et al.,
2012, 2013; Mataragas et al., 2015), however, for biomarker identifi-
cation, it would be best to rely on metatranscriptomic data or large sets
of relative expression data in which scan for potential biomarker genes
(den Besten et al., this issue; Rantsiou et al., this issue).

Independently of the approach used (metatranscriptomics or bio-
marker identification), the simple analysis of mRNA is not sufficient to
provide inputs to MRA because often the expression of a gene does not
necessarily imply a physiological response. For this reason, tran-
scriptomic data must be coupled with proteomics (metaproteomics) and
metabolomics (metametabolomics). Therefore, the multi-omics ap-
proach is necessary to get the information needed to be considered in
MRA. This aspect assumes even more importance when we analyze the
intra-species diversity that foodborne pathogens and spoilers present in
food matrices. By tackling the diversity in the microbial world by using
these high-throughput methodologies it will be feasible to construct
mechanistic models which will take into consideration this biodiversity
and will improve the reliability of MRA schemes, even in the event of
no growth but increased virulence in certain food matrices (den Besten
et al., this issue).

4. Next generation sequencing, predictive metagenomics
profiling, genome-scale metabolic models and their potential link
with microbiological risk assessment

MRA can benefit from the revolution that NGS has brought to the
analysis of microbial ecology of foods. Metagenomic analysis usually
takes two forms (Fig. 1). The first is the 16S rRNA gene sequencing,
which answers the question ‘Who is there?’ (taxonomic composition).

Fig. 2. The potential link between metagenomics and microbiological risk assessment.
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The 16S rRNA sequencing data can be analyzed with tools belonging to
the field of Predictive Metagenomic Profiling (PMP). The objective of
PMP is to predict the abundance of functional gene families present in
microbial communities (Wood, 2016), answering the question ‘What
can they potentially do?’ (functional potential). The PMP analysis pro-
duces a matrix containing the predicted gene family counts as KEGG
orthology identifiers (KO), which can be grouped into pathway level
categories (KO modules). Furthermore, for each OTU, 16S rRNA copy
number is used to measure the relative contribution of gene families to
the functional potential of the microbial community (Wood, 2016). As
such, the results from the PMP analysis can be used to support MRA
studies regarding the prediction of a phenotypic behaviour (e.g. anti-
microbial resistance, survival or increased virulence) of the identified
OTU under concern. The results of PMP can be validated and more
details regarding the phenotypic behaviour of the identified OTU can be
acquired with the investigation of the functional potential of the mi-
crobial community using shotgun metagenomics sequencing (Fig. 2).

MRA is the process of building a risk assessment model for the es-
timation of the risk, i.e. the adverse effect to health due to the exposure
to a specific hazard of microbiological nature. Although, Genome Scale
Metabolic Models (GSMMs) can be applied to build dynamic network
models for microbial communities (Steinway et al., 2015), an MRA
refers to a single microorganism. From this point of view, GSMMs and
constrained-based modelling approaches for single species populations,
i.e. the microbial hazard under concern, seems more appropriate and
may enhance specific parts of an MRA study. Some basic information on
GSMMs is provided below and interested readers should consult ex-
cellent reviews on this topic for more details (Bordbar et al., 2014).
Based on the WGS information of a given organism it is possible to re-
construct a genome-scale metabolic network of chemical reactions also
known as GSMM. It contains information about the genes and proteins
(enzymes) implicated in the metabolic reactions of a microorganism. A
GSMM can be integrated and/or validated using genomic, tran-
scriptomic, proteomic and metabolomic data (Patil and Nielsen, 2005).
If validation takes place in situ (i.e. in a food or environmental sample),
through meta-omics approaches, it may be possible to evidence the in-
fluence of the microbial community or other, abiotic factors, on the
predictions made using a GSMM. From this point of view, it might
enrich MRA studies through understanding and prediction of the re-
lationships between genes, proteins (enzymes) and reactions. For ex-
ample, it is possible to identify the active metabolic pathways, which
may lead to increased resistance of a foodborne pathogen under a
specific environmental condition, using a GSMM developed for this
pathogen. In a given environmental condition, however, the identifi-
cation of the presence of genes that encode enzymes for a particular
metabolic pathway does not necessarily mean that there will be a direct
effect on the flux output (Andersen et al., 2001; Koebmann et al., 2002).
The kinetic of enzymes determines which flux will be ultimately af-
fected (Teusink and Smid, 2006) and, in this context, the development
of kinetic models for the specific metabolic pathways identified earlier
by the GSMM as active will have a positive influence on an MRA study.
Moreover, it will provide information on how this environmental con-
dition affects the pathogen's metabolic network, i.e. predictions about
its phenotype; resistant or sensitive.

For this purpose, there is an inventory of analytical tools that can be
applied to GSMM to obtain additional information. For example, Flux
Balance Analysis (FBA) can be implemented to a GSMM to get the
optimal value for product yield and biomass formation or even to
predict metabolic fluxes and specific growth rate. Teusink et al. (2009)
used GSMM, FBA and physiological data to investigate the adaptive
growth strategy of the microorganism Lactobacillus plantarum in an
unusual and poor carbon source conditions, while Métris et al. (2011)
have exploited FBA to determine essential genes for Campylobacter je-
juni. Therefore, specific parts of an MRA study such as Hazard Identi-
fication and Exposure Assessment may benefit from the introduction
and application of GSMMs. Nowadays, the determination of maximum

growth rate (μmax) for instance, used to assess exposure in MRA studies,
is mainly descriptive and empirical, while changes in μmax reflect me-
tabolic adaptations that can be explained with such global approaches
(Adadi et al., 2012; O'Brien et al., 2013). Finally, the Hazard Char-
acterization component of an MRA study, and especially its sub-com-
ponent of the host-pathogen interaction, a significant component of an
MRA study, may take advantage of the GSMMs. When both kinds of
models, human and microbial metabolic models, are available the in-
teraction between host and microorganism can be established (Bordbar
et al., 2010; Nielsen, 2015).

5. How new NGS approaches could impact traditional
microbiology programs in the food industry?

Metagenomics is a powerful tool that allows both taxonomic and
functional characterization of microbial communities, which would
have been difficult if not otherwise impossible to determine using tra-
ditional microbiological techniques. Since the early 2000s, the impact
of the microbial communities in the food-processing environment on
the hygiene and food safety of the finished product, also known as
environmental pressure, has been widely studied with the limited mo-
lecular tools available such as PCR and D/TGGE. While these tools
created an improved picture of the microbial environment compared to
traditional culture methods, a number of questions remain open: Why
do some pathogens have higher prevalence (time, location) than
others? How can one assess or identify the transfer of pathogens from
the environment or raw materials to product or how do inadequate
control measures lead to faults in finished products? As we move into a
new paradigm using NGS in metagenomic studies the increased in-
formation provided will impact industry, whether it is greater insight
into the composition of microbial communities in a factory, faster
identification of specific strains, and their capabilities to cause disease
or spoilage. Industry presently identifies ways to incorporate metage-
nomics into their Pasteurian based microbiological food safety and
quality systems. This increased information will lead to a revolution
similar to that which we are currently observing with the use of WGS
strain typing in epidemiological investigations of foodborne illnesses
(Rantsiou et al., this issue), as it is expected to move from culture to
omics based indicators, not considering only presence, absence or
enumeration of one type of organism or community, but also its po-
tential impact on food quality and safety and public health (Tan et al.,
2015).

Potential applications of NGS led metagenomics are far ranging and
these community analyses could be used in a number of interesting
ways. In the area of Food Authenticity the microbiota of a food product
could be used as a fingerprint specific to that product and factory in
order to define its point of origin (David et al., 2016). This will, how-
ever, require the preliminary knowledge of the microbiome of the
specific raw materials and the effect of the location of origins. This DNA
based fingerprint can be one additional tool, once defined, to establish
identity of a food, water or beverage product. This same information,
however, may prove useful to the food industry by enhancing or fo-
cusing the trace back of products and raw materials when spoilage or
food safety issues occur as the microbial species and strains present in
the microbiome could be specific to regions, countries or even factories
and raw materials, in much the same way the Food and Drug Admin-
istration (FDA) has used WGS strain typing to identify the geographic
origin of strains in specific outbreaks (Chen et al., 2016; Hoffmann
et al., 2016; Wilson et al., 2016). These metagenomic studies may also
be able to identify sentinel microbes (essentially indicator microbes
linked to various pathogens), which could be incorporated into food
safety plans.

While metagenomic studies may help to identify sentinel microbes
and provide enhanced information for source tracking they cannot at
least for now replace the classical microbial food factory control plans
already in place. While the technology is becoming more accessible, it
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still requires technical expertise that cannot be implemented in all food
business manufacturing sites. However, well designed studies can
challenge and improve factory control plans by identifying the most
relevant target for routine testing, moving verification schemes from
expert driven to data driven and most importantly providing insight for
microbiological risk analysis across matrices.

The MRA framework can be applied both for food safety hazards
and spoilage organisms. Codex Alimentarius Commission has provided
a basis for performing MRA for food safety hazards. This systematic risk
assessment for a particular hazard encompasses several sequential steps
to enable the determination of a Food Safety Objective (FSO), which
provides an appropriate level of protection for the public health against
a particular hazard in a country. In the light of new insights brought by
metagenomics, the outputs of the MRA framework are expected to
provide new options for mitigation the hazard, such as adhesion cap-
ability, survival mechanism and ecological interaction. It is then up to
the industry to derive applicable control measures to meet the FSO
(CAC, 2014). With regard to spoilage, the task of establishing control
measures can be more difficult; not only are there a large number of
spoilage agents, but they also possess, quite different spoilage char-
acteristics. Moreover there is also a lack of public data providing any
clear qualitative links between processing line performance (specifica-
tion met or not) and consumer satisfaction as there is with the Geno-
meTrakr network and foodborne illness (although much of this meta
data is currently only available to FDA and CDC). Metagenomic tools,
presently under development, are expected to contribute in providing
food spoilage potential, helping food business operators to have a better
rationale for product acceptance (Pujol et al., 2013; Cao et al., 2017).

Metagenomics in risk assessment can potentially bring value where
(i) risk assessment requires evaluation of a microbial community and or
(ii) to provide more details of a known hazard in the processing en-
vironment or in a food matrix (growth, survival, and ecological com-
petition). A food safety risk assessment based on an entire microbial
community present in a food matrix is not readily foreseeable, though
applications such as meta-transcriptomics might help study the beha-
viour of a hazard in its natural environment in the presence of co-oc-
curring microorganisms. The behaviour of a particular hazard and its
virulence potential can be used in both hazard identification and
characterization studies during risk assessment. Nevertheless, as high-
lighted by Franz et al. (2016), in their opinion on the applicability of
whole genome sequencing of a single isolate in MRA, a paradigm shift
will be required for the current risk assessment models to input geno-
typic information. Also, the predicted phenotypic characteristics have
to be validated for biological relevance using experimental studies be-
fore its use in risk assessment models.

Aside from its potential use in MRA, metagenomics is currently
finding applications where traditional culture methods fail or are dif-
ficult to apply. Moreover, simulation of spoilage conditions can be
tricky to replicate and study under laboratory conditions as the growth
media used for the isolation may induce a selective bias. Amplicon
sequencing or whole genome shotgun metagenomics sequencing can
rapidly identify microbial population with a short turnaround time and
also negates the influence of the selective enrichment bias thus pro-
viding immense value in spoilage studies. Additionally, metagenomic
tools can help industries to anticipate this microbial spoilage by iden-
tifying genes coding for enzymes in the metabolic pathway leading to
spoilage present at the beginning of a products shelf-life and using this
data to create models that asses the risk of product spoilage (Kable
et al., 2016). However, limitations in the method such as the quanti-
fication of organisms, live/ dead differentiation, biological relevance of
functional prediction and sampling bias have to be overcome to suc-
cessfully apply metagenomics studies to develop mitigation strategies to
prevent product spoilage.

Metagenomics has also found utility in improving traditional pa-
thogen detection methods. For example, The US FDA used metage-
nomics to study the enrichment step used for detecting Salmonella in the

tomato phyllosphere (Ottesen et al., 2013). Similarly this can also be
applied to optimize the sample preparation steps for the detection of
pathogens in difficult matrices such as mineral mixes.

Metagenomics can also help to understand factory ecology and ei-
ther validate or improve the current environment pathogen verification
activities. For example, attempts have been made to devise biocontrol
applications to manage L. monocytogenes in production facilities (Fox
et al., 2014) by studying the microbial population. The findings of this
study suggested the presence of sentinel organisms, which can signify
the attachment and the potential for biofilm formation by L. mono-
cytogenes, which contributes to the basic understanding of an industry-
wide problem. Outcomes of such studies have to be validated but could
significantly improve the current microbial hazard management prac-
tices.

Metagenomics can be of immense benefit to the food industry where
the current microbial isolation and identification methods suffer serious
limitations in addressing its concerns. This tool can also be used to gain
new knowledge and information on known issues and can potentially
result in bringing significant advantages to the current management
practices. For example, metagenomics can be applied to either validate
or significantly improve the applicability of Enterobacteriaceae family as
a hygiene indicator in a dry manufacturing facility. In conclusion,
metagenomics along with WGS of single microbial isolates will result in
the generation of tremendous knowledge which has to be harnessed for
the benefit of the food industry by defining relevant case studies and a
paradigm shift will be required before these data can be used in food
safety risk assessment models. Finally industry is still struggling to
identify the best way to incorporate omics of all types into its food
safety plans. While the previous sections provide many examples of
how these technolgies may be used in industry and building upon these
examples it is easy to envision a coordinated program during product
development through scale-up and production in a factory where the
manufacturers link metagenomics and metabolomics to better under-
stand the microbiology of the product and the process to meet a FSO or
Spoilage objective. As industry always desires faster more intigrated
management of hazards it is easy to envision this future as similar to
that proposed by the clinical microbiologist, were the ingredient and
enviromental monitoring programs are metagenomic and metabolomics
based with cultural conformation of the positive samples. This system
would provide increased speed for industry. However a few challenges
as discussed above remain. First the distribution and prevelence of
many pathogens in ingredients such as dairy powders means we still
have to find the needle in a hay stack. Therefore our reliance on clas-
sical enrichments will remain until this is solved. Additionally, industry
needs to prepare for this radical change in how food microbiology is
conducted; the skills at the bench and throughout the bioinformatic
pipline are not common place in the food safety workforce and it will
take time for these things to become common place across industry,
which will make the interpretation of data and communication of its
implications across all levels of a company from a risk manager to the
Vice President of Food Safety seemless.

6. Conclusions

The application of multi-omics in food safety and quality has the
potential to answer questions traditional microbiological methods
could not address. Approaching the food ecosystem from different an-
gles (metagenomics, metatranscriptomics, metaproteomics and meta-
metabolomics) allows for a “holistic” representation of which micro-
organisms are present, how they behave, how they interact and which
are the phenotypic manifestations in this complex arena. The expected
outcome may have an invaluable impact in food safety, in order to
reduce the risk associated to foodborne pathogens, but also to better
control spoilage processes. However, before this becomes reality a
number of obstacles and hurdles have to be overcome. More specifically
we have to learn how to translate molecular events into practical
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applications, which will give the food industries concrete solution on
how to make food products more safe and stable.
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