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Abstract

1 In this paper we obtain generalized Calabi-type compactness criteria for
complete Riemannian manifolds that allow the presence of negative amounts of
Ricci curvature. These, in turn, can be rephrased as new conditions for the
positivity, for the existence of a first zero and for the nonoscillatory-oscillatory
behaviour of a solution g(t) of g′′ + Kg = 0, subjected to the initial condition
g(0) = 0, g′(0) = 1. A unified approach for this ODE, based on the notion of
critical curve, is presented. With the aid of suitable examples, we show that our
new criteria are sharp and, even for K ≥ 0, in borderline cases they improve on
previous works of Calabi, Hille-Nehari and Moore.

1 Basic comparison and Myers type compactness re-
sult

Hereafter, we consider a connected, complete Riemannian manifold (M, 〈 , 〉), and a
chosen reference origin o ∈ M . Let Do = M\({o} ∪ cut(o)) be the maximal domain
of normal coordinates centered at o, and denote with r(x) the distance function from
o. The classical Bonnet-Myers theorem, showing the compactness of M under the
condition

Ricc ≥ (m− 1)B2〈 , 〉 (1.1)

for some B > 0, can be proved as a consequence of the Laplacian comparison theorem.
Indeed, let us recall the following generalized form of this latter.

1Mathematic subject classification 2010: primary 53C20; secondary 34C10.
Keywords: compactness, Myers type theorems, oscillation, positioning of zeros.
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1 BASIC COMPARISON AND MYERS TYPE COMPACTNESS RESULT 2

Theorem 1 (Theorem 2.4 of [16]). Let M be as above. Assume that the radial
Ricci curvature satisfies

Ricc(∇r,∇r)(x) ≥ −(m− 1)G(r(x)) on M, (1.2)

for some function G ∈ C0(R+
0 ), and let g ∈ C2(R+

0 ) be a solution of{
g′′ −Gg ≥ 0

g(0) = 0, g′(0) = 1.
(1.3)

Let (0, R0) (possibly R0 = +∞) be the maximal interval where g is positive. Then,

Do ⊂ BR0
(1.4)

and the inequality

∆r(x) ≤ (m− 1)
g′(r(x))

g(r(x))
(1.5)

holds pointwise on Do and weakly on M .

Suppose the validity of (1.1) so that G(t) = −B2. A simple checking shows that
g(t) = B−1 sin(Bt) solves (1.3). Its first positive zero is at 2π/B. Then (1.4) gives
that Do ≡ M is bounded. Since M is closed, the Hopf-Rinow theorem implies that
M is compact. In fact, we have also shown that diam(M) ≤ 2π/B, but since (1.1) is
indipendent of the origin o we can improve the above to the sharp estimate diam(M) ≤
π/B.

Cleary the key point of our proof lies in the validity of the inclusion Do ⊂ BRo .
The way to prove this latter is as follows. Suppose to have shown (1.5) on Do ∩BRo

A computation in normal coordinates gives

∆r =
∂

∂r
log
√
g̃(r, θ),

where g̃(r, θ) is the determinant of the metric in this coordinate system. Thus, (1.5)
on Do ∩BR0

reads
∂

∂r
log
√
g̃(r, θ) ≤ (m− 1)

g′(r)

g(r)
. (1.6)

Fix the unit vector θ and let γθ be the unit speed geodesic emanating from o with
γ̇θ(o) = θ. γθ will stop to be minimizing after the first cut point attained at t = c(θ) >
0. With ε > 0 sufficiently small, we integrate (1.6) on [ε,min{c(θ), Ro}], we let ε→ 0+

and we use the asymptotic behaviours in 0 to get√
g̃(r, θ) ≤ g(r)m−1,

Since g̃(r, θ) > 0 on Do, we have R0 ≥ c(θ), that is, Do ⊂ BR0
.

However, by a result of M. Morse, a complete manifold M is compact if and only if
each unit speed geodesic γθ emanating from some fixed origin o ceases to be a segment
i.e. length minimizing, for a value c(to) of its parameter t which is finite. Thus, the
above reasoning appears to be slightly redundant, in the sense that it provides a bound
R0 which is independent of the considered unit speed geodesic from o. This motivates
the following result of Galloway [8].
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Theorem 2. Let (M, 〈 , 〉) be a complete Riemannian manifold of dimension m ≥
2. Assume that, for some origin o and for every unit speed geodesic γ : R+

0 → M
emanating from o, the solution g of g′′ +

Ricc(γ′, γ′)(t)

m− 1
g = 0,

g(0) = 0, g′(0) = 1

(1.7)

has a first positive zero. Then, M is compact with finite fundamental group.

Proof. Let r0 > 0 be the first positive zero of g solution of (1.7). Multiply the equation
in (1.7) by g, integrate by parts and use the initial conditions to get∫ r0

0

(g′)2 −
∫ r0

0

Ricc(γ̇, γ̇)

m− 1
g2 = 0 (1.8)

By Rayleigh characterization, this means that the operator

L =
d2

dt2
+

Ricc(γ̇, γ̇)

m− 1

satisfies
λL1 ([0, r0]) ≤ 0,

and by monotonicity of eigenvalue

λL1 ([0, r]) < 0 ∀ r > r0.

But L is the stability operator for the geodesic γ, and on [0, T ] γ is minimizing only if

λL1 ([0, T ]) ≥ 0.

Thus if the value c(γ) gives the cut-point di o along γ it must be c(γ) ≤ r0. By Morse
result M is compact. The same procedure can also be applied to the Riemannian
universal covering M̃ → M , showing that M̃ is compact and thus that Π1(M) is
finite.

If we ignore that L is the stability operator for the unit speed geodesic γ we can
proceed with the following analytic alternative proof.

Let p ∈ Do, and let γ : [0, r(p)] → M be the minimizing geodesic from o to p so
that r(γ(t)) = t and ∇r ◦ γ = γ̇ for t ∈ [0, r(p)]. We fix a local orthonormal coframe
{θi} to perform computations. Here 1 ≤ i, j, . . . ≤ m and we use Einstein summation
convention. Then for the distance function r on Do we have

dr = riθ
i,

and Gauss lemma writes
riri ≡ 1. (1.9)

Taking covariant derivative of (1.9) we obtain

rijri = 0 (1.10)

that is,
Hess r(∇r, ·) = 0. (1.11)
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Covariant differentiation of (1.10) yields

rijkri + rijrik = 0. (1.12)

From the simmetry rij = rji we deduce that rijk = rjik, and by the Ricci commutation
rules

rijk = rikj + rtRtijk

Rtijk the components of the Riemann tensor. Using this in (1.12) we get

0 = rijkri + rijrik = rjikri + rijrik = rjkiri + rtR
t
jikri + rijrik.

Thus, tracing with respect to j and k

rirkki + rtriRti + rikrik = 0,

with Rti the components of the Ricci tensor. In other words

〈∇∆r,∇r〉+ Ricc (∇r,∇r) + |Hess(r)|2 = 0

Computing along γ

d

dt
(∆r ◦ γ) + |Hess(r)|2 + Ricc (∇r,∇r) = 0

on [0, r(p)]. Using (1.11) and Newton’s inequality, we have

|Hess(r)|2 ≥ (∆r)2

m− 1
,

and setting ϕ(t) = ∆r ◦ γ(t) from the above we obtain

d

dt
ϕ(t) +

ϕ(t)2

m− 1
+ Ricc (∇r,∇r) ≤ 0 (1.13)

on [0, r(p)]. Furthermore, it is well known that

∆r =
m− 1

r
+ o(1) as r → 0+

Hence, since γ is minimizing

1

m− 1
ϕ(t) =

1

(r ◦ γ)(t)
+ o(1) =

1

t
+ o(1) as t→ 0+ (1.14)

Defining

u(t) = t exp

{∫ t

0

(
ϕ(s)

m− 1
− 1

s

)
ds

}
on [0, r(p)], u is well defined because of (1.14) and a computation using (1.13) gives

d2

dt2
u+

Ricc(γ̇, γ̇)

m− 1
u ≤ 0 (1.15)

Let now h be any C1([0, r(p)]) function such that h(0) = 0 = h(r(p)). Since u > 0
on (0, r(p)] the function h2u′/u is well defined on (0, r(p)]. Differentiating, using (1.15)
and Young inequality we get

d

dt

(
h2u

′

u

)
≤ −Ricc(γ̇, γ̇)

m− 1
h2 − h2

(
u′

u

)2

+ 2hh′
u′

u
≤ −Ricc(γ̇, γ̇)

m− 1
h2 + (h′)2
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Fix ε > 0 sufficiently small. Integration of the above on [ε, r(p)] gives

−h2(ε)
u′(ε)

u(ε)
≤
∫ r(p)

ε

(h′)2 −
∫ r(p)

ε

Ricc(γ̇, γ̇)

m− 1
h2

Since h(ε) = Aε+ o(1), for ε→ 0+ where A ∈ R, letting ε→ 0+ we obtain∫ r(p)

0

(h′)2 −
∫ r(p)

0

Ricc(γ̇, γ̇)

m− 1
h2 ≥ 0 (1.16)

This contradicts (1.8) unless r(p) ≤ r0.
Thus we have reduced the compactness problem for the complete manifold M to

the problem of the existence of a first zero for solutions of the Cauchy problem{
g′′ +K(t)g = 0 on R+

g(0) = 0, g′(0) = 1.
(CP)

where in our geometric application

K(t) = Kγ(t) =
Ricc(γ̇, γ̇)

m− 1
(t) (1.17)

We observe that the existence of a first zero is also ”a posteriori” guaranteed via
an oscillation result for the same equation, and that uniform upper estimate for the
positioning of the first zero yields a diameter estimate. In this perspective the original
result of Calabi can be stated as follows (see also Theorem 3.11 of [2]).

Theorem 3 (Theorems 1 and 2 of [4]). Let M be as above, and assume that
Ricc ≥ 0 on M . Suppose that for each unit speed geodesic γ emanating from o there
exist 0 < a < b, possibly depending on γ, such that∫ b

a

√
Ricc(γ′, γ′)(s)

m− 1
ds >

{(
1 +

1

2
log

b

a

)2

− 1

}1/2

. (1.18)

Then, M is compact and has finite fundamental group. In particular, this holds pro-
vided that

lim sup
t→+∞

(∫ t

1

√
Ricc(γ′, γ′)(s)

m− 1
ds− 1

2
log t

)
= +∞. (1.19)

Remark 1. As a matter of fact, under the assumption Ricc ≥ 0 on M , (1.19) gives
an oscillation result for (CP).

In Calabi result the requirement Ricc ≥ 0 is essential. We stress that (1.18) is,
to the best of our knowledge, the first instance of a condition in finite form for the
existence of a first zero, that is, a condition involving the potential K only in a compact
interval [a, b]. One of the main purpose of the present paper is to extend the result even
when Ricci is negative somewhere. It shall be observed that the problem of obtaining
Myers type compactness theorems under the presence of a suitably small amount of
negative Ricci curvature has already been a flourishing field of research, for which we
refer the reader to [21], [6], [18] and the references therein. However, the techniques
employed in these papers are of various nature and neither of them relies on oscillation
type results for a linear ODE, nor it gives explicit bounds for the amount of negative
curvature allowed. Indeed, it should be pointed out that the method in [21] via Jacobi
fields is not distant from our approach. A much closely related result is the recent [13],
where the case Ricc ≥ −B2 is analyzed.
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2 The role of the critical curve

As we will see shortly, in order to extend Calabi result, we shall deal with a slightly
different ODE. In particular, we are concerned with the following problems:

i) study the existence of a first zero of solutions z(r) of{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+

z(0+) = z0 > 0,
(2.1)

with A(t) ≥ 0, v(t) > 0 on R+;

ii) give an upper bound for the positioning of the first zero of z;

iii) study the oscillatory behavior of (2.1);

iv) extend the obtained result when A(r) changes sign.

Towards these aims we introduce the ”critical curve” χ(r) relative to (2.1) or to the
next Cauchy problem{

(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on [r0,+∞), r0 > 0

z(r+
0 ) = z0 ∈ R,

(2.2)

To do this we require the assumptions

0 ≤ v(r) ∈ L∞loc(R+
0 ),

1

v(r)
∈ L∞loc(R+), lim

r→0+
v(r) = 0 (V1)

(the last equation request is intended on a rapresentative of v) and the integrability
condition

1

v(r)
∈ L1(+∞). (VL1)

We set

χ(r) =

{
2v(r)

∫ +∞

r

ds

v(s)

}−2

=

{(
−1

2
log

∫ +∞

r

ds

v(s)

)′}2

(2.3)

Fix 0 < R < r, from the definition di χ we deduce

∫ r

R

√
χ(s)ds =

1

2
log

{(∫ +∞

R

ds

v(s)

)/(∫ +∞

r

ds

v(s)

)}
∀ 0 < R < r, (2.4)

Thus letting r → +∞, we obtain √
χ(r) 6∈ L1(+∞) (2.5)

It is worth to stress that the function χ only depends on the weight v, not on A. Note
that, although (CP) can be thought as a version of (2.1) with v ≡ 1, assumptions
(V1), (VL1) are not satisfied. Thus, the next main Theorem 4 below cannot be directly
applied to (CP).

The study of the Cauchy problem (2.1) turns out to be extremely useful in a
number of different geometric problems, not only those described in this paper. For
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instance, a mainstream application of it is to derive spectral estimates for stationary
Schrödinger tipe operators via radialization techniques. In this case, the role of v is
played by the volume growth of geodesic spheres centered at o, for which (V1) is the
highest regularity that we can in general guarantee. However, since there are natural
upper and lower bounds coming from the Laplacian comparison theorems, it is worth
to relate the critical curve with that of, say, an upper bound for v. More precisely, for
f satisfying

f ∈ L∞loc(R+
0 ),

1

f
∈ L∞loc(R+), 0 ≤ v ≤ f on R+

0 (F1)

1

f
∈ L1(+∞) (FL1)

we shall compare χ(r) with the critical curve χf (r) defined again via (2.3). We observe
that, for any positive constant c, χcf = χf . This suggests that, in general, v ≤ f does
not imply χ ≤ χf . To recover this property we need a more stringent relation between
v and f .

Proposition 1 (Proposition 4.13 of [2]). Let v, f satisfy (V1), (VL1) on some
interval I = (r0,+∞) ⊂ R+. Then,

(i) If v/f is non-increasing on I, χ(r) ≤ χf (r) on I;

(ii) If v/f is non-decreasing on I, χ(r) ≥ χf (r) on I;

In the case v(r) = vol(∂Br), the above proposition fits well with the Bishop-
Gromov comparison theorem for volumes ([16], Theorem 2.14). The interested reader
may consult Chapter 4 of [2], where the authors give a detailed discussion on the
critical curve, together with estimates on χ when v(r) = vol(∂Br), explicit examples,
and many applications. For instance, the deep relationship between χ(r) and optimal
weights for Hardy inequalities is discussed. Since, as we will see, in dealing with
Calabi-type compactness results the role of v will be played by some suitable weight
which has no direct relation with volumes, we shall not pursue this line of argument
any further.

We now list the assumptions under which we will treat either of the Cauchy prob-
lems (2.1) or (2.2).

v(r)

∫ a

r

ds

v(s)
;

1

v(r)

∫ r

o

v(s)ds ∈ L∞([0, a]) (V2)

for some a ∈ R+.
1

v(r)

∫ r

0

v(s)ds = o(1) as r → 0+ (V3)

A(r) ∈ L∞loc(R+
0 ) (A1)

Conditions

1. (A1), (V1), (V2) and (V3) guarantee the existence of a solution z ∈ Liploc(R+
0 )

of (2.1)

2. (A1), (V1) and (V2) its uniqueness

3. (A1), (V1) the fact that each solution z 6≡ 0 has isolated zeros, if any.
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Note that (V2) and (V3) are automatically satisfied if v(r) is non-decreasing in a
neighbourhood of 0.
The following theorem summarizes some of the results obtained in [2] (for the proof of
items (3) and (4) also see [3]).

Theorem 4. Let (A1), (V1), (F1), (VL1) be met, and let z ∈ Liploc(R+
0 ) be a solution

of {
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+,

z(0+) = z0 > 0.
(2.6)

Then,

(1) [Theorem 5.2 of [2]] If A(r) ≤ χ(r) on R+, then z > 0 on R+. Furthermore,
there exists r1 > 0 and a constant C = C(r1) > 0 such that

z(r) ≥ −C

√∫ +∞

r

ds

f(s)
log

∫ +∞

r

ds

f(s)
on [r1,+∞). (2.7)

(2) [Corollary 5.4 of [2]] If A(r) ≤ χ(r) on [r0,+∞), for some r0 > 0, then z is
nonoscillatory, that is, it has only finitely many zeroes (if any).

(3) [Corollary 6.3 of [2]] If A ≥ 0 on R+, A 6≡ 0 and there exist r > R > 0 such
that A 6≡ 0 on [0, R] and∫ r

R

(√
A(s)−

√
χf (s)

)
ds > −1

2

(
log

∫ R

0

A(s)v(s)ds+ log

∫ +∞

R

ds

f(s)

)
(2.8)

then z has a first zero. Moreover, this is attained on (0, R], where R > 0 is the
unique real number satisfying∫ r

R

√
A(s)ds = −1

2
log

∫ R

0

A(s)v(s)ds− 1

2
log

∫ R

r

ds

f(s)
(2.9)

(4) [Theorem 6.6 of [2]] If A ≥ 0 on R+ and, for some (hence any) R > 0 such
that A 6≡ 0 on [0, R],

lim sup
r→+∞

∫ r

R

(√
A(s)−

√
χf (s)

)
ds = +∞ (2.10)

then z is oscillatory, that is, it has infinitely many zeroes.

Remark 2. In fact, for (2) and (4) to hold, it is enough that z solves the Cauchy prob-
lem only on [r0,+∞), for some r0 > 0 and for some initial condition z(r0), (vz′)(r0).

It is worth to make some observations on the conditions in the above theorem.

- In (1), A ≤ χ cannot be replaced with A ≤ χf . The reason is that, as already
observed, no relations between χ and χf can be deduced from the sole require-
ment v ≤ f in (F1). However, note that χf appears both in (2.8) and in (2.10).
This is due to the technique developed for (3) and (4), which is different from
that used for (1) and (2).
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- The lower bound (2.7) is sharp. Indeed, it can be showed that if z is positive on
R+ and A ≥ χ on some [r0,+∞), then necessarily z is bounded from above by
the quantity on the RHS of (2.7), for some C > 0.

- The right hand side of (2.8) is independent both of r and of the behavior of
A after R. Therefore, the left hand side of (2.8) represents how much must A
exceed a critical curve modelled on f in the compact region [R, r] in order to
have a first zero for z, and it only depends on the behavior of A and f before
R (the first addendum of the RHS), and on the growth of f after R. This is
conceptually simpler than Calabi compactness condition, where the role of a, b
is balanced between the two sides of (1.18).

Remark 3. The assumptions in (3) and (4) can be weakened. Indeed, it is enough
that z solves the inequality (vz′)′ + Avz ≤ 0 on R+, and that its initial condition
satisfies

vz′

z
(0+) = 0.

Note that sufficiently mild singularities of z as r → 0+ are allowed, depending on the
order of zero of v(r) at 0.

Remark 4. Using (2.4) we see that (2.10) can be equivalently expressed as

lim sup
r→+∞

{∫ r

R

√
A(s) +

1

2
log

∫ +∞

r

ds

f(s)

}
= +∞. (2.11)

The similarity between (2.11) and (1.19) is evident. Indeed, as a first application of
Theorem 4 let us show that Calabi condition (1.19) implies that the solution of (CP),
with

K(t) =
Ricc(γ̇, γ̇)

m− 1
(t) ≥ 0, (2.12)

is oscillatory.
Indeed, choose any v satisfying (V1), (V2), (V3) and v−1 ∈ L1(+∞)\L1(0+), for

instance v(r) = rm−1 for some m ≥ 3. Let r = r(t) be the inverse function of

t(r) =

(∫ +∞

r

ds

v(s)

)−1

(2.13)

and define

z(r) =
g(t(r))

t(r)
(2.14)

Then z solves  (vz′)′ +
K(t(r))t4(r)

v2(r)
v(r)z = 0 on R+

z(0) = 1 (vz′)(0) = 0

(2.15)

where now differentiation is with respect to the variable r. If (2.11) holds with f = v
and

A(r) =
K(t(r))t4(r)

v2(r)
≥ 0,

then z oscillates and so does g. A change of variables shows that (2.11) is exactly (1.19).
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The literature on the qualitative properties of solutions of (CP) is enormous, and
considerable steps towards the comprehension of the matter have been made through-
out all of the 20th century. In particular, a number of sharp oscillatory and nonoscilla-
tory conditions for g have been found. Here, we only quote two of the finest. The first
is the so-called Hille-Nehari criterion, see [19], p.45 and [10], Theorem 5 and Corollary
1.

Theorem 5. Let K ∈ C0(R)∩L1(+∞) be non-negative, and consider a solution g of
g′′ +Kg = 0. Denote with k(t), k∗ and k∗ respectively the quantities

k(t) = t

∫ +∞

t

K(s)ds, k∗ = lim inf
t→+∞

k(t), k∗ = lim sup
t→+∞

k(t).

We have:

- if g is nonoscillatory, then necessarily k∗ ≤ 1/4 and k∗ ≤ 1;

- if k(t) ≤ 1/4 for t large enough, in particular if k∗ < 1/4, then g is nonoscilla-
tory.

As a consequence, k∗ > 1/4 is a sufficient condition for g to be oscillatory.

Remark 5. If K 6∈ L1(+∞), the result applies with k∗ = k∗ = +∞, and g is thus
oscillatory. This case is due to W.B. Fite [7].

Remark 6. Improving on an old criterion of Kneser, it can be showed (see [2], Propo-
sition 2.23) that if k(t) ≤ 1/4 on the whole R+, then the solution g of (CP) is positive
and increasing on R+.

Remark 7. Hille-Nehari criterion detects the oscillation of g when K(t) ≥ B2/(1+t2)
on R+, for some B > 1/2. In a geometrical context, this particular case has been
investigated in [5], where the authors have also obtained upper bounds for the first
zero of g solving (CP).

Remark 8. For every B ∈ [0, 1/2], the Cauchy problem associated to the Euler
equation  g′′ +

B2

(1 + t)2
g = 0,

g(0) = 0, g′(0) = 1,

has the explicit, positive solution

g(s) =


√

1 + t log(1 + t) if B = 1/2;

1√
1− 4B2

(
(1 + t)B

′′
− (1 + t)1−B′′

)
if B ∈ [0, 1/2),

where

B′′ =
1 +
√

1− 4B2

2
∈ (1/2, 1]

(see [19], p.45). For B = 1/2, this example shows that Hille-Nehari criterion is sharp.
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When k∗ = k∗ = 1/4, Hille-Nehari criterion cannot grasp the behaviour of g.
As we shall see, combining (2) and (4) of Theorem 4 in an iterative way, we can
construct sharper and sharper oscillation and nonoscillation criteria that can detect
the behaviour of g even in some cases when the Hille-Nehari theorem fails to give
information.

The second result we quote allows sign-changing potentials K and is due to R.
Moore (see [14], Theorem 2)

Theorem 6. Let K ∈ C0(R). Each solution g of g′′ +Kg = 0 is oscillatory provided
that, for some λ ∈ [0, 1), there exists

lim
t→+∞

∫ t

0

sλK(s)ds = +∞, (2.16)

Remark 9. Setting λ = 0 in Moore statement we recover a result of W. Ambrose [1]
and A. Wintner [20] (one can also consult [9], Corollaries 3.5 and 3.6 for a different
proof and a generalization). Remark 8 shows that in Moore result the interval of
the parameter λ cannot be extended to [0, 1]. Thus, Euler equation suggests that,
when restricted to the case K ≥ 0, Moore criterion is somehow weaker than that of
Hille-Nehari.

Another observation on Moore result is that, although sharp from many points of
view, it requires that the negative part of K be, loosely speaking, globally smaller
than the positive part. This is the essence of the existence of the limit in (2.16). One
of our goal in the next section will be to obtain an oscillation criterion that allows K
to have a relevant negative part. Furthermore, with the aid of (2.8), we will also find
a condition in finite form for the existence of a first zero that allows K to be negative
somewhere. As far as we know, there is still no result in this direction besides some
very recent work of P. Mastrolia, G. Veronelli and M. Rimoldi, which we recall here
for the sake of completeness.

Theorem 7 (Theorem 5 of [13]). Suppose that K ∈ L∞(R+
0 ) satisfies K ≥ −B2,

for some B ≥ 0, and let g be a solution of (CP). Suppose that there exist 0 < a < b
and λ 6= 1 for which either∫ b

a

sKγ(s)ds > B

{
b+ a

e2Ba + 1

e2Ba − 1

}
+

1

4
log

(
b

a

)
(2.17)

or ∫ b

a

sλKγ(s)ds > B

{
bλ + aλ

e2Ba + 1

e2Ba − 1

}
+

λ2

4(1− λ)

{
aλ−1 − bλ−1

}
(2.18)

holds (if B = 0, this has to be intended in a limit sense). Then, g has a first zero.

Remark 10. The case B = 0 of the above result is due to Z. Nehari, see [15], p.432
(8), with an entirely different proof. We point out that, in [13], the authors also give
an upper bound for the position of the first zero.

3 Extensions of Calabi compactness criterion

We shall now deal with (2.1) under the further assumption that A is possibly negative.
Hereafter, we require the validity of (A1), (V1), (V2), (V3), (F1) . Let z ∈ Liploc(R+

0 )



3 EXTENSIONS OF CALABI COMPACTNESS CRITERION 12

be a solution of {
(vz′)′ +Avz = 0 on R+,

z(0+) = z0 > 0,
(3.1)

or of the analogous problem on [r0,+∞).
Choose a function W ∈ L∞loc(R+

0 ) such that

W ≥ 0 a.e. on R+, W +A ≥ 0 a.e. on R+. (3.2)

For instance, W can be taken to be the negative part of A. To apply the results of
the previous section, we need to produce, starting from (3.1) and W , a solution z̃ of
a linear ODE of the type (v̄z̃′)′ + Āv̄z̃ = 0, for some new volume function v̄ and some
Ā ≥ 0. Towards this purpose, consider a solution w(r) ∈ Liploc(R+

0 ) of{
(vw′)′ −Wvw ≥ 0 on R+

w(0+) = w0 > 0.
(3.3)

Note that from
(vw′)′ ≥Wvw

we deduce w′ ≥ 0 a.e., hence w has a positive essential infimum on R+
0 . Therefore, the

function z̃ = z/w is well defined on R+
0 and solves{ (

[vw2]z̃′
)′

+
(
A+W

)
[vw2]z̃ ≤ 0 on R+

z̃(0) = z0/w0 > 0,
(3.4)

As observed in Remark 3, the inequality sign in (3.4) is irrelevant for the proofs of
(3), (4) of Theorem 4. In this way, (3) and (4) can be extended to cover sign-changing
potentials by simply replacing A with A+W , v with vw2 and f with fw2. The main
problem therefore shifts to the search of explicit solutions w of (3.3), once v and W
are given.

Up to taking some care when dealing with the initial condition, the same procedure
can be carried on even when v ≡ 1. In this case, we are able to provide an explicit
form for w when the potential W is a polynomial. This leads to the following theorem
(see Theorem 6.41 of [2]). In the statement below, we denote with Iν is the positive
Bessel function of order ν.

Theorem 8 (Compactness with sign-changing curvature). Let (M, 〈 , 〉) be a
complete m-dimensional Riemannian manifold. For each unit speed geodesic γ ema-
nating from a fixed origin o, define

Kγ(t) =
Ricc(γ′, γ′)(t)

m− 1
.

Assume that one of the following set of assumptions is met.

(i) The function Kγ(t) satisfies

Kγ(t) ≥ −B2
(
1 + t2

)α/2
on R+,

for some B > 0 and α ≥ −2 possibly depending on γ. Having set

0 ≤ Aγ(t) = Kγ(t) +B2
(
1 + t2

)α/2
,
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suppose also that, for some 0 < S < t such that Aγ 6≡ 0 on [0, S],∫ t

S

(√
Aγ(σ)−

√
χw2(σ)

)
dσ

> −1

2

(
log

∫ S

0

Aγ(σ)w2(σ)dσ + log

∫ +∞

S

dσ

w2(σ)

)
,

(3.5)

where

w(t) =


sinh

(
2B

2 + α

[
(1 + t)1+α

2 − 1
])

if α ≥ 0;

t1/2I 1
2+α

(
2B

2 + α
t1+α

2

)
if α ∈ (−2, 0);

tB
′

if α = −2,

(3.6)

and B′ = (1 +
√

1 + 4B2)/2.

(ii) The function Kγ(t) satisfies

Kγ(t) ≥ B2

(1 + t)2
on R+,

for some B ∈ [0, 1/2] possibly depending on γ. Having set

0 ≤ Aγ(t) = Kγ(t)− B2

(1 + t)2
,

suppose also that, for some 0 < S < t such that Aγ 6≡ 0 on [0, S], inequality (3.5)
holds with

w(t) =

 (1 + t)B
′′ − (1 + t)1−B′′

if B ∈ [0, 1/2);

√
1 + t log(1 + t) if B = 1/2,

(3.7)

and B′′ = (1 +
√

1− 4B2)/2.

Then, M is compact and has finite fundamental group.

Remark 11. Note that, both for (3.6) and for (3.7), the critical curve related to w2

exists since 1/w2 ∈ L1(+∞).

Proof. By Theorem 2, it is enough to prove that, for every γ issuing from o, the
solution g of {

g′′ +Kγ(t)g = 0

g(0) = 0, g′(0) = 1
(3.8)

has a first zero.
(i) A straightforward computation shows that the function w in (3.6) is a positive
solution of

w′′ −B2(1 + t2)α/2w ≥ 0 on R+

whose initial condition, in the cases α ∈ (−2, 0) and α ≥ 0, is

w(0) = 0, w′(0) = C > 0. (3.9)
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Consider z̃ = g/w. Then, z̃ solves

(w2z̃′)′ +Aγw
2z̃ ≤ 0 on R+. (3.10)

In order to apply (3) of Theorem 4 to the differential inequality (3.10), we shall make
use of Remark 3. From (3.9), in each of the cases of (3.6) we obtain

w2z̃′

z̃
(0+) =

(
w2 g

′

g
− ww′

)
(0+) = 0. (3.11)

We can thus apply (3) of Theorem 4, and (3.5) implies that z̃ (hence g) has a first zero.
Case (ii) is analogous. Indeed, by Remark 8, w in (3.7) is a solution of the Cauchy
problem  w′′ +

B2

(1 + t)2
w = 0

g(0) = 0, g′(0) = C > 0.

Remark 12. We recall that, by (2.4), inequality (3.5) is equivalent to the somehow
simpler∫ t

S

√
Aγ(σ)dσ > −1

2

(
log

∫ S

0

Aγ(σ)w2(σ)dσ + log

∫ +∞

t

dσ

w2(σ)

)
. (3.12)

However, (3.5) put in evidence that the RHS does not depend on t, as opposed to
conditions like (1.18) and (2.18) where both a and b appear in the LHS as well as in
the RHS. Furthermore, although somehow complicated, (3.5) is entirely explicit once
we are able to compute the critical curve related to w2. In general, this can only be
done numerically, but in some cases a closed expression can be given. For instance,
this is so for m = 3, B = 1/2 in (3.7), for B = 0 in (3.7) and for α = 0,−2 in (3.6):

∫ +∞

t

dσ

w2(σ)
=



t−
√

1+4B2

√
1 + 4B2

for (3.6), α = −2 and for B = 0;

B−1
[
coth(Bt)− 1

]
for (3.6), α = 0;

1

log(1 + t)
for (3.7), B = 1/2, m = 3.

Therefore, in the case B = 0, (3.12) reads∫ t

S

√
Kγ(σ)dσ > −1

2

(
log

∫ S

0

σ2Kγ(σ)dσ − log t

)
,

that should be compared to (1.18), while, for α = 0, (3.12) becomes∫ t

S

√
Kγ(σ) +B2dσ > −1

2

(
log

∫ S

0

Kγ(σ) sinh2(Bσ)dσ + log
coth(Bt)− 1

B

)
,

that should be compared to (2.17) and (2.18).
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Easier expressions can be obtained when considering oscillatory conditions. We
state the result in analytic form.

Theorem 9 (Generalized Calabi criterion). Let K ∈ L∞loc(R+
0 ), and let g 6≡ 0 be

a solution of g′′ +Kg = 0. Then, g oscillates in each of the following cases:

(1) K satisfies
K(t) ≥ −B2tα when t > t0, (3.13)

for some B > 0, α ≥ −2 and t0 > 0, and the following conditions hold:

for α = −2, lim sup
t→+∞

(∫ t

t0

√
K(σ) +

B2

σ2
dσ −

√
1 + 4B2

2
log t

)
= +∞;

for α > −2, lim sup
t→+∞

(∫ t

t0

√
K(σ) +B2σαdσ − 2B

α+ 2
t
α
2 +1

)
= +∞.

(3.14)

(2) K satisfies

K(t) ≥ B2

t2
when t > t0, (3.15)

for some B ∈ [0, 1/2], t0 > 0, and the following conditions hold:

for B < 1
2 , lim sup

t→+∞

(∫ t

t0

√
K(σ)− B2

σ2
dσ −

√
1− 4B2

2
log t

)
= +∞;

for B = 1
2 , lim sup

t→+∞

(∫ t

t0

√
K(σ)− 1

4σ2
dσ − 1

2
log log t

)
= +∞;

(3.16)

Proof. (1). The equation w′′−B2tαw = 0 on, say, [1,+∞) has the particular positive
solution

w(t) =
√
tI 1

2+α

(
2B

2 + α
t1+α

2

)
if α > −2;

w(t) = tB
′
, B′ =

1 +
√

1 + 4B2

2
if α = −2,

(3.17)

where Iν(t) is the Bessel function of order ν. From

Iν(t) =
et√
2πt

(1 + o(1)) as t→ +∞

(see [12], p. 102), in both cases α = −2 and α > −2 we deduce that 1/w2 ∈ L1(+∞).
Moreover,

∫ +∞

t

dσ

w2(σ)
∼


C exp

(
− 4B

2+α t
1+α

2

)
if α > −2;

Ct1−2B′
= Ct−

√
1+4B2

if α = −2.

(3.18)

Since the function z̃ = g/w solves

(w2z̃′)′ + (K +B2tα)w2z̃ ≤ 0 on [1,+∞),
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by (4) of Theorem 4, z (and hence g) oscillates provided

lim sup
t→+∞

∫ t

t0

(√
K(σ) +B2σα −

√
χw2(σ)

)
dσ = +∞

which, by Remark 4, is equivalent to

lim sup
t→+∞

∫ t

t0

√
K(σ) +B2σαdσ +

1

2
log

∫ +∞

t

dσ

w2(σ)
= +∞ (3.19)

By (3.18), conditions (3.14) and (3.19) are equivalent, thus the conclusion.
(2). The proof is the same. Indeed, it is enough to consider the following positive
solution w of w′′ +B2t−2w = 0:

w(t) = tB
′′
, B′′ =

1 +
√

1− 4B2

2
if B ∈ [0, 1/2);

w(t) =
√
t log t if B = 1/2.

(3.20)

Again, in both cases 1/w2 ∈ L1(+∞).

Remark 13. Note that, for B = 0, we recover another proof of the original Calabi
oscillation criterion, which is different from that described in the previous section.

Polynomial lower bounds for K are clearly chosen for their simplicity. Indeed, the
statement in its full generality only requires a positive solution w of w′′ + Ww ≥ 0,
where the weight W has only to satisfy K+W ≥ 0. In this way, arbitrary lower bounds
for K are allowed, and up to finding a suitable positive w the oscillatory conditions
are explicit. This improves on Moore oscillation criterion, where the existence of the
limit in (2.16) is essential for the proof of Theorem 6 to work. The same discussion
holds for Theorem 8, up to the further requirement that w is sufficiently well-behaved
as t → 0+. From this perspective, Theorem 8 improves on Theorem 7, whose proof
seems to us to be hardly generalizable when the lower bound for K is nonconstant.

The procedure described above, which loosely speaking allows to translate the
potential up to inserting a weight, can be iterated. In this way, we can obtain finer
and finer criteria in a very simple way. We now describe how to proceed in this
direction. The first example is the following

Theorem 10 (Positivity and nonoscillation criteria). Let K ∈ L∞loc(R+
0 ).

(1) Suppose that

K(t) ≤ 1

4(1 + t)2

[
1 +

1

log2(1 + t)

]
on R+. (3.21)

Then, every solution g of {
g′′ +K(t)g ≥ 0

g(0) = 0, g′(0) = 1
(3.22)

is positive on R+ and satisfies g(t) ≥ C
√
t log t log log t, for some C > 0 and for

t > 3.
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(2) Suppose that

K(t) ≤ 1

4t2

[
1 +

1

log2 t

]
on [t0,+∞), (3.23)

for some t0 > 0. Then, every solution g of g′′ +Kg = 0 is nonoscillatory.

Proof. (1). By Sturm argument, it is sufficient to prove the desired conclusion under
the additional assumptions that g satisfies (3.22) with the equality sign, and that

K(t) ≥ 1

4(1 + t)2
.

Let w(t) =
√

1 + t log(1 + t) be the solution of (3.22) with the equality sign and with
K(t) = [4(1 + t)2]−1. Then, z̃ = g/w solves (w2z̃′)′ +

[
K(s)− 1

4(1 + t)2

]
w2z̃ = 0 on R+

z̃(0) = 1, z̃′(0) = 0.

(3.24)

Applying (1) of Theorem 4, z̃ is positive provided

K(t)− 1

4(1 + t)2
≤ χw2(t) =

1

4(1 + t)2 log2(1 + t)
,

which is (3.21), and z̃ satisfies

z̃(t) ≥ −C

√∫ +∞

t

dσ

w2(σ)
log

∫ +∞

t

dσ

w2(σ)
= C

log log t√
log t

,

for some C > 0. The lower bound for g follows at once by the definition of z̃.
To prove (2), again by Sturm argument we can assume that the inequality K(t) ≥
1/[4t2] holds. Proceeding along the same lines as for (1) with the choice w =

√
t log t,

and using (2) of Theorem 4, we reach the desired conclusion.

The next prototype case illustrates the sharpness of our criteria. Let

K(t) =
1

4t2
+

c2

4t2 log2 t
, on [2,+∞),

where c > 0 is a constant. Then, applying (2) of Theorem 9, case B = 1/2 we deduce
that g oscillates whenever c > 1. On the other hand, if c ≤ 1, by Theorem 10 g is
nonoscillatory. However, on [2,+∞)

1

4
< k(t) = t

∫ +∞

t

K(σ)dσ ≤ 1

4
+ t

c2

4t

∫ +∞

t

dσ

σ log2 σ
=

1

4
+

c2

4 log t
,

hence the Hille-Nehari criterion cannot detect neither the oscillatory nor the nonoscil-
latory behaviour of g depending on c. Similarly, also Moore criterion is not sharp
enough. The proof of Theorem 10 suggests an iterative improving procedure. In the
general case, suppose that we are given an ordinary differential equation of the type
(vz′)′ +Avz = 0, with v such that χ can be defined. By Sturm argument, there is no
loss of generality if we assume that A ≥ χ. An explicit solution w of

(vw′)′ + χvw = 0
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is given by

w(t) = −

√∫ +∞

t

ds

v(s)
log

∫ +∞

t

ds

v(s)
,

and it is positive on some intervall [r0,+∞). Then, z̃ = z/w solves

(v̄z̃′)′ + (A− χ)v̄z̃ = 0 on [r0,+∞),

where v̄ = vw2, which implies that z̃, and therefore z, are nonoscillatory if (vw2)−1 ∈
L1(+∞) and

A(r)− χ(r) ≤ χvw2(r),

and oscillatory if (vw2)−1 ∈ L1(+∞) and

lim sup
t→+∞

∫ t

t0

(√
A(s)− χ(s)−

√
χvw2(s)

)
ds = +∞.

Now, the procedure can be pushed a step further by considering z̃. This enables us
to construct finer and finer critical curves. As an example, we refine Theorem 10.
Suppose that

K(t) ≥ 1

4t2
+

1

4t2 log2 t

on, say, [2,+∞). Then, as in the proof of Theorem 10, define w =
√
t log t and

v = w2 = t log2 t. Since w is a positive solution of w′′ + (4t2)−1w = 0 on some
[r1,+∞), z = g/w is well defined and solves (vz′)′ +Avz = 0 on [r1,+∞), where

A(t) = K(t)− 1

4t2
≥ 1

4t2 log2 t
= χw2(t) = χ(t).

Now, the function

w2(t) = −

√∫ +∞

t

ds

v(s)
log

∫ +∞

t

ds

v(s)
=

log log t√
log t

is a solution of (vw′2)′ + χvw2 = 0, positive after some r2 ≥ r1. Setting

v2(t) = v(t)w2(t)2 = t log t log2 log t,

then
1

v2(t)
∈ L1(+∞),

and the function z2 = z/w2 is a solution of (v2z
′
2)′ +A2v2z2 = 0 on [r2,+∞), where

A2(t) = A(t)− χ(t) = K(t)− 1

4t2
− 1

4t2 log2 t
≥ 0.

Thus z2, and hence z and g, is nonoscillatory provided

A2(t) ≤ χv2(t), that is, K(t) ≤ 1

4t2
+

1

4t2 log2 t
+

1

4t2 log2 t log2 log t
,

and, by (2.11), it is oscillatory if

lim sup
t→+∞

(∫ t

t2

√
K(σ)− 1

4σ2
− 1

4σ2 log2 σ
dσ − 1

2
log log log t

)
= +∞.
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Remark 14. We mention that, with the aid of the change of variables (2.13) and
(2.14), Theorems 8, 9 and 10 can be applied to get sharp extensions of index estimates
for stationary Schrödinger operators on Rm, m ≥ 3, that highly improve on classical
results of M. Reed and B. Simon [17], and W. Kirsch and B. Simon [11]. The interested
reader can consult [2], Theorem 6.50.
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Birkäuser, 2008.



REFERENCES 20

[17] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis
of Operators, Academic Press, New York-London, 1978.

[18] S. Rosenberg and D. Yang, Bounds on the fundamental group of a manifold with
almost nonnegative Ricci curvature, J. Math. Soc. Japan 46 (1994), no. 2, 267–
287.

[19] C.A. Swanson, Comparison and Oscillation Theory for Linear differential opera-
tors, Academic press, New York and London, 1968.

[20] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949),
115–117.

[21] J.Y. Wu, Complete manifolds with a little negative curvature, Amer. J. Math. 113
(1991), no. 4, 567–572.


